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1. INTRODUCTION 

 

The intention of the present text is twofold. The main addressee is the potential user of a 

balancing software. He (or she, of course) is probably not so much interested in the mathematical 

theory and proofs, nor in the details of computation. Our aim is to show him what is required 

from his side, how the software works and what he can expect from it. Still, some insight into the 

principles on which it is based can be useful. This is done mainly by way of examples illustrating 

the basic ideas of balancing and reconciliation of measured data. The user is anyway supposed to 

participate in the construction of the balancing model, to a degree dependent on his 

professionality. Our aim is also to support his confidence in the principles of the theory, that the 

ideas are basically natural and sound. The requirements on his knowledge range from not very 

advanced algebra and analysis to elements of physical chemistry at a graduate, but not specialised 

level; in some examples, a little more chemical thermodynamics occurs just to show that the 

construction of a model will sometimes require a specialist. 

 

The other addressee can be a (possibly future) specialist in balancing and reconciliation methods. 

In 1997, there appeared the book 'Material and Energy Balancing in the Process Industries' by 

Veverka and Madron. A considerable part of the book is concentrated on theory thus the 

mathematical and physical principles of the balancing and reconciliation of measured data. In a 

certain sense, the present text can also be regarded as an introduction to the book or some kind of 

'guide' through it for a reader who decides to peruse it. The references to the book are mainly 

addressed to the latter reader. He will there find the formulae, proofs and other details. The 

references are numerous: for the sake of brevity, they are denoted by VE-MA . 
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2. BALANCING IN PROCESS INDUSTRIES 

2.1.The subject and purpose of balancing 

 

As an example, let us begin with a technological scheme according to Fig. 2-1. 

 

 

 

 

    Fig. 2-1  A flowsheet for a single-component balance 

 

The scheme is simplified as corresponds to the given task of balancing. Besides the distillation 

column A and distillate storage tank B, it comprises also more complex subsystems of 

apparatuses the individual balances of which are not required. Each of the subsystems is regarded 

as a (technological) unit or, more generally, a node of the flowsheet (A, B, ... , E included). They 

are balanced as 'black boxes' disregarding their detailed  structure. Node E represents here a 

distributor of electric energy supply. 

 

The nodes are connected among themselves and with the environment by streams (1, ... , 12 in 

the Figure). Streams are usually classified as process streams (1 to 8) and utilities, such as 

cooling water or electricity (9 to 11). The classification is useful because process streams usually 

don't mix with utilities; their balances are often independent and can be solved separately. The 

classification of the stream 12 is ambiguous: In the subsystem D arises a process off-gas, which is 

further led to subsystem C to be burned in a heating furnace (imagine pyrolysis of hydrocarbons 

as part of unit C); so stream 12 becomes here a utility. This means that it does not enter the 

material balance of node C. [If also energy is subject to balancing, the scheme has to be modified; 

see later in Section 3.3.] 
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Basically, the balance of a system in a certain time interval means the complete information 

about 

 

    – exchange of balanced quantities (overall mass, chemical components, different forms of 

       energy etc.) among separate elements (nodes) of the system or among nodes and the 

       environment 

 

    – inventories of balanced quantities in nodes at the beginning and end of the interval, or 

       how the inventories have changed (accumulation). 

 

More generally, the methods of balancing include also the solution of different associated 

problems (see Section 2.2) and they also yield other kinds of information as will be shown later. 

 

In the simplest case, as corresponds to Fig. 2-1, we are interested in the overall mass flows in the 

case of material streams (for example in tons), and electric energy (for example in GWh). We are 

not interested in other characteristics of streams as chemical composition, because one can 

suppose that the quality of individual streams is guaranteed by the control system. This is the 

most widely used application of the balancing methods. 

 

The equations for this (so-called) single-component balance are of the form 

 

   sum of inputs  =  sum of outputs  +  increase in inventory ;                                           (2.1.1) 

 

for each node of the system we thus have just one equation. Involving a change in time, the 

balance can be classified as dynamic. The incentive for setting-up this kind of balance is the 

regular monitoring of yields of main products and that of specific consumption of utilities as part 

of 'good housekeeping' of the plant. 

 

As the second example, let us consider the flowsheet according to Fig. 2-2. 

 

 

 

 Fig. 2-2  Separation of light hydrocarbons 
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It represents the distillation / absorption train for processing of refinery off-gases. Refinery off-

gas 1 consists of hydrocarbons C1 to C7, hydrogen, and inert gases (N2 , Ar). The column A 

serves as absorber / desorber. Hydrogen, inerts, and C1 and C2 hydrocarbons are boiled up in the 

bottom part of the column and middle hydrocarbons (C3,C4) are absorbed in the upper part of the 

column by heavier hydrocarbons (C6 and C7). The lean gas 2 leaving the head of the column is 

later burned in a furnace. The second column serves for separation of C3 and C4 hydrocarbons 

from the absorbent 6 which circulates between columns A and B. The middle hydrocarbons 

consisting mainly of propane and butanes are separated from one another in the third column 

which produces commercial products propane 7 and butane 8. 

 

In this case, we are interested in the (so-called) multicomponent balance when individual 

(chemical) components (inerts, hydrocarbons and hydrogen) are conserved. We have one 

component balance equation for each component and column (if the component is present in the 

column); it is again of the form (2.1.1) but the accumulation term (here: change in holdup) is 

commonly neglected. The result of the balance is the complete information not only about overall 

flows but also about the composition of individual streams. 

 

Such multicomponent balance is important for tracing valuable components in the process. The 

value of commercial products (propane and butane) is much higher than the value of the lean gas. 

Significant economic losses can occur if the absorption in the first column does not operate 

properly and valuable hydrocarbons are lost in the lean gas. 

 

There are also other incentives for setting up such a multicomponent balance. The balance in a 

multicomponent system can serve for the validation of sampling and analytical methods. The 

analysis of imbalances (inputs minus outputs) can reveal errors caused by improper sampling and 

erroneous methods of analysis. Still another incentive is tuning of the process simulator by 

comparison of computed results with the balance set up on the basis of process data. 

 

The third example is that of a reactor; see Fig. 2-3. 

 

 

 

    Fig. 2-3  Contact reactor in sulphuric acid plant 

 

Gases from sulphur burning unit (stream 1 containing N2 , Ar, O2 , SO2 , traces of SO3) and 

additional dry air 2 (N2 , Ar, O2) are subject to the (catalysed) chemical reaction 

 

   SO2 + 1/2 O2  =  SO3 

 

producing sulphur trioxide; stream 3 further contains the inerts N2 and Ar and nonreacted O2 and 

SO2 . In this case, the components O2 , SO2 , SO3 are not conserved individually as they can be 

R 
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consumed or created by the reaction. More generally, several chemical reactions can take place in 

one reactor; see Fig. 2-4. 
 

 

 

   Fig. 2-4  Chlorination reactor 

 

Here, methane is chlorinated in a complex reaction set which can be summarised as 

 

   CH4      +  Cl2  =  CH3Cl    +  HCl 

   CH3Cl   +  Cl2  =  CH2Cl2  +  HCl 

   CH2Cl2  + Cl2   =  CHCl3   +  HCl 

   CHCl3   +  Cl2   =  CCl4     +  HCl . 

 

The balance of the reactor is governed by the reaction stoichiometry. In this case we speak of 

multicomponent balance with chemical reaction(s). The result of balancing is the complete 

information about the amounts of individual components entering and leaving the reactor and 

possibly also about reaction characteristics such as reaction rates or extents of reactions ; in the 

case of  Fig. 2-3, it is the (so-called) 'degree of conversion' of SO2 to SO3 . The balancing of 

reacting systems is important for detailed analysis of processes running in the reactor, either in 

the stage of laboratory or pilot plant studies, or as the regular monitoring of industrial reactors 

behaviour (yields, selectivity in the case of several reactions). In the industrial case, it is thus 

possible to reveal important changes as improper control, ageing of the catalyst etc., which can 

cause serious economic losses or even jeopardise the safety of the whole process. 

 

Still another example is in Fig. 2-5. 

 

Fig. 2-5  Column feed preheat 

(E1 and E2 are heat exchangers, D is distillation column) 
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To analyse such a system, the (so-called) enthalpy (heat) balance must be set up, which includes 

the complete information about enthalpies of streams and also heat fluxes occurring between 

some parts of the system. We can meet with this kind of balancing either when designing a new 

process, or during the monitoring or control of an existing process (evaluation of heat transfer 

coefficients, calculation of unmeasured temperatures, etc.). Such monitoring can reveal, for 

example a common quiet 'thief' in process plants – a heat transfer surface fouling. 

 

Summarising, the balance of a system consists of individual node balances giving a set of 

equations to be solved. The general form of a node balance reads 

 

   quantity in  +  source  =  quantity out  +  accumulation                                                 (2.1.2) 

 

where the source is null for a quantity that remains conserved (such as overall mass); in reactors, 

it equals the production of the quantity (component mass) by the chemical reaction(s) where 

negative production means consumption. The accumulation means generally the (positive or 

negative) increase in holdup (dynamic balancing); when (it can be) neglected, we speak of a 

steady-state balance. The purposes of the balancing can be manifold as indicated above. Here, we 

are in particular (though not exclusively) interested in process analysis. To this end, a number of 

associated problems have to be solved. 

 

2.2.Associated problems 

 

The quantities in the node balances (2.1.2) can be flowrates (e.g. mass per unit time) or their 

integrals over a given period of time. Thus, by definition, if  f(t) is the flowrate at time t then 

 

   fint  =   
2

1

t

t

f(t) dt                                                                                                           (2.2.1) 

 

is the integrated flowrate in the interval [t1 , t2]; in the same manner are integrated the source and 

accumulation terms. The node balance holds thus true in both cases. Written with the 

'instantaneous' f(t), it is more convenient in chemical engineering calculations such as when 

designing the apparatuses of a plant. In the process analysis, the balancing is usually carried out 

in certain intervals of time; this in particular in the case of overall mass (daily balancing). Even if 

a balance per unit time is written, we in fact consider the averages 

 

   f  =  int

12

1
f

tt 
                                                                                                         (2.2.1a) 

 

where the difference t2 – t1 can be of the order of magnitude of minutes at least, or more. Indeed, 

the instantaneous values are fluctuating for example due to the action of control devices. Then the 

response to the control action is 'delayed'; more precisely, the course of the response in time is 

described by the control theory, not to be dealt with here. So the balance equations are simplified 

by averaging to be solvable by algebraic methods. The balances (2.1.2) then hold true with the 

f as well. 
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The individual node balances are dealt with in Chapter 3. They are written in terms of what we 

call 'balancing variables'. Thus for example the mass flowrate of a chemical component X equals 

myX with balancing variables m (mass flowrate in the stream) and yX (mass fraction of X in the 

stream). Let generally  f  = mx be a flowrate. In the balancing interval, we have 
 

   m   =   m  +  m~ (t) 

                                                                                                                                           (2.2.2) 

   x    =   x x~ (t) 
 

where m~  and x~ are the fluctuations. Let us further assume that, for a sufficiently large t2 – t1 
 

   m~   =  0            and          x~   =  0                                                                           (2.2.2a) 
 

 

which corresponds to the idea that the fluctuations are random variables with zero mean. It is then 

easy to show that   

 

   f  =  mx  +   xm~~ b



We can put   xm~~  = 0 if the fluctuations m~  and  x~  are uncorrelated. The probabilistic 

interpretation is somewhat naive and the latter hypothesis does not generally follow from any 

exact theory ; but assuming small fluctuations, let us still neglect the latter term. We then 

approximate 

 

   f mx                                                                                                              (2.2.3) 

 

thus also 

 

 fint    mint xa) 

 

with integral mass flowrate mint  and mean value x of  x . 

 

In the case of energy ('enthalpy' or 'heat') balancing, the factor x (specific enthalpy) can generally 

be a complicated function of other balancing variables (composition, temperature, generally also 

pressure). We will not embarrass the reader by meticulous theoretical analysis. Let us simply 

state that assuming small fluctuations, 

 

   The balancing variables are averages over an interval of time. 

 

When writing the balance equations, the variables must be consistent as concerns their physical 

dimensions. We prefer the mass system of variables because it is the (overall) mass that remains 

conserved  (not generally the number of moles) and also the raw materials are bought and the 

products sold in tons. The consistency however requires using the SI  

system of units, thus kg for mass. The (possibly integrated) mass flowrate is denoted by m  (with 

indices identifying the streams), its unit is kg s
-1

 (or kg if integrated). The corresponding 
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composition variable in a mixture is then yX (mass fraction) for component X. If also energy is 

being balanced, the streams can comprise 'net energy streams' such as in Fig. 2-1, or a 'heat 

flowrate' if the material is preheated or cooled; the unit is W (or Ws = J if integrated). The 

relevant part of the energy associated with material flow is its enthalpy ; it then equals m Ĥ  

where Ĥ  is specific enthalpy (J kg
-1

). The specific enthalpy is a function of (absolute) 

temperature T  (unit K), composition and generally also pressure P (unit Pa). The thermodynamic 

data is part of the database. In particular for chemically reacting systems, care must be taken that 

the specific enthalpies be consistent with respect to the zero levels. This is generally a task for 

specialists in chemical thermodynamics. 

 

The consistency requirements do not, of course, mean that the user is obliged to present his data 

and obtain the results in the above system of units. It is the task of the balancing software to re-

calculate the quantities from and back into the units the user prefers, thus tons, MWh and the like. 

 

In spite of the preference given to the mass system, the molar system is still worth mentioning. It 

is widely used in chemistry and chemical thermodynamics (for example instead of specific 

enthalpies, classical thermodynamical tables give molar enthalpies). The molar system is based 

on mole as unit quantity of matter (in fact a specified number of molecules). One kg-mole (10
3
 

moles) is denoted as kmol and is consistent with the mole mass (molecular weight) MX of 

chemical species X in kg/kmol; to be precise, this MX is related to the conventional chemical 

formula for X (not necessarily representing the actual configuration of a 'molecule' for example in 

solids). Then, if nX is the number of kg-moles of species X, the mass is 

 

   mX  =  MXnX     (kg).                             (2.2.4) 

 

The composition of a mixture can also be expressed in mole fractions xX of components X 

 

   xX  =  
n

nX                                                 (2.2.5) 

 

where n is the total number of kg-moles, thus the sum of mY/MY over al species Y present in the 

mixture. Introducing the mean mole mass of the mixture 

 

   M   =    
Y

YYMx   =    


Y Y

Y

1

M

y
                               (2.2.6) 

 

we  have the formulae 

 

   yX  =  
M

xM XX       and      xX  =   
X

X

M

y
M                                (2.2.7) 

 

with (2.2.6)1 resp. (2.2.6)2 . The molar enthalpy  XH  (J kmol
-1

) of pure species X equals 
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   XH   =  MX XĤ                            (2.2.8) 

 

where  XĤ  is the specific enthalpy of X. For a mixture, the molar enthalpy equals 

 

  H    =   HM ˆ .                                                                                                                    (2.2.9) 

 

 

Using these simple formulae, the balancing software can recalculate the thermodynamic data 

from the molar to the mass system, and vice versa. 

 

In the process analysis, the values of certain variables are measured. The primary (directly 

measured) quantities need not be just the balancing variables as introduced above. It is then the 

task of the data pre-processing to transform the measured values to those of the balancing 

variables. The transformation formulae (such as (2.2.7) for example), possibly with different 

simplifying assumptions, have also to be included in the software. We shall not go into further 

details of this routine. 

 

The measured data are subject to unavoidable measurement errors (measured value minus true 

value). They always comprise some part that is of random character and can thus be treated by 

statistical methods. For more details, see for example Madron (1992), Chapter 3. Here, we shall 

restrict our attention mainly to the random errors that oscillate around zero (with zero mean) and 

are characterised by standard deviation  . This is a theoretical value following from the 

(assumed) probability density function. Its estimate s can be obtained from repeated 

measurements as 

 

   s   =   

2

1

2

1

)(















 

-n

xx
i

i

                    (2.2.10) 

 

where  n is the number of measured values xi and x  their arithmetic average. The standard 

deviation characterises the precision of the measuring instrument (  = 0 means absolute 

precision). For the statistical data processing by reconciliation, see Chapter 5. 

 

It can happen that we only have information about maximum measurement errors provided by 

vendors of the instruments (sometimes as the class of accuracy). There then arises the question, 

what is the relation between the standard deviation   and the maximum error |e|max (absolute 

value). The rigorous answer probably does not exist. In practice, we can recommend to take 

 

         
2
1 |e|max .                               (2.2.11) 

 

As a motivation, one can perhaps consider the fact that with probability 0.95, the absolute value 

of the error will not exceed the value (approximately)  2 , for Gaussian distribution of the 

errors. On the other hand, also in practice an error whose probability is less than 0.05 is regarded 

as a gross error due to some failure. 
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3. INDIVIDUAL NODE BALANCES 

 

We shall now specify different types of node balances (2.1.2), illustrated by examples. For the 

sake of unambiguosity and in order to make the formulae compatible with the book VE-MA we 

are constantly referring to, let us consider the quantities in (2.1.2) as flowrates per unit time; see 

the commentary in Section 2.2. 

3.1.Single-component balance 

 

The balance (2.1.2) takes here the form (2.1.1). It is almost trivial. Considering Fig. 2-1, for 

example for node B 

 

   m2  =  m3  + a 

 

where mi is mass flowrate in stream i and a is the increase in inventory (positive or negative) per 

unit time. Other products are stored outside the units drawn in the flowsheet. The possible 

changes in holdups are neglected. Thus for node D we have 

 

   m5  =  m6  +  m8  +  m12 

 

but the node C-balance reads 

 

   m4  +  m6  =  m5  +  m7  

 

because the stream 12 does not enter the node C-mass balance. The integrated forms of the 

balances are the same. 

3.2.Multicomponent balances 

 

The quantities of individual chemical species (components) need not be conserved due to 

possible chemical reactions. We thus begin with the subsection 

 

3.2.1. Chemical reactions and stoichiometry 

 

As an example, consider the reaction 

 

   SO2  +  1/2 O2  =  SO3                                   (a) 

 

according to Fig. 2-3. It can also be written 

 

   2 SO2  +  O2  =  2 SO3 .                 (b) 

 

Disregarding the actual reaction mechanism (which can be more involved), from the viewpoint of 

balancing the effect is the same. The information contained in both of the reaction schemes reads 
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   (i)    The reaction participants are SO2 , O2 , SO3 

  (ii)   The reaction product is SO3 

  (iii)  The molecular ratios of the participants are  1 : 1/2 : 1  =  2 : 1 : 2. 

 

Nitrogen and argon present in the mixture do not participate in the reaction (they are neither 

consumed nor produced by it); they are called inert components. 

 

Whatever be the mechanism, the reaction schemes must obey the laws of chemical stoichiometry: 

the number of atoms of each element must remain conserved. Thus for oxygen we have  2+1 = 3  

in (a). 

 

Also disregarding the detailed mechanism, the (differential) rate of the reaction (a) can be 

introduced as the number of molecules of SO3 arising by the reaction in unit volume per unit of 

time; or, in conventional units, as the corresponding number of kg-moles. This reaction rate will 

generally be different at different points of the reactor, due to the changes in composition and 

temperature in the direction of flow. Balancing the whole reactor R, we rather introduce the 

(volume-integrated) reaction rate  Wa  as the number of kg-moles of SO3 produced by the 

reaction in R per unit of time. [Integrating further over an interval [t1 , t2] of time, we have the 

extent of the reaction in the balancing interval.] 

 

Note:  The (integral or differential) reaction rate as introduced here is generally not a simple 

measure of the 'reactivity', which is the tendency to achieve reaction (thermodynamic) 

equilibrium. For example in the above case the reactivity increases with temperature but the 

equilibrium is then shifted towards a higher content of nonreacted SO2 and limits the attainable 

Wa . 

 

There can be several reaction products; for example in the oxidation of ammonia 

 

   4 NH3  +  5 O2  =  4 NO  +  6 H2O                           (c) 

 

we have two. So as to make Wc independent of the choice of the product to which it is related, 

one defines Wc in the manner that  4 Wc resp. 6 Wc is the number of kg-moles of NO resp. H2O 

arising by the reaction, and also 4 Wc resp. 5 Wc is the number of kg-moles of  NH3 resp. O2 

consumed by the reaction, again per unit time. 

 

With this convention, considering the reaction (a) rewritten as (b), we have Wa = 2Wb for the 

same amount of produced SO3, thus Wb =  
2
1 Wa  while the physical process is the same. So the 

definition of the reaction rate depends on how the reaction is written . Generally if, in the 

reaction 

 

   r :     a1A1  +  ...  +  anAn  =  b1B1  +  ...  +  bmBm                                                        (3.2.1.1) 

 

Pi  resp. Qj  is the number of kg-moles of  Bi produced resp. Aj consumed (per unit time) then 

 

   Wr  =   
1

1

b

P
  =  ...  =  

m

m

b

P
  =   

1

1

a

Q
  =  ...  =  

n

n

a

Q
                                                           (3.2.1.2) 
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is the reaction rate. Thus PSO3  =  Wa  =  2Wb  in the first example. It can happen that the reaction  

runs in opposite direction (so-called 'reversible reaction', such as (a) where at high temperatures, 

SO3 can conversely be decomposed); then Wr < 0. In algebraic operations that will follow later, it 

is convenient to write reaction (3.2.1.1) in the form 

 

  (-a1)A1  +  ...  +  (-an)An  +  b1B1  +  ...  +  bmBm  =  0                                                   (3.2.1.3) 

 

thus with positive stoichiometric coefficients  (b1 , ... , bm) for the reaction products, negative ones 

(-a1 , ... , -an) for the chemical species consumed by the reaction. 

