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1 Introduction  

Information about industrial systems is gained via measuring physical variables (flow-
rates, temperatures, pressures and the like). In practice, the measurement itself is 
frequently subject to measurement errors, usually classified as random, systematic 
and  gross. These errors often unfavorably affect the results of the measurement, as 
well as other derived variables.  

The data validation then means increasing their quality, attained in particular by 
elimination of gross and compensation of systematic errors, and minimizing the 
influence of random errors. The most frequent approach consists in the idea that the 
data must obey the exactly valid mathematical models (physical laws). The typical 
representatives are balance models for mass and energy (the laws of their 
conservation) that hold true under very general conditions. 

A fundamental method applied to the validation of data is their reconciliation making 
them obey the physical laws. The common expression is just Data Reconciliation, 
briefly DR. 

The methodology of measured data reconciliation based on exactly valid models is 
not new. It was developed more than 200 years ago and used first in exact sciences, 
such as astronomy or geodesy. The first industrial applications began in the sixties of 
the 20-th century (crude oil processing) and have spread rapidly into further industrial 
domains (general chemicals, petrochemicals, minerals processing and power 
generation, including nuclear power plants). 

From the first applications, DR successively became a standard method in a 
number of areas that have direct influence on economy and process safety, such as 
for example: 

 efficiency monitoring of technological processes (specific consumption of energy, 
Key Performance Indicators,  etc.) 

 integration of industrial measurements into plant accounting   

 instrumentation maintenance  

 Advanced Process Control 

The aim of the handbook presented is to gather the most important methods to be 
applied to data validation in the chemical and power industries. In addition to mass 
and energy balances that form the substantial part of the mathematical models, 
briefly mentioned will also be momentum balances that can be applied to flow of 
fluids in pipeline systems, and phase equilibrium. 

The data validation is based on (and falls with) three necessary assumptions: 

 the existence of: an exactly valid mathematical model involving measured 
variables as variables, most frequently in the form of mass and energy balances 

 the measurement errors model, commonly in the form of uncertainties (maximum  
errors) in the measured values 

 data proper, which must be in a certain sense redundant (they can be mutually  
confronted as to their compatibility on the base of the mathematical model).  

The handbook has four parts. The first part is devoted to the problems of 
mathematical models and oriented towards models occurring in the chemical and 
power industries. The second part deals with statistical treatment of measured data, 
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which is always the base of the validation proper. The third, pragmatically oriented, 
contains examples of unit operations typical of the chemical and power industries and 
from which the models of more complex systems are composed. In the fourth part, 
there are then several more extensive case studies taken from practice.  

The theoretical part of the handbook presumes certain minimal knowledge about 
mathematical modeling and statistical treatment of measured data. So as to make it 
easier, it contains several supplements with the aim to help the reader in brushing up 
earlier acquired knowledge. However, the supplements are not intended for primary 
study. 

Even in simple cases, the data validation in practice is not applicable without 
computer technique. A number of simple examples will be solved using the balancing 
program RECON.  The reader will have the possibility to configure himself/herself the 
examples described in the handbook and try to solve them. The handbook is also 
supplemented by files with solved examples. 

The present document considers its goal to show the reader 

 how easy and rapid it is to create the balancing flowsheets based on exact 
physical models 

 what it is the data validation (giving more precision, protection of the data against 
gross errors)  

 how to compute the directly unmeasured variables 

 the possibilities of data reconciliation in monitoring industrial processes  

 employing data reconciliation in measurement systems maintenance 

 how to optimize the existing measurement system 

 how to automate the whole validation process and create thus storage of 
validated data ready for further application 

 how to create a system that, based on current measurements, enables one 
acquiring on-line information, which had earlier resulted from laborious and 
expensive process measurements and tests.  
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2 Mathematical models 

Mathematical models can be classified from different points of view. One of them is 
how truly the model describes the reality. We then distinguish approximate and exact 
models. In the latter case, we also speak of the laws of nature. If there is a 
contradiction between the exactly valid model and the measured data then it is 
necessary to examine the data or the conditions under which the exact models have 
been applied.  

The basis for the data validation is a confrontation of the data with exactly valid 
mathematical models. In most cases, these are the balances of mass, energy and 
possibly also other variables. In some situations, also models of phase equilibrium 
may be used. 

2.1 Basic notions 

The technological scheme is divided into units (called nodes) connected by streams 
of material and energy. Typical nodes are apparatuses or their parts. For the needs 
of balancing we frequently also introduce as nodes the connections or disjoins of 
pipes. 

Most models are composed of one-node balances illustrated in the following figure.  

Fig. 2.1-1: Streams incident with one node 

Material streams clearly need no explanation. Note only that generally, the streams 
are mixtures of several components (chemical individua), usually in one state of 
aggregation (most frequently gas or liquid). In the special case of power plants, 
typical representatives are for example feed water or steam. Prevailingly, the 
chemical individuum is then H2O in different states of aggregation (liquid, vapor or 
also both: a two-phase mixture). 

Energy streams represent net transport of energy without material carrying medium. 
Representatives are in particular 

 heat losses by radiation and heat conduction into the environment 

 heat flow in heat exchangers (between the tube and shell sides) 

Balanced  
node 

   . . . . . 