 

Several reactions can take place in one reactor. For example in the sulphur burning unit preceding 

the reactor R (Fig. 2-3), we have the reaction 

 

   S  +  O2  =  SO2                                                  (r) 

 

and a small amount of  SO3 is produced by the reaction 

 

   SO2  +  1/2 O2  =  SO3  .                       (s) 

 

We can rewrite the reactions according to the convention (3.2.1.3) thus for example   

SO2  –  S  –  O2  =  0. Let us now consider all the chemical species present in the unit, thus the 

inerts N2 and Ar in addition: their coefficients in the reactions equal zero. The matrix of the 

coefficients then reads 

 

                               S      O2   SO2  SO3  N2   Ar 

                             _______________________ 

                 M  =   




0

1-
   

1/2-

1-
   

1-

1
    

1

0
    

0

0
    





0

0
   

s

r
 . 

 

In VE-MA, the transpose S = M
T
  is called  stoichiometric matrix of the set of reactions; but 

some authors call  'stoichiometric matrix' the matrix M. Having the matrix M, we can write the 

molar production rates  PX  of the chemical species X present in the sulphur burning unit; for 

example 

 

   PSO2  =  Wr  –  Ws 

 

   PO2    =  – Wr  –  
2

1
Ws   (< 0; consumed) 

 

   PAr     =   0                     (inert) 

 

thus with coefficients that are the respective columns of matrix M, as follows from (3.2.1.2) with  

QX  =  – PX for components X =  A1 , ... , An . 

 

Summarising, having R  reactions  r  =  1,...,R  in a reactor, they are written with the above 

convention 
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   r = 1,...,R:        
X

X Xr  = 0                                              (3.2.1.4) 

 

with sum over components present in the reaction; we have  Xr > 0 for reaction products, Xr < 0 

for components X consumed, Xr = 0 for component X not participating in  reaction r. [Inert is 

component Y with  all  Yr = 0.] The stoichiometric matrix S (= M
T
) is that of coefficients  Xr  

(row X, column r). Then the molar production rate of component X equals 

 

   PX  =  


R

r

r

1

X rW                            (3.2.1.5)         

 

(kmol s
-1

)  where Wr is the r-th reaction rate, and in mass units (kg s
-1

) we have MXPX . 

 

3.2.2. Steady-state multicomponent balance 

 

Let us go back to the balance (2.1.2) with the immediately following commentary. The 

accumulation term can play a role in particular in single-component (mass) balancing, inventories 

(e.g. in storage tanks) included; see then what is said in the paragraph preceding Eq. (2.1.1). 

Otherwise, in the process analysis we are rather interested in units such as columns, reactors and 

the like. The steady-state hypothesis then simplifies the analysis. It can be interpreted in the 

manner that by the time-averaging (2.2.1) with (2.2.1a), the (possibly fluctuating) change in 

holdup vanishes. The balance (2.1.2) is then written without the last term thus 

 

   quantity out  –  quantity in  =  source.                  (3.2.2.1)  

 

Consider now again the example in Fig. 2-3. The LHS of (3.2.2.1) reads, e.g. for O2 

 

   (say)  mO2  =  m3 yO2
3
  –  m1 yO2

1
  –  m2 yO2

2
     (kg s

-1
) 

 

where mi is mass flowrate in stream i and generally  yX
i
 is mass fraction of component X in 

stream i; the  mi and  yX
i
  are our balancing variables. The source term equals the production rate 

of O2 by the chemical reaction (a) in Subsection 3.2.1, thus in mass units 

 

   MO2PO2  where  PO2  =   – 
2

1
Wa  (consumed) 

 

where (-1/2) is the stoichiometric coefficient at  O2  in the reaction written by convention as 

-1/2 O2  –  SO2 + SO3 = 0; see (3.2.1.3) and (3.2.1.2) where PO2 = -QO2 . It is convenient to 

introduce the molar quantity 

 

   nO2  =  O2

O2

1
m

M
    (kmol s

-1
) 
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where MX is mole mass of chemical species X. Then the O2-balance reads 

 

   nO2  =  PO2   (= – 
2

1
Wa) 

 

where Wa is the rate of reaction (a) written in the above conventional form. We'll have PSO2 =   – 

Wa ,  PSO3  = Wa  and  PX = 0 for the inerts X = N2 , Ar (molar production rates). 

 

Generalising, for each of the components X present in the node we introduce the 'balance excess' 

 

   mX   (= output minus input) =  
out,

X

i

i

i ym  –  
in,

X

i

i

i ym                    (3.2.2.2) 

 

where we put  yX
i
  = 0  for component X absent from stream i (e.g.  ySO2

2
 = 0  in Fig. 2-3), further 

 

   nX  =  X

X

1
m

M
                                (3.2.2.3) 

 

and write the balances for each X 

 

   nX  =  PX                            (3.2.2.4) 

 

where PX is the molar production rate of component X computed generally according to (3.2.1.5) 

in terms of reaction rates Wr . In addition, considering the mi and yX
i
 as balancing variables, we 

have the conditions 

 

   for each stream i :   
X

X

i
y  =  1                             (3.2.2.5) 

 

with sum over all X present in the stream. The condition (sum of mass fractions = 1) is obvious, 

but it must be explicitly written when solving a set of component balance equations in the latter 

variables. Then, as can be shown (VE-MA, Chapter 4), the overall mass balance is a consequence 

of  (3.2.2.4 and 5) and need not be written explicitly as a further condition. Also the atom species 

(elements) remain thus conserved each separately (while the components X generally not), of 

course with correctly written reaction stoichiometry. 

 

3.2.3. Nonreaction nodes 

 

They are characterised by the (assumed) absence of chemical reactions. Then the above 

production rates PX = 0 and we have directly 

 

   mX  =  0                    (3.2.3.1) 

 

for each of the components X, with (3.2.2.2). Thus according to  Fig. 2-2  we have, for column A 
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   m1 yX
1
 + m6 yX

6
  =  m2 yX

2
 + m3 yX

3
        along with (3.2.2.5) 

 

for components X = N2 , Ar, H2 and hydrocarbons C1 to C7. We can suppose that yX
3
 = 0 and yX

6
 

= 0 for X = N2 , Ar, H2 , most likely also for methane CH4 at least. Observe that we here can use 

the transformations (2.2.7). 

 

A special case of nonreaction node is a splitter 

 

 

Fig. 3-1  Splitter 

 

with one inlet and two or more outlet streams, characterised by the following property: The inlet 

stream is only divided (split) into several streams, without undergoing any other change. The 

balances (3.2.3.1) with (3.2.2.5) then don't provide the full information. Considering two outlet 

streams in Fig. 3-1, the component balances would be of the same form as those of a distillation 

column, thus admitting different composition in streams 2 and 3. The splitter balance reads more 

explicitly 

 

   m1  =  m2 + m3 + ...                           (3.2.3.2) 

 

and 

 

   yX
2
  =  yX

1
 

 

   yX
3
  =  yX

1
 

           . 

           . 

           . 

                          (3.2.3.3) 

 

for each X, with 

 

   
X

1

Xy  = 1.                     (3.2.3.4) 

 

[The conditions (3.2.3.4) for the other  yX
i
  follow from (3.2.3.3) and need not be written.] 

 

 

. . . 
 

1 3 

2 
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3.2.4. Reaction nodes (reactors) 

 

Let us begin again with the simple example given in Subsections 3.2.1 and 3.2.2. The component 

balances (3.2.2.4) read 

 

   nO2  =  –
2

1
Wa 

 

   nSO2  =  – Wa 

 

   nSO3  =  Wa 

                                              (3.2.4.1) 

 

and nN2 = 0, nAr = 0, plus the definition of  nX  by (3.2.2.2 and 3), plus the conditions  (3.2.2.5). 

Along with the balancing variables mi and  yX
i
 , we here have the parameter Wa , the reaction rate 

of the unique admissible reaction. This is the case of a standard technology. We know that 

oxidation of  N2 can be neglected under the given conditions and that, on the other hand, the 

oxidation SO2SO3 does run in the contact reactor. Note that in the same plant, SO3 with the 

nonreacted O2 and SO2 are cooled and led to an absorber where no such reaction takes place, 

although stoichiometrically possible and even thermodynamically preferred: it is here 'frozen' 

(negligibly slow) due to low temperature and the absence of catalyst. All these facts are known a 

priori and only then, the balance scheme with parameter Wa can be written. 

 

The reaction rates are  matter of interest of  reactor experts; they can possibly be predicted or 

conversely computed: thus in our example when one of the LH-sides in (3.2.4.1) is known (e.g. 

measured). Otherwise, they can be eliminated. Indeed, from (3.2.4.1) we can obtain 

 

        nSO2  +  nSO3    =  0 

and                                                       (3.2.4.1a) 

        nSO3  +  2 nO2  =  0. 

 

In the sequel, we shall be mainly interested in the auxiliary variables  nX (thus the production 

rates  PX expressed in terms of the balancing variables). Writing the balance equations explicitly 

using the substitutions (3.2.2.3) with (3.2.2.2) is then easy. 

 

Note: Omitting the variables nN2  and nAr  equal to zero, the equations (3.2.4.1) determine a 

straight line in the threedimensional space of coordinates nO2  , nSO2 , nSO3 , parametrised by Wa . 

The straight line is also the intersection of two planes (3.2.4.1a). It is the simplest example of a 

vector  (sub)space, called here the reaction space, to which the variables nX (thus  PX) must 

belong due to the reaction stoichiometry. In the same manner, the reaction space can be 

introduced for a general set of reactions and again, the reaction rates can be eliminated. The topic 

is dealt with in detail in VE-MA, Chapter 4. 

 

Let us now give several less trivial examples. In order to simplify the numbering, the ad hoc 

formulae in the Examples are numbered as (Ex 1.1), ... , (Ex 2.1), ... , etc., formulae of more 

general character excepted. 
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Exemple 1. Burning of sulphur 

 

The scheme is the same as in Fig. 2-3, but stream 1 is now liquid sulphur, stream 2 dry air and 

stream 3 the SO2-gas. Consider now the two reactions (r) and (s) in a sulphur burning unit 

according to Subsection 3.2.1. Suppose we are no reactor experts and let us further admit the 

reaction 

 

   S  +  3/2 O2   =  SO3                           (t) 

 

thus also direct oxidation of sulphur to sulphur trioxide. The (transposed) stoichiometric matrix 

thus M now reads 

 

                  S        O2        SO2    SO3   N2     Ar   

                _____________________________ 

   M   =   








1-

0

1-

     

3/2-

1/2-

1-

      

0

1-

1

       

1

1

0

      

0

0

0

      








0

0

0

  

t

s

r

                      (Ex 1.1) 

 

and the production rates PX  thus  nX  are 

 

   nS     =   – Wr                   – Wt 

 

   nO2   =   – Wr  – 
2

1
Ws  – 

2

3
Wt  

 

   nSO2  =      Wr  –    Ws  

 

   nSO3  =                   Ws    +    Wt   

                              (Ex 1.2) 

 

along with  nN2  =  nAr  = 0. Let us have measured or otherwise fixed the balancing variables 

(mass flowrates and composition of streams). It turns out (and can be proved formally) that a 

solution in the reaction rates either does not exist at all (incompatible data), or it does but then, 

there is an infinite number of solutions. The incompatibility means that the nX do not lie in the 

properly defined reaction space (see below). The nonuniqueness means generally that the reaction 

rates can perhaps be predicted by some model of reaction kinetics, but cannot be found by mere 

balancing. A reactor expert eliminates immediately the third reaction (t). 

 

Let us now illustrate the general procedure leading to analogous conditions as (3.2.4.1a). The 

theoretical concept of reaction space stands again behind the operations (see VE-MA, Chapter 4), 

but we can avoid it in practice. In the first step, by Gauss-Jordan elimination in M we find the 

equivalent matrix 
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     SO2   SO3  |   S        O2          N2       Ar 

      _______________________________ 

    








0

 0

1

     

0

1

0

       

0

1

1





     

0

2/3

1





       

0

0

0

        








0

0

0

   )2(

)1(

 

 

where we have changed the order of components to have unit submatrix in the left upper corner. 

 

The matrix obtained by elimination is not unique, as is well known. Here, we have chosen certain 

'key components' that constitute the columns of the unit submatrix (they are generally not 

arbitrary). The two nonnull rows represent some fictitious independent reaction schemes (1) and 

(2) with reaction rates W1  and  W2  that are the new parameters (this means that the reaction 

space is of  dimension 2). [In the given case, the independent reactions happen to be (r) and (t).] 

We thus can write 

 

   nSO2  =  W1 

 

   nSO3  =  W2 

 

and from 

 

   nS     =  – W1  –  W2 

 

   nO2   =  – W1  –  
2

3
W2  

 

by elimination of W1 and W2  we find the conditions 

 

   nS  +  nSO2  +  nSO3    =  0 

                                                                                   (Ex 1.3a) 

   nO2  +  nSO2  +  
2

3
nSO3  =  0 

 

(which can be rewritten in different other ways by combinations), and of course again 

 

   nN2   =   0 

                                               (Ex 1.3b) 

   nAr    =   0 . 

 

The balancing variables constituting  the terms nX by (3.2.2.3 and 2) must obey the conditions 

(Ex 1.3), and  (3.2.2.5); the reaction rates are not needed. Observe also that denoting by 1 the 

stream of supplied (liquid) sulphur (with  yS
1
 = 1), we have 

 

   nS  =   – 
S

1

M
m1                               (Ex 1.4)                   
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assuming that sulphur is completely burnt thus absent from the outlet stream. 

 

The procedure (transformation of matrix M and elimination of the fictitious reaction rates) can be 

formulated algorithmically (VE-MA, Chapter 4) and  computer-coded. 

 

Example 2.  Oxidation of ammonia 

 

In the production of nitric acid, ammonia is oxidised by air in a two-stage reactor with subsequent 

absorption (and further oxidation) to concentrated HNO3 . Here, we'll limit ourselves to the first 

stage of the oxidation.  

 

In the first stage of the reactor, mainly the following two reactions take place. 

 

   4 NH3  +  5 O2   =  4 NO  +  6 H2O                      (1) 

 

   2 NH3  +  
2

3
O2   =  N2  +  3 H2O                          (2) 

 

producing a large amount of water. The gas is then cooled and H2O is condensed out. At the same 

time, by further oxidation of NO 

 

   NO  +  
2

1
O2   =  NO2               (3) 

 

in the gas phase and, after absorption in the liquid phase, by the summary reaction 

 

   2 NO2  +  
2

1
O2  + H2O   =  2 HNO3                   (4) 

 

diluted nitric acid is formed. The oxidation is then completed in the second stage after further 

addition of air. 

 

The first stage, condensation of water included, is conceived as one node: 

 

 

 

 

    Fig. 3-2  Oxidation of ammonia 

NH3 

air 

outlet gas 

diluted acid 
2 

1 3 

4 
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The matrix M of the four reactions with the conventions according to Subsection 3.2.1 reads 

 

                 NO       NO2        H2O    HNO3   NH3       O2          N2        Ar 

                 __________________________________________________ 

   M   =   











1

4

      

2

1



        

1

3

6



        

2

       
2

4





       

2/1

2/1

2/3

5









       
1

           











   

)4(

)3(

)2(

)1(

          (Ex 2.1) 

 

where the void fields are zeros. Taking NO, NO2 , H2O, HNO3 as key components and using the 

first four columns for the elimination, the equivalent matrix reads 

 

           NO  NO2   H2O     HNO3    |   NH3           O2                N2        Ar     

           _____________________________________________________ 

         









1

      
1

        
1

         

1

            

3/1

3/2




       

2/3

2/1

1

2/1









        

3/1

3/1

2/1

2/1







          











  

)'4(

)'3(

)'2(

)'1(

          (Ex 2.2) 

 

and after elimination of the fictitious reaction rates Wr'  (W1'  =  nNO  etc.) we have the balance 

equations 

 

                                     
3

2
nH2O    +  

3

1
nHNO3   +  nNH3                                        =    0 

 

   
2

1
nNO    +     nNO2  +  

2

1
nH2O   +  

2

3
nHNO3                   +  nO2                           =   0 

 

   
2

1
nNO   +  

2

1
 nNO2  – 

3

1
nH2O    +   

3

1
nHNO3                               +  nN2              =   0 

 

                                                                                                                     nAr    =  0 

                                                 (Ex 2.3) 

 

where 

 

   nX  =  nX
3
   +  nX

4 
  –  nX

1
  –  nX

2
                 (Ex 2.3a) 

 

with 

 

   nX
j
  =  

X

1

M
yX

j
 mj                                                                                                        (Ex 2.3b) 
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and the conditions 

 

   
X

X

jy   =  1 .                                                  (Ex 2.4) 

 

Again jyX   =  0  if  X is not present in stream  j.  

 

We complete the model by specifying the components X present in streams j. 

 

   stream   1:   pure NH3 

                 2:   O2 , N2 , Ar, H2O (humidity) 

                 3:   O2 , N2 , Ar, NO, NO2 (nonabsorbed), H2O (noncondensed); we suppose 

                       complete burning of NH3 

                 4:   H2O, HNO3 . 

 

The balancing variables are thus m1 , m2 , m3 , m4 and  yNH3
1
 (= 1 by (Ex 2.4)),  yX

2
 for  X =  O2 , 

N2 , Ar, H2O,  yX
3
  for X = O2, N2 , Ar, NO, NO2 , H2O,  yX

4
 for X = H2O, HNO3; in fact yNH3

1
 is 

not a variable, being uniquely determined a priori by the definition of stream 1. 

 

The component balance of the node comprises 4 equations (Ex 2.3) and 4 (or only 3 with  yNH3
1
 = 

1 eliminated) conditions (Ex 2.4); with the substitutions (Ex 2.3a and b), it is written in terms of 

our balancing variables. Another variant is introducing as parameters the reaction rates Wr for the 

reactions (1) – (4) , using the matrix M (Ex 2.1). The reader can set up the balances, such as nNO 

= 4 W1 – W3 . One obtains 8 equations plus again 4 (or 3) conditions  

(Ex 2.4). In this case, the reactions are independent and no difficulty such as in Example 1 arises. 

[If the necessary data are compatible, the reaction rates are uniquely determined, as the theory 

shows.] 

 

Note:  In design or simulation problems, the equations such as (Ex 2.3 and 4) are part of the 

mathematical model of the plant. In the process analysis using measured data, it is not always a 

simple task to find, which balancing variables have to be measured in order to determine all of 

them. The above equations (constraints) represent certain conditions for the compatibility of the 

data. The measured data (usually more than needed) are then reconciled so as to make them 

compatible; see further Chapter 5. 

 

Element balances 

 

Let us first suppose that the conditions such as (Ex 2.3 and 4) in Example 2 are fulfilled. It can be 

shown (VE-MA, Chapter 4) that then also the individual chemical elements (atom species) 

remain conserved, which is a necessary condition for the compatibility of the data (nuclear 

reactions precluded). So the latter condition doesn't represent any further constraint. For example 

the oxygen atom balance PO = 0 is fulfilled automatically. 

 

In the example, we have 
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   PO  =  PNO + 2PNO2  + PH2O  + 3PHNO3  +  2PO2 

 

because oxygen is present in the named chemical species and for example in NO2 , we have two 

atoms O. Since PX  =  nX (3.2.2.4), we thus have the result 

 

   nNO  +  2 nNO2  +  nH2O  +  3 nHNO3  +  2 nO2  =  0. 

 

[By the way, we can see that this happens to be just  2 the second equation (Ex 2.3); but 

generally, such a result need not be so simply obtained.] 

 

Generally, we can introduce the atom matrix A whose rows correspond to the elements E and 

columns to the chemical species X present in the mixture (in the node). In row E and column X 

of the matrix, we have the number of atoms E in the chemical formula of X considered in the 

stoichiometry. Thus in the above example 

 

                 NO   NO2  H2O  HNO3    NH3     O2      N2     Ar 

                 _______________________________________ 

   A  =     











1

1

      
2

1

       
2

1
       

1

3

1

         
3

1

         
2

       

2

       











1

  

Ar

H

O

N

    

 

[By another convention, atom matrix is called the transpose A
T
.]  The conservation of elements in 

the node is expressed in algebraic form 

 

   An  =  0                                           (3.2.4.2) 

 

where n  is the column vector of components nX (3.2.2.3 and 2) ordered according to the columns 

of A. 

 

Frequently, the rows of the matrix A are linearly independent. Still, exceptions are possible. 

Considering the liquid solution (Na2SO3 , Na2SO4 , H2O2 , H2O) corresponding to the oxidation 

of  Na2SO3 by hydrogen peroxide, we have the atom matrix 

 

                  Na2SO3      Na2SO4        H2O2          H2O 

                  ________________________________ 

  A   =      











3

1

2

                
4

1

2

                

2

2
                











2

1
   

H

O

S

Na

  
0

______

A
 

 

and the first row can be eliminated. The remaining submatrix (say) A0 has 3 independent rows. 

Thus generally, the equivalent formulation of  (3.2.4.2) reads 
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   A0 n   =  0                             (3.2.4.2a) 

 

where A0 is the matrix obtained from A by the elimination of linearly dependent rows. 

 

The rank of the matrix A thus the number of its linearly independent rows determines the 

maximum number  Rmax  of independent reactions that are stoichiometrically possible in the given 

mixture. If  there are K chemical species present in the reaction node, we have (VE-MA: 4.4) 

 

   Rmax  =  K  –  rankA.                          (3.2.4.3)  

 

So with the last example of atom matrix, we have Rmax  =  4 – 3  =  1 and indeed, the oxidation 

reaction  Na2SO3 +  H2O2   =  Na2SO4 +  H2O  takes place. Also in the preceding example where  

Rmax =  8 – 4  =  4, we have just 4 independent reactions; see Example 2 , (1) – (4): Then the 

condition (3.2.4.2) is equivalent to the conditions (Ex 2.3). 

 

Nevertheless, the admissible number of (independent) reactions in the node can be lower, or even 

zero. See the oxidation of SO2 to SO3 (3.2.4.1) with the commentary: in the absorber, the 

oxidation doesn't take place. Or imagine a mixture of hydrocarbons in a distillation column. The 

atom matrix has two rows (C and H) and the rank equals 2; for instance for 7 components we 

have Rmax  =  7 – 2  =  5  but no chemical reaction runs in the column. 

 

For standard technologies, the chemical species in the input and output streams and the 

admissible reactions are known a priori and there is then no reason for having recourse to 

analysis of the atom matrix. Still, there are cases of complicated systems and not well-known 

reaction mechanisms. It is then the task of a reaction expert to propose the possible reaction 

schemes. The topic lies beyond the scope of this text. Let us only illustrate the possible use of the 

atom matrix by simple examples. 

Example 3.  Stoichiometrically possible reactions  

 

The maximal set of stoichiometrically possible reactions can be found by a method due to 

Schneider and Reklaitis (1975). Because then, the equation (3.2.4.2) represents in fact the balance 

equations where the parameters (reaction rates) have been eliminated, this is the inverse 

procedure: Given the above equation, we have to re-parametrise it. 

 

To illustrate the procedure, let us consider Example 1. The atom matrix reads 

 

               S     O2       SO2      SO3      N2       Ar 

              _______________________________  

   A  =  









1

      
2

        
2

1

         
3

1

         
2

         











1

   

Ar

N

O

S
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and its rank equals 4, thus 6-4 = 2 independent reactions are possible. The formalism requires 

transforming A to an equivalent form, for example (imagine Gauss-Jordan elimination) 

 

               S       O2       N2         Ar    |     SO2      SO3 

              ___________________________________ 

            









1

        
1

        
1

            

1

          
1

1

       











2/3

1

                                                                      

             |              unit matrix      | 

 

and Eq. (3.2.4.2) reads, transformed 

 

   nS  +  nSO2  +  nSO3        =  0     

 

   nO2  +  nSO2  +  
2

3
nSO3   =  0  

                                                                         (Ex 3.1) 

                             nN2       =  0 

                         

                              nAr       =  0. 

  

Taking now the components SO2 and SO3 (whose columns do not form the LH-unit matrix) as 

'key components', let us introduce two parameters 

 

   nSO2  =  W1 

 

    nSO3  =  W2 

 

and we have in addition 

 

   nS    =  – W1 – W2 

 

   nO2  =  – W1 – 
2

3
W2 

 

along with  nN2  =  0  and  nAr  =  0  (inerts). This corresponds precisely to the result of Example 

1; the possible independent reaction schemes are  S + O2 = SO2  and   S + 3/2 O2  =  SO3 . The 

reader can carry out the transformation (elimination) in different other manners. He will find 

different other possible reaction schemes, some of them quite strange. The only result that works 

is then the parametrisation of the balance equations by two (generally fictitious) reaction rates. It 

was possible to use directly the balances (Ex 3.1). 
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Example 4.  Production of biomass 

 

The example is taken over from Madron (1992): Example 2.2, and slightly modified. The 

biomass (yeast) is produced from ethanol in a fermentation reactor. The inlet streams are 

 

   ethanol (formula C2H6O), with H2O 

   air (O2, N2 , Ar, humidity) 

   ammonia (NH3) 

   mineral nutrients represented by a fictitious element Ah with relative atom mass 1. 

 

In the liquid and gaseous outlet streams were found 

 

   gaseous:                   CO2 and nonreacted O2 , N2 , Ar, humidity 

   liquid (suspension): biomass of empirical formula C3.83H7.00O1.94N0.64Ah7.00 (which means 

                                    that 1 kmol of  biomass contains 7 kg of Ah), water, acetic acid 

                                    (C2H4O2) as undesirable product. 

 

Based on the known input components and those found in the outlet streams, our reaction expert 

has proposed the following reaction schemes, rewritten according to the convention introduced 

above 

 

   production of biomass 

    

    – 1.915 C2H5OH – 1.615 O2 – 0.64 NH3 – 7.00 Ah + biomass + 3.205 H2O  =  0              (1) 

 

   production of CO2 

 

    – C2H5OH – 3 O2 + 2 CO2 + 3 H2O  =  0                              (2) 

 

   production of acetic acid 

 

    – C2H5OH – O2 + CH3COOH + H2O  =  0.                  (3) 

 

The reader can easily set up the stoichiometric matrix and find that the three reactions are 

independent. 

 

Our goal is now to check if the above reactions represent the stoichiometrically possible 

maximum. It is easy as well to set up the atom matrix A. The 6 rows are C, H, O, N, Ah, Ar (the 

atom species) and the columns represent the chemical components present in the streams, thus 

 

   ethanol (C2H6O), O2 , NH3 , Ah, biomass, acetic acid (C2H4O2), CO2, H2O, and also N2 , Ar 

                                        (Ex 4.1) 

 

in number 10. By the elimination, one finds that the rows are linearly independent hence the rank 

equals 6 and by virtue of (3.2.4.3) we have Rmax = 10-6 = 4: one independent reaction is 

stoichiometrically possible in addition. 
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The possible reaction schemes can theoretically be found by the procedure illustrated in Example 

3 using the (Gauss-Jordan) elimination: As above, one finds the nX (thus production rates PX) as 

linear combinations of the parameters Wr (r = 1,...,4) with coefficients rx  in (3.2.1.5); then rx  is 

the stoichiometric coefficient at component X in the r-th reaction scheme (3.2.1.4). The problem 

is that the resulting form of the matrix depends on the elimination strategy and quite obscure 

'reaction' schemes can be obtained. A hint is given by knowing already the three above reactions 

(1),(2),(3). It requires some skill, but by linear combinations of the obtained 'pseudoreaction' 

schemes or directly by guessing one can find, along with the reactions (1),(2),(3), the fourth 

possible independent reaction scheme as 

 

    – 2 NH3 – 3/2 O2 + 3 H2O + N2  =  0 .                  (4) 

 

Thus nitrogen can hypothetically (perhaps by catalytic oxidation in the liquid phase) arise by the 

reaction (4). Having precluded this possibility means declaring N2 to be nonreacting (inert) 

component, neither consumed nor arising by any chemical reaction. Observe that one 

automatically obtains anyway (production rate) nAr = 0 because Ar is not present in any of the 

other components. There remains to add the condition 

 

   nN2  =  0                             (Ex 4.2) 

 

to the condition (3.2.4.2). Or, being aware of it, consider only the reactions (1),(2),(3) in the 

balancing with three parameters (reaction rates) W1 , W2 , W3 ; the condition (Ex 4.2) is then 

fulfilled automatically. This also corresponds to including (as in Madron 1992) only the first 8 

components (Ex 4.1) in the balancing. 

 

Example 5.  Esterification reactions 

 

The additional hypotheses such as (Ex 4.2) can be formulated more generally as 'conservation of 

certain groups of elements in certain chemical components'. As a simple example (cf. VE-MA: 

4.4), consider the mixture of methanol (CH3OH), ethanol (C2H5OH), acetic acid (CH3COOH) 

and esterification products CH3COOCH3 , CH3COOC2H5 , H2O, denoted briefly as met, et, ac, 

metest, etest, W repectively. 

 

The original matrix A has 3 rows C, O, H and 6 columns met, et, ac, metest, etest, W. The reader 

can write it and find the rank equal to 3. So the number of stoichiometrically possible reactions is 

6-3 = 3. Along with the two esterification reactions (which can be anticipated) 

 

   CH3COOH + CH3OH  =  CH3COOCH3 + H2O                    (1) 

 

   CH3COOH + C2H5OH  =  CH3COOC2H5 + H2O                       (2) 

 

one can find the third reaction for example as 

  

   C2H4O2 + C4H8O2  =  2 C3H6O2                    (3) 

        ac           etest             metest 
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with structural regrouping of atoms. Having suggestively written the structural formulae, one is 

led to the assumption that the acetic group (CH3COO) and alkyl groups (CH3, C2H5) will remain 

conserved as certain (pseudo)atoms. Because element C is contained only in the named groups, 

one can write the (pseudo)atom matrix as 

 

             met     et           ac     metest      etest        W 

            ___________________________________                      _____ 

   A =  












1

1

1

        

1

1

1            

1

1

           

1

1

          1

1

          












2

1

    

H

O

HC

CH

COOCH

52

3

3

_____

0A  

 

because met is composed of CH3 , O, H; et of C2H5, O, H; ac of CH3COO, H; metest of 

CH3COO, CH3 ; etest of CH3COO, C2H5 ; H2O of O, H.. One can eliminate row H by subtracting 

the sum of rows CH3COO and O and adding the rows CH3 and C2H5  giving row O instead of H, 

thus subtracting again row O one has zero row. The rank of the resulting matrix (say) A0 equals 

4; we have the balance (3.2.4.2a). We have Rmax = 6-4 = 2 as corresponds to the two esterification 

reactions. 

 

Such 'conservation of groups of atoms' (structural elements) is frequent in organic chemistry. One 

thus can restrict the number of admissible reactions. Or conversely, one can perhaps reveal the 

possibility of further reactions worthy of attention. Nonetheless, whether this formalistic 

approach is useful in practice remains questionable. By the way, one can have anyway omitted a 

possible presence of undesirable by-products not included in the list of the outlet chemical 

components due to lacking information. 

 

Note: The admissible reactions create certain reaction degrees of freedom in the balancing. The 

more reactions are admitted, the less balance constraints are imposed and the easier are the given 

(e.g. measured) data adapted to obey them. But admitting reactions that don't take place can then 

only mask the incompatibility of given data. On the other hand omitting possible reactions and 

by-products gives rise to undesirable model errors. 

 

Let us summarise. 

 

The component balancing of chemical reactors requires the knowledge of chemical reactions that 

can run under the conditions prescribed by the technology. They are well-known for standard 

technologies but otherwise,it is the task of a reactor expert to propose the admissible reaction 

schemes. Then, either the corresponding reaction rates are introduced as parameters, or the latter 

can be eliminated; see the examples 1 and 2. The possible use of the atom matrix (element 

balance) is illustrated by examples 3,4,5. See then the beforelast two paragraphs. 
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3.3.Energy balance 

 

With the same motivation as in Subsection 3.2.2, we shall not consider a general balance with 

accumulation of energy. It turns then out that the relevant part of energy associated with the 

material flow is its enthalpy. In addition, energy can be supplied/withdrawn to/from the node as 

'heat' or 'work'; imagine heating/cooling or a compressor. 

 

The topic is dealt with in detail in VE-MA, Chapter 5 with appendix C. Neglecting less relevant 

items such as kinetic or potential energy, the simplified (approximate) energy balance is obtained 

as the (steady-state) enthalpy balance. Its general form is quite simple: 

 

   
in

ˆ

i,

i

imH  +  Q   =  
out

ˆ

i,

i

imH   +  W                            (3.3.1) 

 

where mi is mass flowrate and Ĥ
i
  specific enthalpy of stream i, with summation over inlet resp. 

outlet streams. The supplied heat is Q (< 0 for cooling) and W is power (work per unit time) 

produced by the node (usually W 0; consumed or null); the heat Q can be divided into several 

heat flows (streams). The accumulation, and also source terms in (2.1.2) equal zero: energy 

remains conserved. 

 

Writing the balance in the form (3.3.1) corresponds to the rigorous thermodynamic definition of 

specific enthalpy, with a zero level taken by some convention. The most general convention takes 

specific enthalpies equal to zero for chemical elements at their standard states; then to any 

chemical species X is assigned its 

 

   standard specific enthalpy:  
(0)

XĤ                                    (3.3.2) 

 

again at its standard (reference) state. These values can be found in thermodynamical tables. But 

even then, the enthalpy of a multicomponent mixture is generally not a simple sum of component 

enthalpies: we here have increments due to mixing and phase transitions (such as evaporation). 

So setting up an exact energy balance requires generally good knowledge of chemical 

thermodynamics; this is a task for specialists. 

 

For a given mixture at given state of aggregation (liquid, gaseous, ...), the specific enthalpy Ĥ  

can be expressed as function of the balancing variables: absolute temperature T, composition, and 

pressure P. For condensed phases (solid, liquid), the pressure dependence of Ĥ  can usually be 

neglected; also for gases, if the pressure does not vary considerably, we can take P as a mean 

pressure in the stream given a priori and not regarded as a variable in the balancing. In the sequel, 

we shall limit ourselves to several simple examples of energy (enthalpy) balances. Let us begin 

with two special types of nodes. 

 

3.3.1. Splitter 

 

See Fig. 3-1. To the balance equations (3.2.3.2 – 4), we add the conditions 
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   T
2
   =   T

1
 

 

   T
3
   =   T

1
 

          . 

          . 

          .                                                                                                                                 (3.3.3) 

 

(and also P
2
 = P

1
, ...). 

 

3.3.2. Heat exchanger 

 

Generally, we can consider an arbitrary node C divided by a wall where only heat transfer takes 

place, for example 

 

 

 

    Fig. 3-3  General heat exchanger C 

 

The part A can be a heating furnace (1:air, 2: combustible, 3: combustion products) followed by a 

heat exchanger in the proper sense; B is the other part of the node balanced as a whole. The 

streams 1,2,3 are not mixed with streams 4,5,6. We can modify the scheme 

 

 

 

    Fig. 3-3a  Divided node C 

 1 

2 

3 

6 

C 

A 
B 

4 5 

A 
1 

2 
3 

B 
4 

5 
6 

Q 
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where Q is the energy (heat) stream from A to B. We then write the mass (or component mass) 

balances separately for nodes A and B; this is more information than balancing both nodes 

together. The enthalpy balances of nodes A and B read 

 

   m1 Ĥ
1
  +  m2 Ĥ

2
 – Q   =  m3 Ĥ

3
 

 

   m4 Ĥ
4
  +  m5 Ĥ

5
 + Q   =  m6 Ĥ

6
 

 

and by summation we have the node C enthalpy balance  

 

    m1 Ĥ
1
  +  m2 Ĥ

2
 + m4 Ĥ

4
  +  m5 Ĥ

5
  =  m3 Ĥ

3
  +  m6 Ĥ

6
                          (3.3.4) 

 

where the (possibly unknown) item Q has been eliminated. Compare with node C in Fig. 2-1 and 

its interpretation. Simple heat exchangers are for example E1 and E2 in Fig. 2-5. Then with node 

E1 the mass flowrates in streams 1 and 2 are balanced separately (m1 = m2), as well as those in 

streams 6 and 7. The heat (enthalpy) balance of E1 is one: 

 

   m1 Ĥ
1
 + m6 Ĥ

6
  =  m2 Ĥ

2
 + m7 Ĥ

7
                         (3.3.4a) 

 

where we have eliminated the item Q  =  m6 Ĥ
6
 –  m7 Ĥ

7
 , which is heat flow from the hot stream 

6 to the cold stream 1. 

 

Let us further consider 

 

3.3.3. Nonreaction nodes 

 

It can be shown that in the absence of chemical reactions, the standard specific enthalpies (3.3.2) 

are not needed and can be put equal to zero at some given reference temperature T0 (e.g. 273 K) 

and pressure P0 (e.g. 10
5
 Pa). As a simple example, let us consider the mixing of two (for 

example liquid) streams 

 

 

 

     Fig. 3-4  Mixing of streams 

 

Let first T 
1
 = T 

2
  =  T  (say) and let the supplied heat Q (> 0 or < 0) be controlled in the manner 

that also T 
3
 =  T, although the composition of the streams can be different. Then the difference 

 

Q 

1 

2 
3 
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   Qmix  =  m3 Ĥ
3
 – m1 Ĥ

1
 – m2 Ĥ

2
      (T 

1
 = T 

2
 = T 

3
)                                                  (3.3.5) 

 

is the heat of mixing. For a number of liquids (and the more of gases), this Qmix is negligible 

whatever be the ratio m1/m2 and the mass fractions of given components in the streams; imagine 

hydrocarbons. It can then be shown that the general enthalpy balance of the node in Fig. 3-4 reads 

 

   for Qmix = 0:   m1 pc
1
(T

1
 – T0) + m2 pc

2
(T

2
 – T0) + Q  =  m3 pc

3
(T

3
 – T0)                       (3.3.6) 

 

where pc
i
  is (integral mean) isobaric specific heat of stream i (in the interval between T0 and T 

i
). 

This holds true as well if the streams are in opposite direction and the node is a distillation 

column with boiler and condenser included; then Q in (3.3.6) equals Q" – Q' where Q' is heat 

supplied in the boiler and Q" that withdrawn in the condenser. [One here assumes, however, that 

none of the components leaves the column in gas phase.] 

 

Let us now give several examples just as an illustration of how thermodynamics works in less 

trivial situations. For the numbering of formulae, see the convention introduced before Example 1 

of Subsection 3.2.4. 

 

Example 1. Drying of air by sulphuric acid  

 

    Fig. 3-5  Drying of air 

 

Wet air (stream 1) is led into the column D and leaves it dry as stream 4. The countercurrently 

introduced acid (stream 2) leaves the bottom of column D as stream 3. The composition of dry air 

is standard; the composition of wet air can be defined by the humidity thus mass fraction yW of 

H2O; at the outlet, we suppose yW
4
 = 0. The composition of  the acid can be expressed as mass 

fraction  yS of  H2SO4 . The temperature is T 
i
 in stream i. 

 

The reader will easily set up the component balances. The enthalpy balance reads 

 

   m4 Ĥ
4
 – m1 Ĥ

1
 + m3 Ĥ

3
 – m2 Ĥ

2
  =  0                                                                        (Ex 1.1) 

 

2 

4 

dry air acid 

D 

1 

3 

wet air 

acid 
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where clearly 

 

   m1  =  m4 + mW   with  mW  =  yW
1
m1                      (Ex 1.1a) 

 

   m3  =  m2 + mW     and   m2yS
2
  =  m3yS

3
 .                                         (Ex 1.1b) 

 

In sulphuric acid technology, it is sometimes convenient to define the acid composition as mass 

fraction  y of  SO3, easily recalculated stoichiometrically from yS ; indeed, the stoichiometric 

scheme H2O + SO3 = H2SO4 need not be thermodynamically regarded as a chemical reaction, but 

simply as a process of mixing with heat effects. [The acid is thus considered as mixture 

(H2O,SO3).] Then the specific enthalpy function can be expressed as h(T, y) with  h(T0 , 0)  =  

h(T0 , 1)  =  0  thus with zero levels for pure liquid components H2O and SO3 at reference 

temperature T0 . This function can be found in tables as well as the enthalpy function  Ĥ A(T , yW) 

for wet air. We can also approximate 

 

   Ĥ A(T , yW)  =  (1 – yW) Ĥ A0(T )  +  yW Ĥ Wg(T )                                                          (Ex 1.2) 

 

where Ĥ A0  is specific enthalpy of dry air, Ĥ Wg  that of H2O vapour; we can put Ĥ A0(T0) = 0  

but  then Ĥ Wg(T0)  =  
)0(

WL̂ : evaporation heat of liquid H2O at T0 (the standard state for H2O is 

liquid). The pressure is assumed 'normal' (approximately that of the atmosphere). 

 

The reader now easily writes the balance (Ex 1.1) on substituting Ĥ A(T
1
, yW

1
) for Ĥ

1
, Ĥ A0(T

4
) 

for Ĥ
4
,  h(T

2
, y

2
) for Ĥ

2
  and  h(T

3
, y

3
) for Ĥ

3
 ; in (Ex 1.1b) we have as well m2y

2
   =  m3y

3
 

(conservation of SO3). We thus have the balances in balancing variables mi , T 
i
 , yW

1
 and y

2
, y

3
. 

The enthalpy functions are part of the database. 

 

Note:  We are perhaps interested in an a priori estimate of the temperature rise of acid in the 

column. Observe that the acid concentration must be held in narrow limits to make the partial 

pressure of H2O negligible and to prevent the formation of acid mist at too high concentrations 

and temperatures. Using the formula (Ex 1.2) we approximate 

 

   Ĥ
4
  =  Ĥ A0(T 

4
)  =  Ĥ A0(T 

1
)  +  cpA(T 

4
 – T 

1
) 

 

   Ĥ Wg(T 
1
)  =  Ĥ Wg(T 

2
)  +  cpWg(T 

1
 – T 

2
) 

 

and further, using the Taylor formula with  T/H  ˆ  =  cp 

 

   Ĥ
3
  =  Ĥ (T 

3
, yS

3
)  =  Ĥ

2
  +  cp(T 

3
 – T 

2
)  +  (yS

3
 – yS

2
)

S

ˆ

y

H




                                     (Ex 1.3) 

 

where Ĥ (T , yS) is specific enthalpy function for the acid and  S
ˆ y/H   is taken at (T 

2
, yS

2
).  

The specific heats  cpA (dry air), cpWg (H2O vapour) and cp (acid) are approximated by  
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constants. We further use the thermodynamic identity for a two-component mixture (see e.g.VE-

MA: (C.10)) 

 

   Ĥ   =  Ĥ W   +  yS 

S

ˆ

y

H




                                                                                                 (Ex 1.4 ) 

 

where Ĥ W is partial specific enthalpy of H2O in the mixture. Using also (Ex 1.1a,b) we obtain 

the balance 

 

   m4 cpA(T 
4
 – T 

1
)  +  mW cpWg(T 

2
 – T 

1
)  +  m3 cp(T 

3
 – T 

2
)  +  mW Wg   =  0             (Ex 1.5) 

 

where   

    Wg  =  Ĥ W(T 
2
, yS

2
)  – Ĥ Wg(T 

2
)        (< 0)                        (Ex 1.5a)    

 

is differential heat of solution of water vapour in sulphuric acid at  (T 
2
, yS

2
); it can also be found 

in thermodynamical tables. The interpretation is straightforward: The heat (approximately:   

– mW Wg) evolved by the absorption of water vapour is consumed by the temperature changes  

(T 
4
 – T 

1
) for dry air, (T 

2
 – T 

1
) for the vapour, and the temperature rise  

(T 
3
 – T 

2
) of the acid  (as if  the whole absorption proceeded at acid inlet conditions). Taking for 

simplicity T 
1
  =  T 

2
  and also  T 

4
  =  T 

2
  at gas outlet, with yS

2
 = 0.95 and yS

3
 = 0.93 we obtain 

some 50 K for the temperature rise of acid; the condensation heat of H2O represents some 60%, 

the rest is due to the mixing of liquid  H2O
 
 with the acid. 

 

Example 2.  Conversion of  SO2  to  SO3 

 

We already know the scheme; see Fig. 2-3 and (3.2.4.1) – (3. 2. 4.1a).  The cold dry air (stream 

2) is in fact divided into several streams and controls the inlet temperatures to the stages of the 

contact reactor. So we can as well regard the balance as that of a single stage (usually with supply 

of air m2 = 0 into the first stage). The enthalpy balance reads generally 

 

   m1 Ĥ
1
  +  m2 Ĥ

2
 – m3 Ĥ

3
  =  0                         (Ex 2.1) 

 

with standard enthalpies 
(0)

XĤ  (3.3.2). By convention, they equal zero for X = N2 , Ar, O2 

(elements in the gas phase). Let us  further adopt the convention that also the components X = 

SO2 , SO3 are gaseous in their standard states; we write SO2(g) and SO3(g) in the reaction 

scheme. The reactor works at approximately atmospheric pressure and we neglect the pressure 

dependence in the enthalpy functions. Then, for each of the X we have the specific enthalpy 

 

   Ĥ X(T )  =  
(0)

XĤ  +  Xpc (T )(T – T0)                       (Ex 2.2) 

 

where Xpc (T ) is the integral mean specific heat of  X for the interval between  T0 and T ; the  

values can be found in tables. Neglecting the heat of mixing, for each of the streams i we have 
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   Ĥ
i
  =   

X

X

i
y Ĥ X (T 

i
)                           (Ex 2.3) 

 

with sum over X present in the stream, or also over all X with  
i

yX  = 0  if X is absent. Along 

with the component balances, with (Ex 2.1) the balance is complete; the Xpc  functions and 
(0)

XĤ  

are in the database. 

 

The enthalpy balance can be rearranged. We have 

 

   Ĥ
i
  =  

X

X

i
y

(0)

XĤ   +  pc (T 
i
)(T 

i 
– T0)                            (Ex 2.4) 

 

where 

 

   pc (T 
i
)   =   

X

X

i
y c pX(T 

i
) ;                                    (Ex 2.5) 

in (Ex 2.1) we have, with  yX
i
 = 0 if X is not in stream i 

 

   (say)  S  =  m1
X

Xy
1 (0)

XĤ   +  m2
X

Xy
2 (0)

XĤ  –  m3 
X

Xy
3 (0)

XĤ  

 

                 =  
X X

1

M
(m1 yX

1
 + m2 yX

2
 – m3 yX

3
) (0)

XH  

 

                 =  
X

Xn (0)

XH  

 

where (0)

XH  is the standard molar enthalpy (2.2.8) and  nX is defined by (3.2.2.3 and 2). Using the 

parametrisation (3.2.4.1) we find (with nN2 = nAr = 0) 

 

   S   =  
2
1( H O2

(0)
  –  H SO2

(0)
  +  H SO3

(0)
)Wa 

 

thus 

 

    – S   =  Qa
(0)

Wa                                                  (Ex 2.6)   

 

where 

 

   Qa
(0)

  =   O2 H O2
(0)

  +   SO2 H SO2
(0)

  +   SO3 H SO3
(0)

            (Ex 2.6a) 

 

with stoichiometric coefficients of the reaction conventionally written as 

 

   
2
1 O2(g)  –  SO2(g)  +  SO3(g)  =  0.                                                           (a) 
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The balance (Ex 2.1) with (Ex 2.4) thus reads 

 

   m1 pc
1
(T 

1
 – T0)  +  m2 pc

2
(T 

2
 – T0) – m3 pc

3
(T 

3
 – T0)  –  Qa

(0)
Wa   =   0                    (Ex 2.7)   

 

where pc
i
  is the mean specific heat (Ex 2.5) of stream i. The equation (Ex 2.7) is considered 

along with the parametrised balances (3.2.4.1). Wa is the reaction rate and Qa
(0)

 is called the 

standard (molar) heat of reaction (a); we here have Qa
(0)

 < 0  (exothermic reaction). Generally, 

we can have several reactions (r) in one node giving the sum 
r

rr WQ (0)  in the balance.  The 

standard reaction heats (traditionally denoted by  H
(0)

) are known for a number of technological 

processes and using the above form of  balance can mean better precision of the thermodynamic 

database. 

 

Example 3.  Synthesis of ammonia 

 

The reaction is written as 

 

   
2
1 N2  +  

2
3 H2  =  NH3  (gases).                          (b) 

 

The catalytic reactor can be multistage, for example with compression and preheating before the 

first stage, cooling, condensation of NH3 and re-preheating before each next stage. Let us 

consider one stage with inlet stream 1 (N2 , H2 , NH3) and outlet 2 before the cooling and 

condensation. The mass flowrates are m1 = m2  =  m thus the general form of the enthalpy balance 

is trivial: m Ĥ
2
 – m Ĥ

1
 = 0  thus 

 

   Ĥ
2
 – Ĥ

1
  =  0.                     (Ex 3.1) 

 

The standard heat of the reaction (b) thus Qb
(0)

 is known, so the balance will be rewritten using 

the parameter (reaction rate) Wb in the component balances (written per unit mass flowrate m) 

 

     yN2
2
 – yN2

1
  =  

2
1 MN2 wb         (where  wb  =  Wb/m) 

 

    yH2
2
 – yH2

1
   =  

2
3 MH2 wb 

 

    yNH3
2
 – yNH3

1
  =    MNH3 wb . 

 

                          (Ex 3.2) 

The equations can be written as 

 

   yX
2
  =  yX

1
  +  MX  X wb   where    N2  =  

2
1 ,  H2  =  

2
3 ,   NH3  =  1                  (Ex 3.2a) 

 

are the stoichiometric coefficients in (b) written in conventional form  ( X > 0  for reaction 

products). 
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Here, however, the pressure PR (taken as mean pressure in the reactor) is several tens to 100 MPa 

and the gas mixture is no longer ideal. As an approximation, let us still assume that the heat of 

mixing can be neglected even at pressure PR . Thus for the streams  i = 1 and 2 

 

   Ĥ
i
  =   

X

X

i
y Ĥ X

i
                                           (Ex 3.3) 

 

where  Ĥ X
i
  is specific enthalpy of pure component X at stream i  conditions. With the 

substitutions (Ex 3.2a),  Eq (Ex 3.1) reads 

 

   
X

1

Xy ( Ĥ X
2
 – Ĥ X

1
)  +  (

X

 X MX Ĥ X
2
) wb  =  0.                 (Ex 3.4) 

 

The pressure is PR and the first term corresponds to temperature rise from T 
1
 to T 

2
 thus 

 

   Ĥ X
2
 – Ĥ X

1  
=  R

Xpc (T 
2 

 –  T 
1
)                                                                                     (Ex 3.4a) 

 

where R

Xpc  is mean specific heat of component X in the reactor, thus between temperatures   

T 
1
 and T 

2
. In the second term, we can substitute  XH

2
  =  MX XĤ

2
  where XH

2
  =   

XH (T 
2
, PR)  is the value of the molar enthalpy function XH  at (T

2
, PR) .  Thus 

 

      
X

 X MX Ĥ X
2 

  =  Qb(T 
2
, PR)   where  Qb  =   

X

 X XH                                        (E 3.4b) 

 

is the (molar) heat of reaction (b) as function of temperature and pressure. If not known a priori, 

it can be computed. We have the thermodynamic relations   

 

   
T

H



 X   =  CpX   (molar heat of X)   and   
P

H



 X   =  XV  –  T 
T

V



 X                                  (Ex 3.5) 

 

where XV  is molar volume (m
3 

kmol
-1

) of X, regarded as function of temperature T  and  pressure  

P. This function and its derivative have to be found by numeric solution (inversion) of the state 

equation for gaseous species X, usually giving conversely P as function of  XV  and  T . Then 

denoting 

 

    X  =  XV  –  T 
T

V



 X                                       (Ex 3.5a) 

 

( X  = 0 for  ideal gas X) we have 

    

   XH (T 
2
, PR)  =  (0)

XH   +  

2

X

T

T

p

0

C (T , P0) dT   +   
R

0

X

P

P

 (T 
2
, P) dP                                (Ex 3.6) 
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where (0)

XH  is standard molar enthalpy of (gaseous) species X. We suppose that the standard 

reaction heat 

 

   Qb
(0)

  =   
X

 X
(0)

XH                                       (Ex 3.7) 

 

is known. [In fact, in our special case it equals just the standard enthalpy of  NH3 if taking (0)

XH  =  

0 for gaseous X = N2 , O2  , with   NH3 = 1.] Then 

 

   Qb(T 
2
, PR)  =  Qb

(0)
  +  

X

X ( 

2

0

X

T

T

pC (T , P0) dT   +  
R

0

X

P

P

 (T 
2
, P) dP)                       (Ex 3.8) 

 

in the enthalpy balance (Ex 3.4) 

 

    
X

yX
1 R

Xpc (T 
2
 – T 

1
)  +  Qb(T 

2
, PR) wb  =  0.                                              (Ex 3.9)  

 

Note that if the reaction heat Qb  is known at certain 'normal' operating conditions ( 2T , RP ), the 

correction for temperature  T 
2
 = 2T +  T   and pressure  PR  =  RP  + P  can be approximated 

as 

 

   Qb  =   
X

X (CpX T  +   X P)                                                                         (Ex 3.9a) 

where  CpX and   X are taken at  2T , RP . 

 

The role of more advanced thermodynamics can be illustrated by 

 

Example 4.  Vapour-liquid feed into a distillation column 

 

 

    Fig. 3-6  Distillation column 

 

C 1 

Q' 

Q'' 

2 

3 
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Stream 1 (feed) enters the column C and is divided into liquid distillate 2 and bottom product 3. 

The heat supplied to the boiler is Q' and that withdrawn in the condenser is Q"; both the boiler 

and condenser are included as part of node C. The general form of the energy (enthalpy) balance 

reads, according to (3.3.1) 

 

   Ĥ
1
m1  +  Q' – Q"   =   Ĥ

2
m2  +  Ĥ

3
m3 .                (Ex 4.1) 

 

The node is nonreaction thus in (3.3.2), we can put  (0)

XĤ  = 0 for each of the components X, at 

reference temperature T0 and pressure P regarded as constant in C, in the liquid state of 

aggregation. 

 

If the heat of mixing is neglected  and if  also stream 1 is in liquid state, we can use the remark to 

formula (3.3.6) thus put 

 

   with all streams liquid: Ĥ
i
   =   pc

i
 (T 

i
 – T0).                      (Ex 4.2) 

 

It can however, happen (and also happens, as experience shows) that the feed is a vapour-liquid 

mixture. Its specific enthalpy then equals 

 

   Ĥ  =  (1 – p) Ĥ L  +  p Ĥ V  =  Ĥ L  +  p( Ĥ V  – Ĥ L)                                  (Ex 4.3) 

 

where Ĥ L resp. Ĥ V  is specific enthalpy of liquid resp. vapour and  p is mass fraction of the gas 

phase in the two-phase mixture. 

 

In order to find the enthalpy function Ĥ , one assumes that the two phases are in thermodynamic 

equilibrium. The computation of the equilibrium conditions is based, by definition, on the 

equality of the chemical potentials X  in liquid and vapour phases for each of the components X. 

The formulae are commonly written in molar units; see (2.2.4) to (2.2.9). If there are 

K components X, one has K equations; in addition the temperature T and pressure P are the same 

for both phases. We shall not describe the procedure, but only outline its idea; the procedure need 

not go just through the steps as indicated below. 

 

Modifying our notation convention, let us designate xk resp. yk the mole fractions of the k-th 

component in liquid resp. vapour phase. Because 
k

kx = 
k

ky = 1, we have 2(K – 1) 

independent composition variables plus variable T, while P is considered fixed. It can then be 

shown that the K equations determine uniquely the temperature T and (K – 1) variables  yk  as 

functions of  the (K – 1) (independent) liquid composition variables. Thus, say 

 

   T  =  T
*
(x)   and   yk  =  yk

*
(x)   (k = 2,..., K)                 (Ex 4.4) 

 

where x represents (x2 ,..., xK); T
*
(x) is the boiling point (at pressure P) and  yk

*
(x) the k-th 

equilibrium mole fraction in the vapour phase (imagine Raoult's law for an ideal gas mixture). 
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Let us now suppose that the overall composition of the two-phase mixture entering the column is 

given by mole fractions  zk ; again 
k

kz = 1. These variables are fixed and we have 

   k = 2,..., K:   (1 – q)xk  +  qyk  =  zk                      (Ex 4.5) 

 

where q is the mole fraction of the vapour phase. Putting  yk  = yk
*
(x) by (Ex 4.4), we have  

(K – 1) equations in  variables xk . For simplicity, we shall  not consider azeotropic mixtures. One 

can then assume that the latter equations determine (given the zk) all  xk as functions of the 

parameter q. Then also T = T
*
(x) is function of q, thus finally the molar enthalpy 

 

   H  =  (1 – q) H L  +  q H V   =   H L  +  q( H V – H L)                         (Ex 4.6)  

 

is  function of  q , given  P  and  z  =  (z2 ,..., zk); indeed, temperature T, x in liquid thus H L , and 

also y in vapour thus H V  are functions of q . One can see immediately that the parameter q (0  

q 1) will cause a steep increase in H  because ( H V – H L)  is of the order of magnitude of an 

evaporation heat. 

 

One can also assume that the temperature T  increases with q ; increasing  q makes the 

concentrations of the more volatile components in the liquid phase smaller, thus the boiling point 

increases. At q = 1, the temperature will represent the dew point of the mixture with composition 

z. One can, instead of  q, take also temperature T  as parameter. The function H  or also Ĥ  (Ex 

4.3) will then (quite schematically) look like 

 

 

 

Fig. 3-7  Enthalpy of vapour-liquid mixture 

 

where  T
*
(z) resp. T

**
(z) is boiling resp. dew point of the mixture with  overall composition  z. 

The fraction  p of the gas phase can be small; still, given the temperature and extrapolating the 

enthalpy Ĥ
1
 according to (Ex 4.2)  for  T > T

*
(z) one can commit a serious  model error. 

 

                                                    * * * 

 

 

T*(z) T**(z) 

Ĥ 

P = const 

z = const 

T 
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Let us summarise. 

 

The balance of energy is usually formulated in simplified form as the (steady-state) enthalpy 

balance  (3.3.1). Quite frequent is the case when no phase transition takes place and the heat of 

mixing can be neglected; as a simple example, see (3.3.6). The specific heats are given and we 

then have a 'heat balance' in combination with the (overall) mass balance. This is for example the 

case of a heat exchanger network. In a heat exchanger, the mass balances are written separately 

for the 'hot' and 'cold' sides, while the heat balance is common on eliminating the transferred heat 

term; see (3.3.4) for a slightly more general case, or (3.3.4a). 

 

In less trivial situations, it is the task of a specialist in chemical thermodynamics to set up the 

balance and create the necessary database. The Examples 1 to 4 only illustrate what kind of 

problems can be encountered. It is to be noted that errors in the thermodynamic description 

and/or database can be source of model errors making the process data (even if exact) 

incompatible with respect to the assumed balance constraints. 

3.4.Momentum balance 

 

The momentum  (massvelocity) is a vector quantity  and its change is compensated by the 

action of force(s). In a streaming medium with local velocity v (m s
-1

) and mass density   (kg  

m
-3

), the momentum density (vector) is  v.  The differential balance of momentum takes then 

the form of the Equation of motion (Bird et al. 1960, § 3.2). By the methods described in the cited 

book and applied also in VE-MA: App.C, the equation can be integrated over a limited region in 

space (imagine a pipeline segment) and becomes the balance of inlet/outlet momentum and forces 

acting upon the boundary. 

 

In standard industrial balancing, this kind of  balance is rarely used. Observe that we here have in 

fact three (scalar) balances for the three vector components of momentum. The forces are mainly 

gravity (vector in perpendicular direction), pressure gradient and viscous friction. The 

information drawn from the momentum balance is generally quite poor because of complicated 

geometry of the boundary (walls) and irregular flow pattern; imagine a distillation column or 

catalytic reactor. 

 

Let us thus consider directly the special case of a gas pipeline network. It is composed of 

cylindrical pipeline segments connecting nodes n of the type 

 

 

    Fig. 3-8  Nodes of a gas pipeline network 

or 
1 

2 

3 

3 

1 

2 
mixing branching 
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The mass balances are trivial. Although not theoretically precise, we add the condition 

 

   P1  =  P2  =  P3  =  P(n)                                  (3.4.1) 

 

for the pressures and no momentum balance is formulated. Here, P1 etc. are pressures at the 

common point  n where the streams meet and are mixed or split; they all equal P(n), the pressure 

in node n. 

 

Now the length of a segment can be several kilometers and more. The pressure difference 

between both ends can be considerable, thus also the density of the gas changes and in addition, 

at pressures of the order of megapascals the gas is no longer ideal. The segments need not be 

straight; imagine hills and valleys. We then can set up the momentum balance in the local 

direction of flow, in differential form as follows. 

 

We suppose again steady-state flow; thus the change in holdup is neglected and 

 

   m  (kg s
-1

)  is  constant mass flowrate in the segment.                         (3.4.2) 

 

The pipeline can be slightly curved, but of constant 

 

   diameter D  (m)  and cross section area  S  =  
4

2D
   (m

2
).                                            (3.4.3) 

 

The gas is of given (constant) composition (imagine natural gas), with (variable) density   and 

pressure P. The length coordinate in the pipeline is  x  in the direction of flow 

 

 

 

    Fig. 3-9  A pipeline segment 

 

where  h  (m) is height above a conventional ground level. The gravitational acceleration (scalar 

value) is g  (m s
-2

). 

 

Recall now the standard formula for pressure drop due to friction in pipes 

 

x 
in detail: 

 x 
h 

D 
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   fP  =  2

2

1
v

d

l
                       (3.4.4) 

 

where l is length, d diameter, v velocity (scalar value),   density; the formula relates the pressure 

drop to a loss of  kinetic energy by viscous forces (dissipation), to be precise for isothermal flow 

of incompressible fluid. We shall need this formula just for the definition of the friction factor  

 . In the literature, the coefficient is given as function of  the Reynolds number and roughness of 

the wall. We assume the roughness known and express the Reynolds number as 

 

   Re  =  
S

mD
 ;                                         (3.4.5) 

 

taking some mean value of dynamic viscosity   (kg m
-1

 s
-1

), the Reynolds number is function of  

m, thus also   is (given D, S and the roughness) function of  m. We then have the following 

equation (momentum balance) 

 

   
x

P

d

d
  +  

2

1
2DS


m

2



1
  +   g

x

h

d

d
  +  

2

2

S

m

xd

)d(1/
  =  0                                            (3.4.6a) 

 

where P  is (decreasing) function of length coordinate x; dh/dx is the slope of the pipeline in Fig 

3-9 ( 0 or <0). The density   can be considered function of temperature (T) and pressure but 

usually, the thermodynamic state equation for a nonideal gas, of general form 

 

   F(T ,  , P)  =  0                            (3.4.6b) 

 

gives rather pressure P as function of  T and of molar volume 

 

   Vmol  =  


M
                               (3.4.7) 

 

with mean mole mass M . The equation (3.4.6a with b) is then integrated numerically between  x 

= 0 and  x = L  (length of the whole segment). The temperature profile is commonly unknown in 

details; one then considers a mean temperature T  in the segment. 

 

There are different formulae that approximate the integral. We shall not go into further details. In 

the end, one can obtain the balance as a nonlinear algebraic equation in variables P1 (inlet 

pressure), P2 (outlet pressure) and m (having assessed T ) regarded as balancing variables. 

 

Note:  Other nodes of the network can be for example compressors or throttling elements. Their 

empirical models are of the form 

 

   f(m, Tin , Pin , Pout ;  )  =  0                                 (3.4.8) 
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where  Tin resp. Pin are inlet temperature resp. pressure, Pout is outlet pressure, and   represents 

certain construction and operation parameters (number of revolutions of  a turbocompressor and 

the like); m  =  min  =  mout is inlet = outlet mass flowrate. 

3.5.Special energy balances 

 

The cited book (VE-MA) as well as the earlier Madron (1992) are largely concerned with 

industrial chemical processes. Although the (material and) energy balances hold as well in  the 

power engineering, there are certain peculiarities that require special attention, in particular when 

applied to nuclear power plants; this even if (as we shall do) the processes in the nuclear reactor 

itself are not included. 

 

Consider the steam production in a nuclear power plant. A simplified scheme is drawn in Fig. 3-

10. 

 

 

 

 Fig. 3-10   Steam generation in a nuclear power plant 

 

Hot (high-pressure) cooling water from the nuclear reactor enters the heat exchange system and 

heat Q (representing, at steady state and if energy losses are neglected, the energy generated by 

the nuclear reactions) is transferred into boiler B where feed water is evaporated. The enthalpy 

balance must here take account of the fact that the outlet steam is (not superheated but) saturated 

(and may even contain droplets of liquid phase). This peculiarity characterises standard nuclear 

power plants and requires, in addition to the balance, including the two-phase equilibrium 

condition. The plant is equipped with a number of measuring instruments and the balancing is 

part of the monitoring and control system where safety aspects are highlighted. 

 

According to Fig. 3-10, the energy (enthalpy) balance (3.3.1) of  boiler B reads 

 

   3

3ˆ mH  +  Q   =  4

4ˆ mH                           (3.5.1) 

 

and as such is quite trivial. We have 

 

   3Ĥ   =   LĤ (T 
3
, P

 3
)                       (3.5.2) 

 

1 circulating 

hot water A 

Q 

B saturated steam feed water 
3 4 

2 
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where generally T
 i
 resp. P 

i
 is temperature resp. pressure of stream i;  Z = L resp. G means liquid 

resp. gaseous (vapour) phase,  ZĤ  is specific enthalpy function for phase Z of water H2O. In 

stream 4, we however have generally admitted the presence of liquid droplets, say with mass 

fraction  yL
4 

 =  1 –  yG
4
 in the two-phase mixture. Hence 

 

   Ĥ
4
  =  (1  –  yG

4
) LĤ (T 

4
, P 

4
)  +  yG

4
GĤ (T 

4
, P

 4
)                 (3.5.3) 

 

where we generally designate 

 

   yG  =  1 –  yL   (so-called quality of the steam)                    (3.5.3a)  

 

and where we  add the condition  

 

   P 
4
  =  P 

*
(T

 4
)                            (3.5.4) 

 

representing the two-phase equilibrium. P 
*
(T) is the  equilibrium pressure, a function of 

temperature T. Basically, we can eliminate the latter condition on introducing the functions 

 

   Z  =  L or G:  HZ
*
(T)  =   ZĤ (T, P 

*
(T))                   (3.5.5) 

 

considered also known as well as P 
*
(T)  itself. The values of these functions can be found in 

classical thermodynamical tables. Instead of  P 
*
(T), we can also consider the inverse function  

T 
*
(P) giving the equilibrium temperature as function of pressure. Knowing  T  or  P, the specific 

enthalpies such as (3.5.3) with (3.5.4) can be computed as functions of the mass fraction  yG and 

either T, or P only.  

 

Generally, the values of  thermodynamic functions stemming from different sources may become 

sources of model errors due to their not-full consistency. The case of the one-component liquid 

water-steam system is, to some extent, an exception. Recent water/steam properties computation 

routines (such as Harvey (1997) and ASME (1998)) can be regarded, due to their derivation, as 

intrinsically  consistent. In particular we can compute the specific enthalpies ZĤ (T, P) for phases 

Z = L and G. 

 

On the other hand, the great number of measuring instruments yields a great number of measured 

values providing a chance for their reconciliation due to their redundancy;  for the latter 

concepts, see further Section 4.3 and Chapter 5. So in one stream, possibly both temperature T 

and pressure P are measured even if they are assumed to be at equilibrium. In contrast to what 

has been adopted in the simple examples of  Section 3.3, we here can consider both  T  and  P  as 

balancing variables  and in particular subject their measured values to reconciliation making 

them compatible with the balance equations. 

 

Thus generally, if the technology qualifies a stream  j  as that of saturated steam, its specific 

enthalpy in (3.3.1) equals 

 

   jĤ  =  (1 – yG 
j
) LĤ (T 

j
, P 

j
)  +  yG 

j
GĤ (T 

j
, P 

j
)                         (3.5.6) 
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and we add the condition 

 

   P 
j
  =   P

*
(T 

j
)      (or   T 

j
  =  T 

*
(P 

j
) )                     (3.5.7) 

 

with the same interpretation as in (3.5.3 and 4) for  j = 4. In this manner, both  variables (T and 

P) occur in the balance of the system and a new equation (3.5.7) is written in addition. More 

precisely: The definition of  jĤ  occurs in the set of the node balance equations generally twice 

(the stream goes from one node to another). However, the equations (3.5.7) are each written  just 

once, viz. for the stream  j  where saturated steam is assumed. New balancing variables are also  

yG
 j
  (quality of steam in stream  j). 

 

The additional equations such as (3.5.7) are in fact not node balances but rather of the same type 

as (3.2.2.5), also associated with given stream  i. Further, speaking about redundancy, we can 

also consider the case where one variable associated with given stream  j  is measured by more 

than one instrument (some authors call it 'measurement reduncancy'). It is possible to introduce 

fictitious nodes between the two (or more) measurement places. But  if no pressure drop and/or 

heat loss between them are admitted, it is simpler to consider for example one physical variable  

T 
j
 occurring in the node balance(s) and add the equations 

 

   T 
j
  =  T

 j ' 
 ,  T

  j
 =  T 

j "
, ...                                           (3.5.8) 

 

where  T 
j '

 , T 
j "

, ... represent the measurements. 

 

On the other hand, if a pressure drop is admitted one has to introduce a (fictitious or real) 

throttling element 

 

 

    Fig. 3-11   Throttling element 

 

separating the outlet from the first node and inlet to the other, and the node balances read 

 

   mj  =  mk                      (3.5.9a) 

                                             

  jĤ  =  kĤ                            (3.5.9b) 

 

possibly with (3.5.6) and (3.5.7) for  j  and  k . In the same manner, admitting a heat loss we have 

the scheme 

 

     

Fig. 3-12   Fictitious node representing loss of heat 

j k 

j k 
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with the balances of the fictitious node 

 

        mj  =  mk                     (3.5.10a) 

 

   mj
jĤ  =  mk

kĤ  +  qloss .                           (3.5.10b) 

 
Other types of balances 

 

Classical (thermal) power plants use fossil fuel as the source of ('chemical') energy. We here 

preclude the case of a gas turbine where the scheme is different. Then in Fig. 3-10, A is 

combustion chamber with two inlets (fuel and air) and two outlets (combustion gases and ash if 

the fuel is coal). The material and energy balances of node A will not be written and our scheme 

thus begins with energy input  Q, given or computed. With the combustion of fuel (or also in 

certain new types of  nuclear plants with other cooling medium than water), the stream 4 is 

superheated steam. Then 

 

   for superheated steam:   4Ĥ  =  GĤ (T
 4

, P 
4
)                        (3.5.11) 

 

in the balance (3.5.1). 

 

A special type of energy balance is again the  splitter  balance; see (3.3.3) with Fig. 3-1; stream 1 

is the inlet stream. The complete information ('balance') reads again 

 

   T 
2
  =  T 

1
 

   T
 3

  =  T 
1
 

          . 

          . 

          .  

and 

       

      P
 2

  =  P 
1
 

      P 
3
  =  P 

1
 

             . 

             . 

             .            ; 

                                                           (3.5.12) 

 

in addition, if the inlet stream is saturated steam (3.5.6) we put 

 

       yG
2
  =  yG

1
 

       yG
3
  =  yG

1
 

               . 

               . 

               .  

                                               (3.5.12a) 

and write  just one condition 
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      P
 1

   =  P 
*
(T

 1
)        (or  T 

1
  =  T 

*
(P 

1
) )                                          (3.5.12b) 

 

for the stream 1. Then the equilibrium conditions for the outlet streams follow automatically from 

(3.5.12). 

 

The material streams are one-component (H2O) thus steam and condensate recovered as feed 

water; the latter enters the system as fresh feed water and the (chemical) making-up process is not 

included in the balancing. The material (mass) balances are thus trivial. Cooling (e.g. river) water 

is not  mixed with feed water and only heat exchange takes place. 

 

It is convenient to write the general energy balance (3.3.1) of a node in the form 

 

   
in ,

ˆ

j

j

jmH  +  
in ,i

ie    =    
out ,

ˆ

j

j

jmH  +   
out ,i

ie                 (3.5.13) 

  

where the jĤ  are either LĤ (T 
j
, P 

j
) as in (3.5.2) (feed water, condensate), or GĤ (T 

j
, P 

j
) as in 

(3.5.11) (superheated steam),  or  of the form (3.5.6), in which case   the  condition (equation) 

(3.5.7) is  added  for any such  j. The  net energy flowrates  ei  are those due to  heat transfer, 

further those representing the transport of  mechanic  and  electric  energies. The mechanic 

energy is transported and transformed mainly in engines driving alternators, possibly also 

supplied to/from the environment. A stream  i  of  electric  energy is  not  current but 
 

 

 Fig. 3-13  Transport of electric energy 
 

where the arrow represents the stream of energy consumed in node Z (segment of electrical 

network). All the three types of energy transport are illustrated by a simplified scheme of a 

turbine driving an alternator 
 

Fig. 3-14  Turbine and alternator. 
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Here, the (macro)node 'motor' represents a complex system with droplet separation and internal 

heat exchange; the condensate then means (partially) preheated feed water. The  ei,in = wf  means 

mechanic power supply to feed water pump(s) (a relatively small item), the  ei,out are  qc (heat 

withdrawn in the condenser) and  wa (mechanic power supplied to the alternator). The node  d  

(alternator) then produces and distributes electric energy. 

 

As is seen, the  energy transforming plant  includes nodes such as  d  in Fig. 3-14 representing 

production and distribution of electric energy. In the balance of such a node  d , the set of incident 

material streams is empty and the balance (3.5.13) is reduced to 

 

   
in ,i

ie   =   
out ,i

ie                            (3.5.14) 

 

where the  ei,out  may also represent energy losses. 
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4. TECHNOLOGICAL SYSTEMS 

4.1.Equations of the system 

 

The balance of a technological system (a plant or a smaller group of units) is the set of its node 

balances. They are written as equations in the balancing variables and as the balancing model, 

they are generally part of the mathematical model of the system used in design and simulation 

problems. In the latter case, the partition of the system into nodes can be quite detailed; thus a 

distillation column can be divided into the column itself, condenser, splitter of the distillate with 

reflux stream, boiler etc. For the purpose of balancing as dealt with in this text, one merges 

certain groups of apparatuses to units taken as a whole, thus to some kind of 'black boxes' as 

illustrated in Fig. 2-1. One is not interested in physical details of the process inside, but only in 

inputs and outputs. Thus a distillation unit, schematically drawn as 

 

 

    Fig. 4-1a  Distillation column D with condenser C, splitter S and boiler B 

 

is regarded as one node D (cf. Fig 3-6) 

. 

    Fig. 4-1b  Distillation unit as one node D  
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with inlet stream (feed) 1 and outlet streams 2 (distillate) and 3 (bottom product); the heats  Q' 

supplied in the boiler and Q" withdrawn in the condenser represent balancing variables if also the 

energy (enthalpy) balance is considered. The streams 4-8 have been deleted by the merging. 

 

The set of nodes connected by streams (possibly with 'net energy streams' such as in Fig.4-1b) 

can be drawn as the (balancing)  flowsheet of the system; see again Fig. 2-1, and other examples 

below. Certain streams (such as 1 and 8 in Fig. 2-1) do not have both 'endpoints' in the drawing; 

they represent inputs (as stream 1) or outputs (stream 8) into/from the whole system. Physically, 

they certainly do have some origin / point of destination  thus again some 'nodes' whose balance 

is, however, not included. [This convention is necessary; otherwise the flowsheet could become 

infinite or not well-defined.] We thus regard the totality of these 'nodes' as the environment. 

Formally, this concept makes sense in the graph theory (see, e.g., VE-MA). But the graph 

operations are task of the balancing software; for the user, it is sufficient to know that the 

balancing flowsheet does not comprise the nodes included in the environment (not subject to 

balancing). They can also be drawn as information for the user, but with the latter specification. 

By the way, imagine a subsystem of a larger plant; it is common practice to set up individual 

subsystem balances. 

 

The set of  balance equations can involve tens or even hundreds of nodes and streams, and the 

more equations and balancing variables in case of multicomponent and/or energy balancing. The 

task of the balancing software is primarily to give the solution of the equations based on given 

data on the balancing variables, plus possibly additional resulting information. In this and the 

following chapters, our aim is only to illustrate, by way of simple examples, how and on which 

conceptual basis the balancing software works and what kind of information can be drawn from 

the results. 

 

Let us begin with a steady-state mass balance. 

 

Example 1. Steady-state mass balance  

 

   Fig. 4-2  Mass balance flowsheet 

 

The system consists of pump A, splitter S, heat exchanger E by-passed by stream 3, node C 

where the streams 5 and 3 are re-mixed, and distillation column D with outlet streams 7 
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(distillate) and 8 (bottom product). The energy balance is not considered so only part B of the 

exchanger E is included in the mass balancing. The equations read, with mass flowrates mi 

 

 A:   m1 – m2                                                    =  0 

 

 S:            m2 – m3 – m4                                    =  0 

 

 B:                             m4 – m5                           =  0 

 

 C:                    m3    +      m5 – m6                    =  0 

 

 D:                                             m6 – m7 – m8   =  0. 

                    (4.1) 

 

Having such a simple system, we can analyse it without using any computer. We have 5 linearly 

independent equations in 8 variables, so it is sufficient to give 3 values of the latter in order to 

determine uniquely the solution: for example giving the values of m1 , m4 and m7 as the reader 

readily verifies. The selection is, however, not arbitrary. Instead, let us choose the variables 

marked by + in the flowsheet, thus the values (say) m̂ 1 , m̂ 6 and m̂ 7 . Adding up Eqs. A,S,B,C 

we have the condition 

 

   m̂ 1 – m̂ 6  =  0.                            (4.2)   

 

The remaining 4 equations can be rearranged to give 

 

   m2                             =  m̂ 1 

 

         m8                       =  m̂ 6  – m̂ 7  

 

               m3 + m4         =  m̂ 1  

 

                       m4 – m5  =  0 

                        (4.3) 

 

(rewrite A, then D, then add up A+S, finally re-write B). The condition (4.2) is the compatibility 

condition for the two values, and also the necessary and sufficient condition of solvability with 

the a priori fixed variables m̂ i . It concerns only two of them, m̂ 1 and m̂ 6 : they  are called 

redundant, while the value m̂ 7 is not subject to any condition: it is called nonredundant. 

['Redundant' means that even if not fixed, it remains determined by the condition; 'nonredundant' 

means that if not fixed, it remains unknown.] Now having satisfied the condition (4.2)  (thus 

having adjusted the values m̂ 1 and m̂ 6 when necessary), the values of  m2 and m8 are uniquely 

determined: they are called observable; on the other hand, there is an infinity of solutions in m3, 

m4 , m5 obeying the condition: the latter variables are called unobservable (for example one can 

pick arbitrary m3 and only then, m4 and m5 are uniquely determined). 
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Observe that for example the condition (4.2) is the balance of  nodes (A,S,B,C) merged to one 

node (which is a graph operation). Generally, the balancing software analyses the flowsheet by 

graph methods and can also classify the variables as above. If the a priori given values have been 

measured, they are then adjusted by reconciliation; see Chapter 5, Example 1. 

 

The next example is that of a (steady-state) heat and mass balance. 

 

Example 2.  Heat and mass balance 

 

 

Fig. 4-3  Heat and mass balance flowsheet 

 

Stream 1 is preheated in heat exchanger E1 and as stream 2 is split in node S into by-pass 3 and 

stream 4, further preheated in heat exchanger E2; the outgoing stream 5 is re-mixed in node C 

with stream 3 and as stream 6 enters the distillation column D with the interpretation according to 

Fig. 4-1b. Stream 7 is distillate; the hot bottom product (stream 8) preheats stream 1 in exchanger 

E1 and leaves it as stream 11. The hot stream 9, of the same nature, comes from another 

subsystem of the plant into exchanger E2 and leaves it as stream 10. 

 

In the mass balance, the exchangers E1 and E2 are divided into cool and hot sides (A,A') and 

(B,B'), respectively. The heat (enthalpy) balances are written for the whole E1 resp. E2. We 

further assume that the heat of mixing can be neglected; then in particular the enthalpy balance of 

column D takes the form (3.3.6) with the interpretation following after the formula; see also (Ex 

4.1) with (Ex 4.2) in Section 3.3. In addition, we approximate the specific heats by constant (a 

priori known) values 
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   cp
A
  for streams 1,2,3,4,5,6 

 

   cp
t
   for stream 7 from the top of the column 

 

   cp
b
   (bottom) for streams 8 and 11 

  

   cp'   for streams 9 and 10 

                                                            (4.4) 

 

and we introduce the temperature variable  

 

      =  T – T0         (T0 : reference temperature ; i  for stream i).      (4.5) 

 

Then the balance reads 

 

   E1, mass  A:   m1 – m2  =  0 

 

                   A':   m8 – m11  =  0 

 

         enthalpy:   m1cp
A 1 + m8cp

b 8 – m2cp
A 2 – m11cp

b 11  =  0 

 

   splitter S:         m2 – m3 – m4  =  0                      

 

                          23    =  0 

 

                          24    =  0 

 

   E2, mass  B:   m4 – m5  =  0 

 

                   B':   m9 – m10 = 0   

 

         enthalpy:  m4cp
A 4 + m9cp' 9 – m5cp

A 5 – m10cp' 10  =  0 

 

   C:                   m3 + m5 – m6  =  0 

 

                         m3cp
A 3 + m5cp

A 5 – m6cp
A 6  =  0 

 

   D:                  m6 – m7 – m8  =  0 

 

                         m6cp
A 6 – m7cp

t 7 – m8cp
b 8 + Q' – Q"  =  0  

                        (4.6) 

 

thus 13 equations in 211(streams) + 2  =  24  balancing variables mi , i  (streams i), Q', Q". 
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A 'rule of thumb' says that the set of equations has 24-13 = 11 'degrees of freedom' thus number 

of variables necessary and sufficient to be fixed in order to obtain a unique solution. Rigorously, 

this assertion has to be precised by additional formal conditions (such as the 'independence' of the 

equations in a rigorous mathematical sense). Nevertheless, it can be shown (VE-MA, Chapter 8) 

that with the above set of equations, the conditions are fulfilled. The choice is, however, not 

arbitrary. Let us fix the values of the variables marked by + in the flowsheet thus 

 

   m̂ 1, ̂ 1, m̂ 11, ̂ 11, m̂ 9,̂ 9, ̂ 10, ̂ 6, m̂ 7,̂ 7,̂ 8            (4.7) 

 

in number 11. 

 

Let us now rearrange the equations. It requires some skill, but an experienced engineer can do it  

without difficulty. The trick consists in formulating combinations of balances. 

 

 

 

(1)  The node A' mass balance is replaced by the balance of subsystem (A,S,B,C,D,A') 

 

   m̂ 1 =  m̂ 7 + m̂ 11                                                       () 

 

(2)  The node E1 enthalpy balance is rewritten using  m2 = m̂ 1 and m8 = m̂ 11 

 

   m̂ 1cp
A 2  =  m̂ 1cp

A̂ 1 + m̂ 11cp
b
(̂ 8 – ̂ 11)                  ()  

 

(3)  The node E2 enthalpy balance is first replaced by the overall enthalpy balance of  

   subsystem (S,E2,C) with  m2 = m̂ 1 , m6 =  m̂ 1 (balance of A,S,B,C) 

 

   m̂ 1cp
A 2 + m̂ 9cp'(̂ 9 – ̂ 10)  =  m̂ 1cp

A̂ 6  

 

   and then, substituting from (), the E2-balance is finally replaced by 

 

   m̂ 1cp
A
(̂ 1 – ̂ 6) +  m̂ 9cp'(̂ 9 – ̂ 10) +  m̂ 11cp

b
(̂ 8 – ̂ 11)  =  0.                                       ()  

 

So replacing the above three balances by (),(),() in (4.6), the equivalent set of 13 equations 

reads 

 

   m̂ 1 – m̂ 7 – m̂ 11  =  0 

 

   m̂ 1(̂ 1 – ̂ 6) + m̂ 9 A

'

p

p

c

c
(̂ 9 – ̂ 10) + m̂ 11 A

b

p

p

c

c
(̂ 8 – ̂ 11)  =  0 

               (4.8a) 

 

further 
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   m2 = m̂ 1 ,   m6 = m̂ 1 ,   m8 = m̂ 11 ,   m10 = m̂ 9 

 

    2  =  ̂ 1 + 
1

11

ˆ

ˆ

m

m
A

p

p

c

c
b

(̂ 8 – ̂ 11),    3 =  2 ,    4 =  2 

                       (4.8b) 

 

finally 

 

   m3 +  m4  =  m̂ 1  

 

   m4 – m5   =  0 

 

   m4( 5 –  2)  =  m̂ 1(̂ 6 –  2) 

 

   Q' – Q"  =  m̂ 7cp
t̂ 7 + m̂ 11cp

b̂ 8 – m̂ 1cp
A̂ 6 

              (4.8c) 

 

 

 

where in the node C-enthalpy balance we have put   m6  =  m̂ 1 ,  m5  =  m4,   m3  =  m2 – m4 

 = m̂ 1 – m4  and   3  =  2 . 

 

The equations (4.8a) involve only the fixed values (4.7), with the exception of  ̂ 7 . They are 

again the compatibility conditions for the choice of the values (4.7), or also the conditions of 

solvability. The variable (value) ̂ 7 can again be called nonredundant (not subject to any 

condition), while the other variables are  redundant. Having fixed the values (4.7) and adjusted 

them to obey the conditions of solvability, one determines uniquely the values of the observable 

variables  m2,  m6,  m8,  m10,  2 thus also 3 and  4 by (4.8b). In the equations (4.8c), one can 

take arbitrary  m4; only then the values of m3,  m5,  5 are also determined. Finally, for example 

the choice of Q" is arbitrary and only then, also Q' is determined. So the variables  m4, m3,  m5, 

 5, Q', Q" are (can be called) unobservable (not uniquely determined). 

 

It can happen that we have more information than needed for the determination of certain 

unknown variables (as  2 above}; still, the information need not be sufficient for the 

determination of all of them. Imagine the fixed variables as measured. Then, for example, 

measuring in addition  2 (thus fixing ̂ 2) we only replace  2 by ̂ 2 in (4.8b and c). As an 

exercise, the reader can verify that we then have one solvability condition in addition and one 

(which?) of the equations (4.b) is added to (4.8a). The value̂ 2 becomes redundant, while the 

remaining classification is unaffected. As another example, leaving again  2 unmeasured, let us 

fix the value of  Q", thus "Q̂ . Then Q' becomes observable by (4.8c), leaving the remaining 

classification unaffected. Finally fixing also Q' as 'Q̂ , the three values 'Q̂ , "Q̂ and ̂ 7 become 

redundant thus subject to a new solvability condition. 
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The node balances (4.6) comprise a subset of  nonlinear equations. Having  fixed  the variables 

(4.7), we have seen that it was still possible to rearrange the equations in the manner that the 

solvability (compatibility) conditions were formulated explicitly, and the (as we called them) 

observable variables could then be uniquely determined. In practice, the difficulty of carrying out 

such a rearrangement increases with increasing complexity of the system. Nevertheless, it can be 

shown that this rearrangement is, at least theoretically possible for a general set of nonlinear 

equations, if it obeys certain mathematically formal conditions; see again VE-MA, Chapter 8. It 

also turns out that the intuitive concepts of redundancy and observability are generally somewhat 

vague from the rigorous mathematical point of view. We will not, however, embarrass the reader 

with these mathematical details. Quite briefly, let us state that with possible exceptions, the set of 

balance equations behaves quite reasonably and can be treated by mathematical methods made 

use of in the balancing software. In principle, the methods are based on the theoretical possibility 

mentioned above, but employ it in a more sophisticated mathematical frame; it is then the 

procedure of  reconciliation dealt with in the next Chapter. 

 

Let us still give an example of difficulty that can arise. The example is rather naive, just a simple 

illustration. 

 

Example 3.  Blending of streams and preheating 

 

 

    Fig. 4-4  Blending of streams and preheating 

 

 

The scheme is obvious. Two streams are blended in node A and preheated in exchanger (E',E"). 

The temperature variable is   (4.5). We neglect again the heat of mixing and in addition, for 

simplicity take all specific heats cp of the streams equal; so the enthalpy balances are divided by 

cp. We thus have 

 

   A, mass:                 m1 + m2 – m3  =  0 

 

        enthalpy:           m1 1 + m2 2 – m3 3  =  0 

 

   E', mass:                 m3 – m4  =  0 

 

   E", mass:                m5 – m6  =  0 
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   (E',E"), enthalpy:    m3 3 + m5 5 – m4 4 – m6 6  =  0. 

                (4.9) 

 

Let us fix the variables denoted by + in Fig. 4-4 thus the values 

    

   ̂ 1, ̂ 2, m̂ 3 , ̂ 3, ̂ 4, m̂ 5 , ̂ 5, ̂ 6 .                                                                               (4.10) 

 

The equations can be rearranged to obtain the solvability condition 

 

   m̂ 3̂ 3 +  m̂ 5̂ 5 – m̂ 3̂ 4 –  m̂ 5̂ 6  =  0                                                                       (4.11a) 

 

and the remaining equations 

 

   m1 + m2 – m̂ 3  =  0 

 

   m1̂ 1 + m2̂ 2 – m̂ 3̂ 3  =  0 

                                                                                                                                           (4.11b) 

   m̂ 3  – m4  =  0 

 

   m̂ 5  –  m6  =  0 

 

 determine  m4, m6 and also m1 and m2 by 

 

   m1  =  m̂ 3

21

23

ˆˆ

ˆˆ








                           (4.12a) 

 

   m2  =  m̂ 3

21

31

ˆˆ

ˆˆ








                       (4.12b) 

 

assuming  ̂ 1  ̂ 2. We can directly imagine that the values (4.10) have been measured and 

adjusted to obey Eq. (4.11a). We also see that the values ̂ 1 and ̂ 2 are nonredundant, thus 

remain unadjusted being subject  to no condition. The case that we have found ̂ 1 = ̂ 2 precisely 

can be regarded as unlikely, but let us admit the possibility that |̂ 1 – ̂ 2| is small.  

Precluding gross measurement errors, we can expect that the (adjusted) ̂ 3 will lie somewhere 

between ̂ 1 and ̂ 2, thus a fortiori |̂ 3 – ̂ 2| and  |̂ 1 – ̂ 3|  will be small. In (4.12), we then 

have ratios of small numbers thus the ('observable') values of m1 and m2 will be uncertain. We 

then can say that the balancing problem with fixed variables (4.10) is 'not well-posed' as concerns 

the determination of m1 and m2. [This is a theoretical concept introduced in VE-MA, Chapter 8 in 

a mathematically formal way and generally.] In the next Chapter, we'll show how this property 

can be characterised quantitatively. 
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4.2.Degrees of freedom 

 

Given a set of equations, the number of degrees of freedom is the necessary and sufficient number 

of variables that have to be given a priori in order to uniquely determine a solution. So in the 

example illustrated by Fig. 4-2, in the equations (4.1) it is sufficient to give the values of m1 , m4 

and m7 , and as the reader readily verifies, the remaining variables are successively determined. It 

is also easy to show that this number (= 3) is necessary. We here have  3  =  8(number of 

variables)  –  5(number of equations) . Thus the number of degrees of freedom 

 

   D  =  N  –  M                                (4.13)  

 

where  N  is the number of all variables and M  that of equations. The example also shows that 

the choice of the D variables is not arbitrary, and is nor unique either. 

 

Basically, the equality (4.13) holds true also for a set of nonlinear equations if they obey certain 

mathematically formal conditions; in particular they have to be independent in a sense precised 

by mathematical analysis. For the chemical component mass and energy balance equations, this 

analysis was performed in VE-MA: Chapter 8 and the equality (4.13) proved. 

 

Let us consider Example 2 thus Fig. 4-3 with the equations (4.6), rearranged into (4.8). In the list 

(4.7) of a priori given variables, let us 

 

      delete 11m̂   and 11̂  

  and  add  m4   and  Q'  thus values  4m̂  and  'Q̂  

 

hence the number 11 remains unchanged; we have now given a priori 

 

   ( m̂ 1 ,̂ 1 , m̂ 4 , m̂ 9 , ̂ 9 , ̂ 10 , ̂ 6 , m̂ 7 , ̂ 7 , ̂ 8 , 'Q̂ ) .                      (4.14) 

 

Then by the first of the equations (4.8a), m11 is determined, by the second we then determine  11. 

By (4.8b), m2 , m6 , m8 , m10 ,  2 ,  3 ,  4 are again determined. Finally by (4.8c), we 

successively determine m3 and m5 , then also  5 (m4 and  2 being known), and finally Q". We 

have N = 24, M = 13 and correctly D = 11 = N – M where the D variables (4.14) determine the 

complete solution. No solvability conditions such as (4.8b) are necessary. 

 

Generally, the degrees of freedom needn't be represented just by our balancing variables thus 

mass flowrates and composition of streams in the case of multicomponent balancing. Let us 

consider Example 1 in Section 3.2. The equations (Ex 1.3) obtained by the elimination of 

parameters W1 and W2 suggest taking the molar production rates nSO2 and nSO3 (reaction degrees 

of freedom) as auxiliary variables. It is possible to consider the balance equations in molar units 

for simplicity. Denoting by nX
i
 the molar flowrate of species X in stream i we have 

 

   nX
i
  =  xX

i
 n

i
                       (4.15) 

 



 

 59 

where xX
i
  is the mole fraction of  X  in stream i and  n

i
  the overall molar flowrate. Let us give a 

priori the values of the following 5 auxiliary variables 

 

   nSO2 , nSO3 , nO2
2
, nN2

2
, nAr

2
                    (4.16) 

 

(stream 1 is liquid sulphur, stream 2 dry air, stream 3 outlet gas). By the definition of the 'molar 

excess' quantities nX (molar output minus molar input of X) we find, according to  

(Ex 1.3) 

 

                nS
1
   =  – nS  =  nSO2 + nSO3 

 

   nO2
3
  –  nO2

2
  =  nO2  =  – nSO2  – 

2
3 nSO3  

 

   nN2
3
 –  nN2

2
   =  nN2  =   0 

 

   nAr
3
  – nAr

2
    =  nAr   =   0.  

 

The 4 equations (Ex 1.3), given (4.16), determine all nX
i
  for components X present in streams i  

because nX
3
 = nX for X = SO2 , SO3  (absent from streams 1 and 2). 

 

The balancing variables are n
i
 (i = 1,2,3) where n

1
 = nS

1
 (xS

1
 = 1 need not be regarded as 

variable), further xX
2
 for X = O2, N2 , Ar and xX

3
 for X = O2 , N2 , Ar, SO2 , SO3 , thus in number 

3 + 3 + 5 = 11. We now add two equations corresponding to (3.2.2.5) 

 

   
X

2

Xx  =  1   where  X  =  O2 , N2 , Ar 

 

   
X

3

Xx  =   1   where X = O2 , N2 , Ar , SO2 , SO3 . 

We thus have M = 4 + 2 = 6 equations, N  = 11 variables and D = 5 (auxiliary) variables (4.16). 

The variables are all determined because from the latter 2 equations with the definitions (4.15) 

follows 

 

   n
i
  =  

X

x

in  

 

where all nX
i
 are known, and then by (4.15)  xX

i
  =  nX

i 
/ n

i 
. So D = N  – M  is the number of 

degrees  of freedom , specified as the auxiliary variables (4.16). We then say that the set of 

solutions has been  parametrised:  Any solution is function of the D independent parameters. 

 

It is not always this simple to specify the degrees of freedom. A general procedure (using a 

parametrisation) is described in VE-MA, Sections 8.2 and 8.3 with examples on pp. 238 and 254. 

The task is common in design practice and simulation. One then makes use of detailed models of 

the apparatuses and in the synthesis, one must take into account the fact that (considering 

possible losses in addition) any variable characterising a stream is common to two nodes 

connected by the stream, with the exception of streams going from or into the environment which 
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is not subject to balancing. With recycling (streams going 'back' with respect to the succession of 

operations), the problem can meet with complications. Several decades ago, such (mainly design) 

problems were  solved by experience, skill and intuition of the design engineers. Sophisticated 

computer programs nowadays available facilitate the task considerably. 

4.3.Classification of variables 

 

In the process analysis when the balancing is based on measured data, it is rarely the case that the 

measured variables just represent a complete set of certain degrees of freedom. Quite frequently, 

more variables are measured than is needed so as to determine the required values and 

conversely, certain values can remain undetermined, perhaps being not required. The Examples 1 

and 2 in Section 4.1 suggest the following classification. 

 

 

 

    Fig. 4-5  Classification of variables 

 

Here, we have added the entry 'constant'; it can include for example the specific heats in Example 

2. The constants are a priori fixed without admitting any adjustment due to the conditions of 

solvability (compatibility of the data with the model equations). The values of the remaining 

variables can be given as measured, or not given but assumed to obey the model equations such 

as (4.1) or (4.6); the latter are called unmeasured. 

 

With these nomenclature conventions, the classification is based on the following ideas illustrated 

by the above two Examples. A redundant measured variable is subject to certain conditions of 

solvability (compatibility) and if it were not measured, it would still remain determined by the 

conditions (so the measurement is 'redundant'). A measured variable not subject to the conditions 

is nonredundant, thus just determined by its given, in our case measured value; if not given (not 

measured), it remains undetermined. The value of an unmeasured variable is either determined by 

the given data thus observable, or remains undetermined thus unobservable. 

 

Let us consider Example 1. We have the set of linear equations (4.1). The solvability problems 

are completely resolved by the methods of linear algebra and it can be shown that the above 

variable 

unmeasured 

observable 

constant (fixed) measured 

unobservable just determined 

redundant 
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classification is  formally exact. In particular for the mass (single-component) balance equations, 

the analysis can be performed by graph methods (see, e.g., VE-MA, Chapter 3). The balancing 

software is able to provide the complete information about redundant /just determined  and 

observable /unobservable  variables classification  if  the variables have been partitioned into  

measured/ unmeasured, this irrespective of the given (measured) values. 

 

In Example 2, we have also succeeded in analysing the equations and obtained a plausible 

classification. Why 'a plausible'? Looking at the equations, the result appears unambiguous. 

Nevertheless, a mathematician could raise objections. Let us admit that ̂ 9  = ̂ 10 in (4.8a); then, 

as is easily shown,  2 = ̂ 6 by (4.8b), in (4.8c) we have m4( 5 –  2) = 0 and assuming m4 > 0, 

we have 5  = 2  thus 5  becomes 'observable' as 2  is. Of course the case that ̂ 9  =  ̂ 10  is 

technologically absurd, but the fictitious example shows at least that generally, the classification 

can depend on the measured (and adjusted) values. In VE-MA: Section  8.1 and Subsection 8.5.1, 

a number of examples are given illustrating cases where the classification of variables can 

become ambiguous or even fail. 

 

However, let us abandon the rigorous theory. Pragmatically, the above classification still makes 

sense unless the measurement system is chosen inadequately, or with rather unlikely exceptions. 

The classification is obtained as a result of the reconciliation procedure; see Chapter 5. An 

inadequate choice of the measurement system ('not well-posed problem') is illustrated by 

Example 3 of Section 4.1 and later also analysed in Chapter 5. 

 

For a reader interested in more technical details of the classification, the idea is schematically 

presented in the enclosed Appendix. 
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5. BALANCING WITH RECONCILIATION OF MEASURED DATA 

 

Let us begin with the example according to Fig. 4-2. Let us have measured certain values of m1,  

m6 and m7 (denoted by + in the Figure), say m1
+
, m2

+
, m7

+
. Due to unavoidable measurement 

errors, they most likely will not (as fixed values) obey the condition (4.2). We thus have to find 

some adjustments  v1 and  v6 such that, setting 

 

   m̂ 1  =  m1
+
  +  v1 

                                                (5.1) 

   m̂ 6  =  m6
+
  +  v6  

 

the condition is satisfied. The adjusted values have to lie in the straight line, say L 

 

 

 

    Fig. 5-1  Compatibility condition for adjusted values 

 

while the measured point (m1
+
, m6

+
) doesn't. The actual mass flowrates m1 and m6 are unknown; 

we can only try to estimate their values as the adjusted ones. 

 

Intuitively, one would expect that the actual values thus point (m1, m6) would lie in the nearest 

possible neighbourhood of the measured ones. If we have no information on the possible 

measurement errors, we thus draw a line perpendicular to L in Fig. 5-1 and passing through the 

measured point; the intersection will be the estimated ( m̂ 1, m̂ 6) whose distance from  

(m1
+
, m6

+
) is smallest. We have thus resolved the problem (4.2) with the condition 

 

   ( m̂ 1 – m1
+
)
2
 + ( m̂ 6  – m6

+
)
2
  =  minimum.                     (5.2) 

 

In addition we put m̂ 7 = m7
+
 (unadjusted): we can imagine the third coordinate (m7) as 

perpendicular to the coordinates m1 and m6 and the equation (4.2) as determining a plane 

perpendicular to the (m1, m6) plane and passing through L; then the distance between  

(m1
+
, m6

+
, m7

+
) and ( m̂ 1, m̂ 6, m̂ 7) is again minimum. 

 

L 

m1 = m6 

(m1
+
, m6

+
) 

m6 

m1 
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Suppose we know the standard deviations of random errors in measuring the flowrates, say  i  

for mi ; see Chapter 2, the last two paragraphs. We here assume that the errors are uncorrelated 

and with zero statistical means. Then the larger is  i , the larger is the error that can be expected. 

It is thus natural to 'normalise' (re-scale) the adjustments as vi / i : the larger is  i , the larger 

adjustment is admitted. Our problem thus reads: Find m̂ 1 and m̂ 6 obeying Eq.(4.2) and such that 

 

   

2

1

11
ˆ










  



mm
 + 

2

6

66
ˆ













  



mm
=  minimum.                    (5.3) 

 

We can also imagine different scales for m1 and m6 in Fig. 5-1. With the normalised scales, the 

straight line passing through (m1
+
, m6

+
) is again perpendicular to L (the latter forming now a 

different angle) and the distance is again smallest. It is also smallest between the measured and 

adjusted points in the 3-dimensional space (with the third coordinate m7 / 7) when setting m̂ 7 = 

m7
+
. We thus can write the minimum condition as 

 

   
















 

1,6,7

2

ˆ

i i

ii mm


  =  minimum                   (5.4) 

 

along with (4.2); the sum is over all measured variables. 

 

The generalisation is obvious. The minimum condition requires that the sum of weighted squares 

of the adjustments is minimum; the weighted square is (vi / i)
2
. This condition is imposed upon 

the adjustments vi = ix̂  – xi
+
 (xi

+
: measured, ix̂ : adjusted) that are added to xi

+
 in order to make 

the set of equations solvable. 

 

In the examples in Chapter 4, we have succeeded in formulating the solvability conditions 

explicitly. Generally, it is the task of the balancing (reconciliation) software to include this 

requirement in the mathematical procedure. The methods nowadays available can do it even if 

certain variables are not only unmeasured, but even unobservable. They thus solve the following  

reconciliation problem: 

 

Given measured values xi
+
,  find  

 

   (1) the adjusted values ix̂  =  xi
+
 +  vi(adjustment)  such that 

 

           (1a) the (balance) equations are solvable with fixed values ix̂  

 

           (1b) the adjustments obey the condition 

                      










measured

2

ix i

iv


=  minimum                             (5.5) 

 

                   where i  is standard deviation of measurement error in xi
+
 , 



 

 64 

      and 

 

   (2) the values jŷ  of observable unmeasured variables yj , uniquely determined by the 

        equations with fixed ix̂ . 

 

[The condition (1a) can further restrict the values; see below.] 

 

In the condition (5.5), we assume that the  measurement errors are 

 

   (A) uncorrelated (see below) 

 

   (B) of zero statistical mean. 

 

The condition (B) is quite delicate. Basically, it is a problem of maintenance of the instruments; 

see Madron (1992), Chapter 3 (systematic errors), or also VE-MA: 9.5 concerning the 

consequences for the reconciled values. The assumption (A) is in fact not necessary, only the 

condition (5.5) is then generalised for an arbitrary covariance matrix (that of variances  i
2
  and 

covariances representing the correlations); the reconciliation can work as well with general 

covariance matrix (see, e.g., the formulae in VE-MA). But in practice, when using directly 

measured values in the reconciliation the assumption (A) is quite plausible.  

 

Remarks 

 

(i)  The condition (5.5) has been motivated by the simple concepts of 'minimum distance' or 

'minimum weighted sum of squares'. In the statistical theory of errors, it is pronounced as the 

'maximum likelihood principle' and as written above, holds then true only if the statistical 

distribution of errors is Gaussian. In practice, the result is the same because one rarely knows 

more than the standard deviations. Concerning the Gaussian distribution, it is sometimes 

postulated as a prerequisite but the reconciliation works as well as an 'optimisation' of the 

adjustments if the errors are Gaussian or not (which we usually cannot decide). 

 

(ii)  The correlatedness of measurement errors can arise if we use other than the balancing 

variables as introduced. Let for example m be an overall flowrate, y and z two concentrations in a 

ternary mixture thus  u = my  and  v = mz are the flowrates of the respective components regarded 

as measured if  m, y, and z have all been measured. The balance equations are then of simpler 

form and were used as such in the earlier stages of the reconciliation techniques. We then have 

for example, using approximation by Taylor formula with du  =  mdy + ydm  

 

      – eu  =  u – u
+
   m

+
(y – y

+
) + y

+
(m – m

+
)  =  – m

+
ey – y

+
em 

 

for the error eu  in u and small primary errors ey and  em with standard deviations  y and  m. 

Assuming the latter uncorrelated and denoting by  the statistical mean value, we have 

 

   u = my 

   v = mz: 

                  u
2
 = eu

2
   (m

+
)
2
ey

2
 + (y

+
)
2
em

2
   =   (m

+
)
2 y

2
 + (y

+
)
2 m

2
                   (5.6a) 
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                  v
2
  (m

+
)
2 z

2
 + (z

+
)
2 m

2
                                                                                (5.6b) 

 

but also 

 

                  uv = euev   y
+
z

+
em

2
 = y

+
z

+ m
2
   0           (5.6c) 

 

thus eu and ev are correlated. The nonlinear methods don't need introducing this kind of variables 

and in addition they don't require that for example both  m and  y be measured, when there are 

other redundant data. 

 

Let us now give several simple examples, just to show how the reconciliation works. The first 

example is that of  

5.1.Mass balance 

 

This is the most elementary, mathematically most exact and most widely used form of balancing. 

 

Example 1.  Steady-state mass balance 

 

Let us consider Fig. 4-2. The balancing software takes over the flowsheet with specification of 

measured flowrates and transforms it by graph methods. Let the measured values (in tons per 

hour) be 

 

   m1
+
 = 1.1,  m6

+
 = 1.13,  m7

+
 = 0.5 

 

with the corresponding standard deviations of measurement errors (also in t/h) 

 

   1  = 0.02,  6 = 0.03,  7 = 0.02. 

 

We then  obtain the reconciled values 

 

   m̂ 1 = 1.1092,  m̂ 6 = 1.1092,  m̂ 7 = 0.5 

 

and the estimates of the observable unmeasured variables 

 

   m̂ 2 = 1.1092,  m̂ 8 = 0.6092 

 

along with the information that m3, m4 and m5 are unobservable, and also that m7 is nonredundant. 

 

We perhaps don't need to know the values of m3, m4 and m5 thus we have the complete result. We 

know that the adjusted measured values are compatible with the node balances and that the 

observable unmeasured values are then uniquely determined. In addition, the adjustments were 

found in an optimal way with respect to our additional information (the standard deviations); 

adopting the hypothesis that the probability distribution is Gaussian, we have the maximum 
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likelihood estimates. Observe that the measured value of  m7 has remained unadjusted. This is a 

general property: With uncorrelated measurement errors 

 

   Any nonredundant measured variable is nonadjustable. 

 

The precision of the results can be expressed quantitatively by the standard deviations of the 

estimates; the smaller the standard deviation is, the more precise is the estimate. The reader can 

imagine the Gaussian distribution. Then, if x  is the standard deviation, the error in the estimate 

x̂  will be smaller in absolute value than (approximately) x2  with 95% probability; the error 

means the difference between the estimate and the (otherwise unknown) true value. 

 

The necessary information for computing the latter standard deviations can be gained in the 

course of the transformations the computer performs. If making use of it, we can find the values 

 

      measured                  unmeasured observable 

 

    m1 = 0.0167                   m2 = 0.0167 

 

    m6 = 0.0167                   m8 = 0.0260. 

 

    m7 = 0.02 

 

We can see that  m1 <  1  and   m6 <  6 . The result is again general: 

 

   For the redundant measured variables, the precision increases by reconciliation 

 

if compared with the result of the measurement itself. The nonredundant variable is unadjusted 

and the precision remains the same. 

 

We can also examine what happens if we add some measurement. Let us measure the value of m8 

in addition, with 

 

   8  = 0.03. 

 

We can obtain other estimates, but anyway 

 

      measured                   unmeasured observable 

 

    m1 = 0.0151                      m2 = 0.0151. 

 

    m6 = 0.0151 

 

    m7 = 0.0173 

 

    m8 = 0.0197 
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All measured variables are now redundant and the precision has increased for all estimates. The 

result is again general: 

 

   Increasing the redundancy increases the precision of the estimates. 

 

'Increasing the redundancy' means here adding the measurement of a variable that was 

unmeasured but observable; if an unobservable variable becomes measured, it becomes 

nonredundant and the precision does not increase. 

 

This is also one of the merits of reconciliation. The measured data are compatible, and also more 

precise if adjusted. But attention: The precision is to be interpreted statistically. Individual results 

can be spoiled, in particular if a gross measurement error is present. 

 

Example 2.  Dynamic mass balance 

 

Let us now add a storage tank to Fig. 4-2. The product (stream 7) is conveyed into node T 

according to the scheme 

 

 

    Fig. 5-2  Storage tank added to Fig. 4-2 

 

and as stream 9, taken over by the client(s); the fictitious stream a represents the accumulation 

thus increase in the inventory. According to Section 3.1, the node balance 

 

   m7 – m9 – a  =  0                          (5.7) 

 

is added to the balances (4.1). 

 

We now consider the case of daily balancing. At discrete times tk  (tk - tk -1  = 24 h), the integrated 

mass flowrates mi are measured between tk – 1 and tk in the streams marked by + in Figs. 4-2 and 

5-2, and also the state s of the inventory is measured. Then, adding subscripts k to the mi and a (at 

tk) in (4.1) and (5.7), we have in particular 

 

   ak  =  sk – sk –1 ;                   (5.8) 

 

s0 is the initial state of the inventory. 

 

Our goal is to make the measured states  sk  compatible with the measured flowrates. Because, by 

(5.8), the balances at times k = 1,2,... are interrelated we obtain, for large k, a huge set of linear 

from D 

a + 

+ + 

9 7 
T 
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equations thus constraints used in the reconciliation; imagine more generally a system with many 

streams and several nodes with accumulation. The reconciliation can be made simpler as will be 

shown. 

 

We consider average daily production 25 t of the distillate; let the storage tank have the capacity 

of 10 days' production, thus 250 t. We assume that the random measurement errors are 

uncorrelated also for the same variable but measured at different times; let their constant standard 

deviations be (in tons) 

 

   1  = 0.5,  6  = 0.6,  7  = 0.25,  and   s = 1 

 

for the inventory. The measured flowrate of stream 9 is considered errorless. It is the so-called 

custody measurement agreed by the client: What has been measured, that counts. So  

 

m9
+
 is a fixed value at each tk or, which is the same, we put 

 

    9 = 0. 

 

Apparently simplest is regarding the difference a (5.8) as a (measured) balancing variable and 

reconcile as such; then the tk-balances are separated from each other (independent). We can 

compute the estimate at time K 

 

   ŝ K  =  s0
+
 + 



K

k

ka
1

ˆ                                    (5.9) 

 

using the estimates kâ . However, it has turned out in practice that for large K, nonsensic values 

can be obtained (e.g. kŝ  exceeds the storage capacity). This can be explained as the cumulation 

of (even small) systematic errors in some of the flowrates. As an illustration, let us hypothetically 

assume the primary systematic errors 

 

   e7 0 =  +0.02  and  es 0 = +0.5 

 

in  m7
+
 and s

+
, respectively. According to VE-MA, Chapter 11, we can compute the systematic 

error EK  in the estimate (5.9) after 100 days 

 

   E100 = 2.44 

 

and the standard deviation K from EK (which is the mean) 

 

   100  =  2.46. 

 

These values are perhaps not alarming (due to the special structure considered). But it can be 

shown that generally, |EK| increases linearly with K and K increases linearly with K ; the result 

(see again VE-MA, ibid.) holds true for an arbitrary number of streams and accumulation nodes. 
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Another possibility is regarding, at each k, the measured sk as balancing variable while the 

previous estimate ŝ k –1  as constant. Thus in the balance (5.7) with (5.8), we put 

 

   ak  =  sk – ŝ k –1                             (5.10) 

 

only with measured value sk
+
 subject to reconciliation; the equations for each tk are again 

separated. It can again be shown generally that the |EK| and K  also increase but remain bounded 

by limit values E |  and   . In our simple example, we can even compute 

 

   0 < EK   0.821,   K    4.123 

 

for any K. The value K is independent of the systematic errors. Experience has shown that 

indeed, the mentioned nonsensic values can thus be avoided. 

 

Note:  Although irrelevant for the above general conclusions, we have introduced the custody 

measurement to signal the possibility of errorless measured variables. They can be several in a 

large system. It then can happen that the reconciliation problem becomes not solvable. Consider 

the case 

 

 

 

Fig. 5-3  Non-solvable reconciliation problem 

 

where all the three in/outgoing streams represent errorless (++) measured variables. The equality 

among constants m1
++

 =  m2
++

 +  m3
++

  becomes contradictory because in reality, no measurement 

is absolutely accurate. The Figure is suggestively drawn in the manner that this model error is 

immediately detected. In a complex flowsheet, the arrangement need not be this suggestive and 

the error has to (and can) be found by graph analysis or another algebraic treatment of the model 

equations with specified measured streams. If detected, the issue must be solved by some 

agreement. 

 

The mass balancing, more generally single-component balancing (see Section 2.1) belongs to the 

class of linear problems. They can be solved using graph or also other algebraic methods and 

from the mathematical viewpoint of solvability, no difficulties can arise. The case of 

subsystem 

++ 
1 

++ 

3 

2 

++ 
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5.2.Nonlinear reconciliation 

 

is not that simple; see VE-MA, Chapters 8 and 10 for the theoretical analysis. Still, a number of 

methods are nowadays available; see Narasimhan and Jordache (2000) for a good survey. Let us 

characterise the methods quite briefly. 

 

The historical development of the reconciliation routines has led to nonlinear methods tailored 

for the special use in reconciliation. One of them is due to Crowe, with modification by Pai and 

Fisher (1988) as presented in Plácido and Loureiro (1998) ; see also Narasimhan and Jordache 

(2000), pp. 127, 134 and 66. Two other such methods are presented in VE-MA, Chapter 10. 

Basically, the three methods are equivalent and solve the problem as formulated above (points (1) 

and (2) with (5.5)) by different strategies. 

 

The reconciliation problem can also be regarded as that of optimisation thus minimisation of an 

objective function with certain constraints; the objective function is here the LHS in (5.5). Such 

problems arise in many branches of technology and economy and were solved by mathematicians 

to these general purposes, first as linear, then extended as nonlinear programming (NLP). The 

position of the optimum is a priori quite unknown and the region where it has to be found is 

restricted by certain inequalities (such as a production capacity that cannot be exceeded and the 

like). Quite often, the optimum is then found just at the boundary (as is always the case in linear 

programming). Going back to the reconciliation, this means adding certain inequality constraints 

(such as nonnegative mass flowrates) to the solvability conditions (1a) above. Mainly in the last 

decade, the NLP techniques were recommended also for the latter purpose, as reported at 

conferences, in articles and also (though not exclusively) in Narasimhan and Jordache (2000). 

The software is elaborated in technical details, available on the market even with possible 

modifications, and it works. 

 

It is difficult to make a comparison; different (teams of) authors clearly recommend the methods 

they have used. The NLP-methods are probably more robust and can facilitate the convergence of 

the successive approximations in certain cases; if the successively approximated point (solution) 

tends to escape from the admitted region, they can let it slide  on or even reflect from the 

boundary. [This can be the case of 'bad' measured data.] Still, the conclusion is not unambiguous. 

If the final solution is found just at some point of the boundary, its interpretation is dubious; 

something is probably wrong with the model or measured values. Anyway, the 'tailored' methods 

(Crowe, VE-MA) appear to be more suitable for the statistical analysis of the data; see VE-MA, 

Chapter 10. [In fact, they can also be regarded as NLP methods, but without the boundary 

conditions.] 

 

Example 3.  Heat and mass balance 

 

Let us now consider the example according to Fig. 4-3. The balancing software does not know 

our detailed analysis that follows after (4.7); nor the user is obliged to perform it. The model is 

given by the original node balances (4.6) with specification (4.7) of measured variables to be 

reconciled; in addition, the specific heats are in the database. For simplicity, let us take the same 

specific heat 
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   cp  =  2.2 kJ kg
-1 

K
-1

  

 

for all streams (hydrocarbons). Observe that the user can give the input values and require the 

output ones in physical units he prefers; the software itself performs the necessary 

transformations. Let the mass flowrates be in t/h, temperatures   (4.5) in deg C and heat flows in 

kW. Let the measured values be 

 

   m1
+
 = 1.01                   



1  =  21                   


9  =  137 

 

  m7
+
 =  0.32                  



6  = 100                  


10  =  105 

 

   m9
+
 =  0.79                  



7  =  81                  


11  =   39.5 . 

 

   m11
+
 =  0.68                 



8  = 119 

 

Again for simplicity, let us consider the standard deviations 

 

   for all measured flowrates         m  =  0.01   (t/h) 

 

                              temperatures      =  0.5     (K). 

 

The nonlinear procedure requires, however, also initial guesses for the unmeasured variables. 

The user has probably some idea of what they can be. So let the latter guesses equal 

 

   m2
*
  =  1.01                      2

*
  =  50                       Q'

* 
 =  120      (kW) 

 

   m3
*
  =  0.202                     3

*
  =  50                       Q"

*
 =  100     (kW). 

 

   m4
*
  =  0.808                     4

*
  =  50 

 

   m5
*
  =  0.808                      5

*
 = 105.5 

 

   m6
*
  =  1.01 

 

   m8
*
  =  0.68 

 

   m10
*
 =  0.79  

 

The more qualified guesses we have, the faster is the convergence of the procedure. [By the way, 

with a superstandard equipment of the software, the guesses can be improved before 

reconciliation; see VE-MA: 10.4.1.]  Nonsensic guesses (and also very 'bad' measured values) 

can, alas, make the procedure fail. For a simple system as ours this is, however, unlikely. The 

result is obtained in no time. It reads (rounded-off) 
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   for reconciled measured values: m̂ 1 = 1.0068        1̂   =  20.99            9̂   =  136.99 

 

                                                       m̂ 7 =  0.3236        6̂  = 100.01           10̂  =  105.01 

 

                                                       m̂ 9  =  0.7898        7̂  =   81                11̂  =   39.51 

 

                                                       m̂ 11 =  0.6832        8̂  =  118.99 

 

where the variable 7  is classified as nonredundant; indeed, 7̂  = 


7  precisely. Further are 

obtained the estimates of unmeasured variables classified as observable 

 

                                                         m̂ 2  =  1.0068        2̂  =  74.92 

 

                                                         m̂ 6  =   1.0068        3̂  =  74.92 

 

                                                          m̂ 8  =   0.6832       4̂  =  74.92 

 

                                                          m̂ 10 =   0.7898 

 

while the variables m3 , m4 , m5 , 5  and Q', Q" are classified as unobservable. [In fact their 

pseudoestimates  

 

  m3  =  0.1837,   m4  =  0.8231,   m5 = 0.8231,  5  = 105.51 

 

  Q'  =  112.09,  Q"  =  107.92 

 

obeying the balance along with the preceding values are also computed, but they depend on the 

initial guesses and generally also on the chosen strategy. From the viewpoint of probability 

(statistical reliability), the result is meaningless.] 

 

Note:  Observe that the sum of the temperature adjustments ( ̂ ) equals zero; this is due to 

the special structure considered. Also due to the special structure is the fact that all these 

adjustments are of the same order of magnitude; having rounded-off the adjustments to two 

decimals, they are all equal to  0.01 K. This small order of magnitude is  mere coincidence. 

Changing for example   6
+
  from 100 to 101 the order of magnitude will equal some 0.15 K. 

Only the nonredundant ̂ 7 =   7
+
 will subsist. 

 

We suppose that the nonlinear reconciliation has been carried out by one of the 'tailored' methods 

(modified Crowe, VE-MA). In addition to the classification of variables, we can also obtain 

information on the degree of redundancy (say) H of the system of measurement. It can generally 

be interpreted as the number of (possibly only hypothetical, explicitly unknown) conditions of 
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solvability (compatibility). In our example, we find H = 2 in accord with our detailed analysis 

leading to Eqs. (4.8a). 

 

Remark 

 

Let us suppose that the source of the hot stream 9 is distant from our subsystem and some heat is 

lost on the way to E2. Let the temperature be measured at the source. Then a model error arises in 

the equations (4.6). In fact, with (say) 12  (measured as 


12 ) we have 

 

   9  =  12  –
9

loss

'mc

Q

p

;                                          (5.11) 

 

the equation is to be added to (4.6) and 12  instead of  9  is then the measured variable. It can be 

shown that our set of data has sufficient redundancy to compute this Qloss as an observable 

unmeasured variable; but one degree of redundancy is lost and the precision of the results is 

lowered (see below). Instead, we can estimate the Qloss using the measured 


12  and a 

semiempirical chemical engineering formula; we thus have some value (say) Qloss
+
 considered 

also measured and assigned some 'sufficiently large' standard deviation, for example using 

(2.2.11) where |e|max  is the assessed error in the computation. [This is an idea due to F. Madron: 

an 'automatically generated stream', see VE-MA, pp. 464 and 471.] The adjusted value lossQ̂  is 

then obtained along with 12̂ ; 9̂  is computed as unmeasured observable. 

 

As a superstandard equipment, the software can (although commonly doesn't) contain the 

evaluation of other characteristics of the system with measured variables. As already indicated in 

Example 1, the underlying information can be gained in the course of the mathematical 

transformations. We didn't describe them in detail, but the reader is perhaps still interested in how 

this is possible in principle. Well, at the end (after the last iteration), we have the final point (in 

the vector space of variables) which is our solution. At this point, the Jacobi(an) matrix (that of 

partial derivatives of the functions constituting the model thus e.g. the LH-sides in (4.6)) is 

evaluated. An intelligent engineer can perhaps draw some information from the matrix directly 

(Dempf and List, 1998). The 'tailored' methods transform the matrix to a 'canonical format' 

(arrangement) from where also the classification of variables results, and the degree of 

redundancy. [Basically, the arrangement then corresponds to our rearrangement (4.8.a,b,c) in the 

special case.] We then can also compute, for example using the formulae in VE-MA 9.6 with 9.3 

and 10.7 with 10.3, different statistical characteristics of the solution. To be precise (and not to 

offend statisticians:theorists), the characteristics are only 'pseudostatistical', thus for example 

(pseudo)standard deviations.They approximate the intuitive (theoretically not precisely defined) 

notion of probability for the computed values. Omitting the meticulous 'pseudo', the standard 

deviation  x of estimate x̂  informs us again that (with a Gaussian distribution) the error in the 

estimate will be, in absolute value smaller than  2 x  with 95% probability. It is to be noted 

immediately that this  x  generally depends on the final point where it has been evaluated; see 

below for an example of strong dependency. 
 

Going back to the above Example 3, one can for instance compute the standard deviations  
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   for 1̂  and 6̂ :   1   =  6   =  0.458  =  0.916   

 

where   is standard deviation for the temperature measurement 

 

   for m̂ 7 :   m7  =  0.007  =  0.7 m 
 

where  m  is standard deviation for the mass flowrate measurement, while 
 

   for 7̂ :  7  =    

 

(nonredundant variable). It can be shown that the conclusion is of general character: 

 

   With the exception of variables classified as nonredundant, the reconciliation improves 

   the precision. 

 

Also the  x  for unmeasured observable variables can be found; for example 

 

   for 2̂ :   2  = 0.611. 

 

Higher precision can be obtained when increasing the degree of redundancy. For simplicity and 

so as to have a comparison, let the final point (solution) be the same as above, but let us have 

measured 2  in addition, again with the same standard deviation   of measurement errors. We 

then obtain 

 

   for (now measured) 2̂  :   2  =  0.387  instead of  0.611 (of course 2 <  = 0.5) 

 

   for 6  :                               6  =  0.426  instead of  0.458 

 

etc. 

 

This kind of information can be gained more generally. The final point (solution) includes certain 

values of the unobservable variables as pseudoestimates satisfying the balance (and as close to 

the initial guesses as possible). [It can be shown formally that the (pseudo)statistical 

characteristics are independent of the latter values  if  they obey the balance.] Having once the 

transformed Jacobi matrix (and having completed the superstandard equipment), we can make 

different computer experiments as increasing (or also decreasing) the number of measured 

variables and examine also what happens with the observability and redundancy (and the 

standard deviations). To be precise, the information thus gained concerns only the given point, 

but one usually can expect that it will not alter very much at least for points not very distant from 

the given one. So in particular, in our example we'll find that (compare with the analysis that 

follows after (4.8c)) measuring Q" in addition, Q' becomes observable, and when measuring both 

Q' and Q" they become redundant along with 7  and the degree of redundancy increases by one 
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thus precision is improved. This information (reclassification, change in standard deviations) can 

be important for upgrading the system of measurement. 

 

Example 4.  A not well-posed problem  

 

In certain cases regarded rather as exceptions, the classification of variables can become 

ambiguous. Without going into detailed theoretical analysis, let us consider one example; viz. 

that illustrated  in Fig. 4-4. Having already assumed that all specific heats are equal, the equations 

are (4.9) and the measured values to be adjusted are (4.10). The computer again does not know 

our rearrangements (4.11) etc. We again consider the standard deviations 

 

     =  0.5  for all measured temperatures 

 

    m = 0.01 for all measured flowrates. 

 

(a)    Let us suppose that starting from certain measured values, we have found the estimates 

 

    m̂ 3  =  1             1̂   =  60                4̂   =  80 

 

    m̂ 5  =  1             2̂   =  40                5̂   =  100 

 

                               3̂   =  50                6̂   =  70 

 

thus adjusted measured values, and for observable unmeasured variables 

 

   m̂ 1  =  0.5            m̂ 4  =  1 

 

   m̂ 2  =  0.5            m̂ 6  =  1 . 

 

We can also compute the standard deviations of the estimates. We find for example 

 

    m1  =  0.0293        thus    m1 / m̂ 1  =  0.0586 

 

which we will consider a sufficient precision. 

 

 

(b)    Let us suppose that the estimates m̂ 3 (= m̂ 4), m̂ 5 (= m̂ 6), 3̂ , 4̂ , 5̂ , 6̂  are as above, 

but that we have found 

 

   1̂   =  50.3                                         m̂ 1  =  0.7 

                            and (observable)         

   2̂   =  49.3                                         m̂ 2  =  0.3 
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obeying again the balance. We then find the standard deviations  

 

    m1  =  0.586    thus     m1 / m̂ 1  =  0.837 

 

    m2  =  0.585    thus     m2 / m̂ 2  =  1.86 > 1  !! 

 

Let us first consider the case (a). If the technology doesn't admit the difference )( 21    to be 

smaller than some 20 K, the variables m1 and m2 can be estimated as observable with sufficient 

precision. In the case (b) however, the technology admits that 1  and 2  can only slightly differ 

from one another (1 K in our example). Our analysis following after (4.12b) has already come to 

the conclusion that the estimates of m1 and m2 will be uncertain. This is expressed quantitatively 

by the values of  m1 and  m2 ; for m2 , the standard deviation is even larger than the estimated 

value. The (theoretical concept of) 'not-well-posedness' means here that the m1 and m2 are 

practically unobservable. In VE-MA: 10.4.5 (iii), this property has been predicted generally by 

theory. It also follows from the theory that if we have, using certain data, detected such an effect 

then with other, perhaps 'worse' data the reconciliation may even fail. 

 

Of course the example was trivial. In complexer situations, the result need not be a priori evident. 

The important fact is that it can be detected by the statistical analysis as shown. Compare with 

Plácido and Loureiro (1998); in their case study, large standard deviations of an unmeasured 

observable variable were also found and attributed "to the structure of matrices used" thus in fact 

to the model of the system and its measurement. The authors used modified Crowe's method and 

stress the importance of statistical analysis of the estimates. 

 

Let us now, by way of a computer experiment, regard the value of  m1 as measured. So the 

estimates are the same as above; but the standard deviations are different. For the (now measured 

and reconciled) value m̂ 1 we find 

 

   m1  measured:    m1 =  0.999810
-4

    0.01  =   m   

 

thus m1 is almost nonredundant (nonadjustable); the estimate error variance is practically equal to 

the measurement error variance ( m
2
). Also such cases can occur generally; they cause no 

problem in the reconciliation, but disqualify the detection of a gross measurement error in the 

variable (see, e.g., VE-MA: 10.5). 

 

Note: Observe that a small value of the adjustment itself doesn't  necessarily mean that the 

variable is almost nonadjustable. Thus in Example 3, the  -adjustments are all  0.01 K (see the 

Note ibid.), but for example 1  =  0.916   is though not dramatically, still sensibly different 

from the standard deviation of measurement errors. 

 

Also the estimate error standard deviation for the unmeasured variable m2 in the above computer 

experiment changes dramatically. We now have 

 

 

   2m   =  1.5110
-2
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instead of the above 0.585. Finally let us measure both m1 and m2. We find 

 

   m1 and m2 measured:    m1  =  0.834610
-2

   (<  m = 10
-2

) 

 

                                         m2  =  0.833710
-2

   (<  m) 

 

thus both m1 and m2 become redundant, with a well-pronounced effect on the precision. 

 

The superstandard equipment (which is easily installed in particular with the 'tailored' 

reconciliation methods) thus can yield useful additional information. It makes possible the 

statistical analysis (estimate error variances calculation) detecting 'practically unobservable' 

unmeasured and 'almost nonadjustable' measured variables. It further enables one to carry out 

computer experiments: what happens if some measurement is added (or also deleted). 

Theoretically, this is a way to an optimisation of measurement:  an  optimisation because it 

depends on the criteria adopted. There is a number of articles in journals dealing with this topic. 

Information about a successful optimisation of this kind installed in industrial practice is, 

however, lacking. Optimisation is, of course, rather a theoretical (mathematical) concept. But it is 

important to know that at least some improvement is possible. 
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6. PROPAGATION OF ERRORS 

 

In Chapter 5 (Examples 1 and 3), we have characterised the precision of the results of the 

reconciliation by standard deviations of the estimates (more precisely of the estimate errors), thus 

 xi  for the i-th measured and adjusted variable,  yj for the j-th unmeasured observable estimate. 

In the analysis of errors and precision, it is convenient to introduce the variances thus  z
2
  for 

variable z where  z  is the standard deviation. In addition to the statistical characteristics such as 

the named variances, let us further introduce the global criterion  Qmin obtained by (5.5) 

 

   Qmin  =   










measured

2

ix i

iv


             (6.1)  

 

where  i  is standard deviation of  the  i-th measurement error and  vi  the i-th  adjustment (added 

to the i-th measured value). Along with the  xi
2
  and  yj

2
 , we can compute also the  

i-th  adjustment variance  vi
2
. All these characteristics (as well as Qmin) can be computed for 

example by the formulae given in VE-MA: 9.3 and 10.3; in the latter (nonlinear) case, they are in 

fact certain 'pseudostatistical' characteristics due to the linearisation of the equations in the 

neighbourhood of the solution; see the commentary in Example 3 of Chapter 5, in the paragraph 

following after that with formula (5.11) and dealing with superstandard equipment. The 

characteristics depend on the model structure and in the nonlinear case, also on the point 

(solution) where they have been evaluated. 

 

The adjustment variances obey the relation 

 

    xi
2
  +  vi

2
  =   i

2
             (6.2) 

 

and we have  vi
2
 > 0  with the exception of 

 

   nonredundant variable xn :     vn
2
  =  0;                     (6.2a) 

 

indeed, the adjustment is then identically zero. From  xi
2
  =  i

2
  –  vi

2
  follows immediately 

the general result: With the exception of a nonredundant measured variable, the estimate error 

variance is smaller than the respective measurement error variance thus (in the statistical average) 

reconciliation improves precision of measured data. 

 

With the reconciliation, the error in some measurement does not affect only the measured 

variable itself, but generally also the other estimates. The following analysis assumes, as in 

Chapter 5, that the measurement errors are of  zero mean and uncorrelated. From the statistical 

point of view, the analysis is exact in the linear case and intuitively approximative as explained 

above when the model is nonlinear. 

 

Let  eh  be the h-th measurement error,  exi  resp.  eyj  the estimate error in measured variable xi  

resp. unmeasured observable variable yj . For example using the formulae in VE-MA, pp. 321 

and 315 or p.372 we have 
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   exi  =  
h

hihea                (6.3a) 

 

   eyj  =  
h

hjheb                          (6.3b) 

 

with summation over all measurement errors eh . Each of the coefficients aih resp. bjh depends on 

the model structure and generally all the measurement error variances  k
2
 , and in the nonlinear 

case, in addition on the point (solution) where they have been evaluated. They are generally 

nonnull and characterise the propagation of errors among the estimates; e.g. the error eh  

contributes by the item  aiheh  to the error exi (of course the items can partially compensate). There 

is still an exception: Let  xn  be a nonredundant variable; then 

 

   xn  nonredundant:   ain  =  0  for every  i   n 

       and  ann  =  1.                                     (6.3c) 

                                  anh  =  0  for every  h  n 

 

The error en  in a nonredundant measurement affects only the variable itself giving  exn =  en  (no 

adjustment) and no other measured variable estimate. But attention: it can affect the estimates of 

observable unmeasured variables (though not necessarily all; that depends on the structure). 

 

The errors themselves are, however, unknown. So as to have an idea of how the precision of the 

results is affected, we can introduce the matrices of shares (Madron 1992:  pp. 90 and 168). From 

(6.3) follows 

 

    xi
2
  =  

h

hiha
22)(                        (6.4a) 

 

    yj
2
  =  

h

hjhb
22)(  .                      (6.4b) 

 

The matrices (say)  Sx (for measured variables) and  Sy (for observable unmeasured variables) are 

of  elements 

 

   Sx :   Sx,ih   =  
2

22

xi

hiha




    in row  i  and column  h                                                             (6.5a) 

 

   Sy :   Sy,jh   =   
2

22

yj

hjhb




   in row  j  and column  h .                                           (6.5b) 

 

We here have, by virtue of (6.4) 

 

   for any  xi :   
h

ihx,S  =  1                      (6.6a) 
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   for any  yj :    
h

jhy,S =  1 .                     (6.6b) 

 

So the element  Sx,ih  resp.  Sy,jh  represents the relative contribution (share) of the  h-th 

measurement error variance to (in) the estimate error variance  xi
2
  resp  yj

2
 .  

 

The matrices provide  useful information when the estimate precision is to be improved by 

replacing some instrument with another. For example looking at matrix  Sy , the elements in the j-

th row suggest the first candidate for the improvement of the estimate of  yj : it is the h-th 

measurement giving the largest  Sy,jh ; of course one must also consider the price etc. See again 

Madron (1992),  pp. 169-170  for more details. 
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7. GROSS ERRORS 

 

Intuitively, a gross error is due to some failure: of the instrument, personnel and the like. [We 

preclude the case of total failure of an instrument which doesn't work.] A model error is due to 

the failure of some model hypothesis: an omitted (possibly deliberately neglected) stream such as 

an energy flow representing heat loss, an unknown chemical reaction, or also more delicate errors 

in the thermodynamic description; some possibilities of model errors were indicated above 

(Chapter 3). Also model errors are usually detected as gross errors, thus errors whose occurrence 

is regarded as unlikely. We can then apply criteria derived from statistics to the results of the 

reconciliation. Of course also an absurd result (such as an estimated negative mass flowrate or 

mass fraction of some component) can signal the presence of a gross error. 

 

The techniques for the detection and (if possible) also elimination of gross errors are numerous; 

see for instance Madron (1992): 4.5 and VE-MA: 13.4, a theoretical analysis in VE-MA: 9.4 and 

10.5, or quite recently an extensive review in Narasimhan and Jordache (2000) where a 

substantial part of the book (Chapters 7,8,9, also 11) is devoted to this problem. We will here 

only illustrate how the statistical analysis can work. 

 

Let us first remark that the statistical hypotheses on which the analysis is based hold true exactly 

for the linear recociliation only. Otherwise, the same remark applies as that concerning the 

standard deviations above. But having no other possibility, we shall regard the 'pseudostatistical' 

criteria as useful approximations; see VE-MA, pp. 372-373. The classical criterion for the gross 

error detection is the value (5.5) minimised by reconciliation (we constantly assume uncorrelated 

errors), thus Qmin  (6.1). [Note that  the statistical hypotheses are correctly approximated if the 

reconciliation problem (see again the paragraphs with (5.5)) is formulated as (1) and (2), without 

further restricting the condition (1a); this note concerns the nonlinear programming methods 

including inequality constraints.] Now by the approximation (precisely for linear problems and 

Gaussian distribution of errors), this Qmin is a random variable with (so called) 2 -distribution. 

We then consider the value unlikely when it exceeds some conventionally adopted value. One 

commonly takes the value such that it can be exceeded with 5% probability; this is the critical 

value, say Qcrit . This value depends on the degree of redundancy H  illustrated in Example 3 of 

Chapter 5 (number of hypothetically formulated conditions of solvability); the H is found by the 

reconciliation algorithm. We thus write Qcrit(H) and if H is known, the value can be found in 

statistical tables or directly in the database (H represents here the 'number od degrees of freedom' 

for the distribution). If 

 

   Qmin > Qcrit(H)                   (7.1) 

 

then we have detected the (possible) presence of some gross error(s). The case ('event') (7.1) has 

probability 5% with the above convention. 

 

Detecting the presence of a gross error is a warning: Due to the reconciliation mechanism, the 

error can propagate among all estimates (see Chapter 6) and more or less corrupt the whole 

result. Our aim is now to separate and (if possible) eliminate the error: thus, first, identify its 

source. It can be an error of measurement associated with some variable xi , or also a model error 

in some equation (balance), say Eq(k). The elimination will then mean that the variable xi is 
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deleted as measured, i.e. not considered in the reconciliation and ranged among the unmeasured 

ones, or also the k-th equation is deleted as a constraint. The safest way seems to  be deleting 

immediately, one by one, the measured variables or, again one by one, the constraints and see 

how the criterion Qmin has changed; it can be shown that (at least with a linear model), the 

criterion will not increase. We then identify the case where the new Qmin is smallest (i.e. the 

reduction is largest). We first go through the xi ; the smallest Qmin indicates that a gross error can 

be present in the measurement of xi, or also in a model equation where this xi occurs. We can also 

go through the Eq(k): the largest reduction makes suspect the model equation (or also some 

measured variable occurring therein). 

 

The repeated reconciliation may be time-consuming. The power of modern computers has 

weakened such arguments considerably. Nonetheless, the procedure can be speeded up by a 

simple assessment of the Qmin-reduction. Let us consider the xi-deletions. We have already 

mentioned that the software is able to compute the (pseudo)standard deviations  xi  for the 

estimate errors, or also directly the (pseudo) standard deviations  vi  for the adjustments vi ; see 

(6.2). Then the standardised adjustment is introduced as 

 

   zi  =  
vi

iv


 .                                    (7.2) 

 

It can be shown (VE-MA, pp. 339 and 399) that the square  zi
2
  equals (in the linear case) or at 

least approximates (in the nonlinear case) the reduction of  Qmin  after deleting the measurement 

xi . So we can directly look for the largest |zi| (or zi
2
) identifying the first suspect as source of a 

gross error; this way of searching can also be supported by other arguments. [An analogous 

assessment is possible for the Eq(k)- deletions.] 

 

Finding a variable suspect of a gross measurement error is itself a useful result. It is a motivation 

for checking the measurement device, or also its placement, the method etc. It is then also 

information for the control engineers. Finding a model equation where a model error can have 

occurred means that the model is to be re-examined. Plácido and Loureiro (1998) report that in 

this way, an earlier unsuspected chemical reaction was revealed. 

 

Let us remark that when deleting the measured variables, one immediately precludes the 

variables classified as nonredundant (nonadjustable). The adjustment vi is then zero, the term 

does not occur in (6.1) and (see Chapter 6) an error in xi does not influence the other measured 

variable estimates. Alas, it can still affect the estimates of observable unmeasured variables. The 

measurement system should, as far as possible, avoid the presence of nonredundant 

measurements. Difficulties can also arise when some of the xi is almost nonadjustable thus  xi 

  i ; see Example 4 in Chapter 5,  m1 measured in addition: Then (6.2)  vi  0 and it can be 

shown that also vi  0; hence the ratio (7.2) is that of small numbers thus uncertain. Then also the 

detection of a gross error in xi is uncertain. In addition, recall that in the cited Example 4, if we 

delete again the m1-measurement then the problem becomes not well-posed: m1 and m2 become 

practically unobservable. Such a case was also found by Plácido and Loureiro (1998) and can 

perhaps be explained in this manner. 
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Suppose we have specified one suspect variable (or equation). Having deleted it, we reconcile 

again and find the new Qmin ; we (as can also be shown) have now  H – 1  instead of H  and if 

now Qmin < Qcrit(H-1) then no further gross error is detected. [Of course if we had H = 1 then all 

measurements would now be nonredundant and no new reconciliation would take place.] 

Otherwise, we can continue by further deletion, etc. Finally, if the last reduction has been 

successful, we thus have (or rather can hope that we have) eliminated the gross errors. This is an 

ideal scheme. There are, however, different limitations to this procedure; see again an example in 

Plácido and Loureiro (1998), or of course a more detailed analysis in the literature cited above. 

 

Among other statistical methods, let us mention the nodal test (Narasimhan and Jordache 2000; 

see also Madron 1992, p. 188 or VE-MA, p. 341). It is used mainly for single-component 

balancing where several nodes can be merged to one so as to eliminate the unmeasured variables; 

see for example Eq.(4.2) and the second paragraph following thereafter. The (linear) balance of 

one node can then be written as 

 

   
i

ii xc  =  0                      (7.3) 

 

with sum over all variables xi occurring in the node balance; we here assume that all these 

variables are measured. The coefficients ci are constants ( 1 in a mass balance) and Eq(7.3), if 

correctly written, is necessarily satisfied with true values xi . Denoting by xi
+
 the measured values 

and (error)  ei = xi
+
 – xi , we  can  compute the residual  

 

  r  =  
i

ii xc
+
    which equals   

i

iiec  .                    (7.4) 

 

With the same hypotheses as above about the statistical distribution of errors, r is a random 

variable with variance 

 

   
2

r  =  
i

iic
22

 .                         (7.5) 

 

Assuming in addition that the distribution is Gaussian, the standardised residual 

 

   zr  =  
r

r


                     (7.6) 

 

has standard normal distribution. In statistical tables, we can again find a critical value, say  zr,crit 

such that the case (event) 

 

   |zr| > zr,crit                 (7.7) 

 

occurs with probability (say) 5%. If such a case is detected, the node balance is suspect of a gross 

error in the measurement of some variable occurring therein. It can also be a model error: perhaps 

some stream was omitted or wrongly oriented, in which case the balance (7.3) cannot be obeyed 

even with true values of  xi .  
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Notation  

 

Only repeatedly occurring, not ad hoc introduced symbols are listed. See Section 2.2 for 

consistent physical units. 

 

a                   generic symbol for accumulation (increase in inventory) 

A                  atom matrix, see (3.2.4.2) and the preceding text 

A0                 transformed atom matrix reduced to linearly independent rows, see (3.2.4.2a) 

cp                  (isobaric) specific heat (J kg
-1

 K
-1

) 

pc                  integral mean specific heat 

D                   diameter (m) of pipeline segment in Section 3.4 

D                   number of degrees of freedom (4.13) in Section 4.2 

g                    gravitational acceleration (m s
-2

) in Section 3.4 

Ĥ                  specific enthalpy (J kg
-1

), iĤ  in stream i 

XĤ                specific enthalpy of chemical species X 

(0)

XĤ               standard specific enthalpy of species X (3.3.2) 

H                  molar enthalpy (J kmol
-1

 K
-1

), see (2.2.9) 

XH                 molar enthalpy of species X (2.2.8) 
(0)

XH               standard molar enthalpy of X 

m                   generic symbol for mass flowrate (kg s
-1

), possibly time-inegrated (kg);  

                      mi in stream i  

m
+
                 measured value of m, in Chapter 5 only 

m̂                  estimate of  m after reconciliation, in Chapter 5 only 

mX                 balance excess of component (species) X  (3.2.2.2) 

MX                 mole mass (molecular weight) of species X (kg kmol
-1

); see Section 2.2 

M                  mean mole mass of a mixture (2.2.6) 

M                  (transpose of) stoichiometric matrix, see Subsection 3.2.1 

nX                   =  mX / MX  (3.2.2.3), auxiliary variable in multicomponent balancing 

P                    pressure (Pa), P 
i
 in stream i (average) 

PX                  production rate of species X  (3.2.1.5) 

Q                    heat flowrate ( J s
-1

 = W), see (3.3.1) 

Qr
(0)

               standard heat of r-th reaction, see Example 2 in Section 3.3 

Qmin               global criterion (6.1) 

Qcrit(H)          critical value of Qmin, dependent on degree of redundancy H; see (7.1) 

Rmax               maximum number of independent stoichiometrically possible reactions (3.2.4.3)  

S                    only  in Section 3.4: cross section area (m
2
) of pipeline segment   

S                    stoichiometric matrix with elements rX (3.2.1.4) , rows X, columns r  

t                     time (s) 

T                    absolute temperature (K), T 
i
 in stream i  

T0                  reference temperature chosen by convention 

vi                   =  ii xx̂ , adjustment in (5.5) 

Wr                 (volume integrated) molar rate of r-th reaction (kmol s
-1

), see Subsection 3.2.1; 

                      a reactor balancing parameter 
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x                    only in Section 3.4: length coordinate (m) in pipeline segment 

xX                  mole fraction of species X  (2.2.5), see also (2.2.7) 

 

xk                   only in Example 4 of Section 3.3: mole fraction of k-th component in  

                      liquid phase 


ix , ix̂            measured resp. reconciled value of variable xi , only in Chapter 5 

X                   generic symbol for chemical species (component of mixture) 

yX                  generic symbol for mass fraction of species X, see also (2.2.7);  yX
i 
 in stream i   

yk                   only in Example 4 of Section 3.3: mole fraction of k-th component  in 

                      vapour phase 

jŷ                  estimated (computed) value of unmeasured observable variable yj , 

                      only in Chapter 5 

zi                    standardised adjustment (7.2) 

 

Greek 

 

                   temperature variable (4.5),  i  in stream i  
                  measured value of  , in Chapter 5 only 

̂                   estimate of   after reconciliation, in Chapter 5 only 

                   friction factor (3.4.4) in Section 3.4  

rX                 stoichiometric coefficient in (3.2.1.4), element of matrix S 

                   mass density (kg m
-3

) in Section 3.4  

                   generic symbol for standard deviation of random variable, estimated by (2.2.10); 

                     2  is variance 

 i                 standard deviation of measurement error in i-th measured value 

ix  

 x                standard deviation of error in estimate x̂ , specified ad hoc in the examples 

                      to Chapter 5; generally 

 xi                standard deviation of estimate error in measured variable xi , see Chapter 6 

 yj                standard deviation of estimate error in unmeasured observable variable yj , 

                      see Chapter 6 

 vi                standard deviation of adjustment vi ; see (6.2) 
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Appendix 

 

MORE  ON  THE  CLASSIFICATION  OF  VARIABLES 

 

See Section 4.3. As mentioned ibid. and in the paragraph following after that containing Formula 

(5.11), the classification results from a rearrangement of the Jacobi matrix (that of partial 

derivatives) obtained in the last step of the reconciliation; thus that evaluated at the final point 

(solution). In the linear case, this is simply the matrix of the linear system. 

 

The idea is due to F. Madron; see Madron (1992): 4.2, in particular Fig. 4.2. Rearranging the 

matrix as 

 

   C  =  (B, A)                 (A.1) 

 

where the columns of  B correspond to the unmeasured, those of A to measured variables, it is 

subject to Gauss-Jordan elimination. The operations (linear combinations of rows) are carried out 

with all columns of the matrix. For simplicity, let us assume (as is the case of a correctly written 

set of  balance equations) that the rows of matrix C are linearly independent. With a possible 

rearrangement of the columns of submatrix B and leaving the columns of A in their places, we 

then first eliminate certain rows of B; we obtain, schematically, a matrix of the form 

 

 

 

            Fig. A-1. 

 

If it happens that the horizontal band 2 is empty (absent), no reconciliation takes place. 

Precluding this case (of so-called null redundancy), we further carry out the elimination with the 

rows of band 2. We obtain, again schematically 

 

 

 

 

 

 

  1 

1 

1 

1 
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2 

unmeasured measured 
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       Fig. A-2 

 

as corresponds to the linear independence of the rows of C. Finally, we rearrange separately the 

rows of  horizontal band 1 and columns of vertical band 1, and then the columns of vertical band 

4 to have the (so-called) canonical format of matrix C 

 

 

        Fig. A-3. 

 

[Observe that certain submatrices may be empty.] In the horizontal band 1a we have succeeded, 

by the rearrangement, in separating the submatrix 1a 1a such that in the remaining vertical 

bands 1b and 2 we have zeros as drawn. Then the unmeasured variables corresponding (after the 

rearrangement) to columns 1a are classified as observable. The remaining unmeasured variables 

(columns 1b and 2) are classified as unobservable. Further, in the vertical bands 3 and 4a  we 

have columns corresponding to measured variables classified as redundant; having separated the 

  1 

1 

2 

1 

1 

1 

1 

1 

1 2 3 4 

  1 
1a 

2 

1 

1 

1 

1 

1 

1a 2 3 4a 4b 1b 

1b 

observable unobservable redundant nonredundant 
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zero columns of submatrix  2   4 , the remaining variables (columns 4b)  are  classified  as  

nonredundant  (just determined in  

Fig. 4-5). 

 

If the system is linear, we see directly (see horizontal band 2) that the redundant variables are 

subject to a subset of equations (constraints) constituting the conditions of solvability and used 

for the reconciliation. Then (see horizontal band 1a) the unmeasured variables in columns 1a  are 

uniquely determined by the (reconciled) measured ones. [It is sufficient to imagine the right-hand 

sides of the linear equations  By + Ax = c  subject as well to the elimination procedure.] In the 

nonlinear case, this represents in fact a classification based on the linearisation of the equations 

in a neighbourhood of the final point (solution). See then VE-MA: 10.4.5 (ii). [By the way, the 

idea of elimination can be (and is) applied in methods of solving the nonlinear reconciliation 

problem by successive approximations.] 

 

Note 

 

Concerning the classification of measured variables, recall the standard hypothesis that the 

covariance matrix (say) F of measurement errors is diagonal (uncorrelated errors). In the 

opposite case, the classification of a variable as nonredundant remains the same, as it is only 

given by the properties of matrix C (A.1), thus finally by the zero submatrix  2   4b  in Fig. A-3. 

It holds again true that the criterion  Qmin  thus (5.5)  generalised for the case of nondiagonal F is 

unaffected by the measured values of the nonredundant variables. Still, as shown in VE-MA: 

9.2(iii)  (p.312), the measured value of a nonredundant variable can be subject to an adjustment 

dependent just on the redundant measured values. Due to the correlation, the nonredundant 

variable then generally shares a portion of the adjustment with the redundant ones, though its 

own measured value does not affect the result. In Fig. 4-5, the expression 'just determined' is then 

somewhat misleading. Anyway, it holds true generally that a nonredundant variable must remain 

measured; otherwise (if unmeasured), it becomes unobservable thus not determined.. 

 

 

 