    . . . . . 

   
.   
. 
. 
 

   
.   
. 
. 
 

mass streams 

energy streams 
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 work on the shaft exerted in turbines 

 work supplied to pumps by motors 

 electric power 

While in mass balancing the flow-rates can be directly measured by flow-meters, 
such a case is rather an exception for energy flows. There is thus a difference 
between the flow of energy associated with a real mass stream and a net energy 
stream.  

We'll be further interested in the one-node balance. The combination of several 
nodes creating a balancing scheme will be dealt with in Section 2.9.  

2.2 Balance equations 

For any node, one can write the balance equations for mass, energy and further 
balanced variables. This equation reads generally 

 

sum of inputs + source = sum of outputs + consumption + accumulation         (2.2-1) 

 

The accumulation means the increase of the balanced variable in the node (it can 
also be negative) – let us consider for example the change in the variable of mass in 
a reservoir. 

The source or the increase of the balanced variable inside the system can be caused 
for example by the generation or vanishing of chemical components as a 
consequence of chemical reactions. Observe that according to this conception, we do 
not consider the loss of a balanced variable into the environment; the latter should be 
represented by a stream directed from the node into the environment.  

For the variables subject to the laws of their conservation (mainly mass and energy), 
the source and consumption equal zero. 

For the steady-state (stationary) processes, we assume zero (or negligible) 
accumulation. The balance equation for mass  or energy is then, for a stationary 
process, of the simple form 

 

sum of inputs = sum of outputs              (2.2-2) 

  

While in the mass balance the summation concerns the material streams only, the 
balance of energy includes the energies of all the streams. 

So long as we consider (at least on a rough time scale) the process at steady state, 
there is no accumulation of the balanced variables in the node. The balances can 
then be expressed in variables per unit time, i.e. in flowrates (e.g. kg/s for mass, J/s = 
W for energy). These flow-rates are then, in fact, mean values of instantaneous flow-
rates in the chosen interval (for instance 1 h). Under the assumption that no relevant 
fluctuations occur, also the parameters of the streams (such as temperatures and 
pressures) can be taken as averages.  
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2.3 Mass and chemical component balances 

The mass balance is clearly the most familiar type of balance. It is a special type of 
so-called single-component  balance ignoring the composition of the streams; we are 
then only interested in the total mass of the stream. If two or more chemical individua 
(components) in the stream are distinguished, they can be balanced separately and 
one then speaks of a multi-component balance. 

2.3.1 Mass balance 

The balance of mass for a given node in steady state is straightforward: 

 

   
in ,i

im   
out ,i

im               (2.3-1a) 

 

thus the sum of input flow-rates (i, in) equals that of the output ones (i, out); mi  is the 
value of the flow-rate in stream i, or 

   
i

iim   =  0         (2.3-1b) 

 

where i  = +1 for inputs, i  = – 1 for outputs, summation over all streams i  incident 

to the node. 

2.3.2 Component balance  

Let us first consider the case where individual components are conserved in the 
balancing node (in practice, there are no chemical reactions among components). If 
there are K chemical components in the system then for each of the nodes we have, 
in the steady state, K balance equations 

 


i

ikim    0        ,  k = 1,2,…,K       (2.3-2) 

 

where mik is the mass flow-rate of the k-th component (chemical species) in the i-th 
stream incident to the node. 

In practice, the material flow-rates mik are usually expressed in terms of total flow-
rate mi  and mass fraction xik of the k-th species in the i-th stream 

 

mik  = mi xik .          (2.3-3) 

 

The equation (2.3-2) is written for every component, which is incident with the node 
(the component is present at least in one stream connected with the node).  
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If all species present in the mixture are being balanced then the mass fractions in 
each of the streams must obey the so-called normalization equation 

 


k

ik
x   =  1   .  i = 1, 2, …,I       (2.3-4) 

 

It is worth mentioning the problem of so-called splitters. A simple splitter is a node 
with one input stream and two or more output streams of the same composition 
(which, of course, is the same as the composition of the input stream) – imagine a 
pipe branched into two or more pipelines. Around any simple splitter only one 
balance equation is written (mass balance). The component balances are dependent 
on the mass balance equation, as the reader can easily verify. A general splitter can 
have more input streams of different composition and the same holds for output 
streams except the condition that at least two output streams are of the same 
composition. It can be shown that any general splitter can be transformed to a 
system of one standard node and one or more simple splitters. 

This complication is solved in RECON by so-called dependent and master streams. 
The composition of a dependent stream is the same as that of the master stream (in 
essence, there is no concentration of a dependent stream in computer memory, only 
a pointer to the concentration of the master stream). This is very easy way how to tell 
RECON about this quite complicated situation. Of course, there is one limitation: The 
master stream cannot depend on any other stream.  

2.3.3 Component balance with chemical reactions 

In the case where chemical reactions are present, the conservation of individual 
species does no longer hold. The multi-component balance of a node at steady state 
then reads   

 

sum of inputs + source = sum of outputs + consumption   (2.3-5) 

 

Admitting the convention that the consumption is virtually a negative source, Eq. (2.3-
5) is further simplified 

 

sum of inputs + source = sum of outputs.      (2.3-6) 

 

Let us now assume that there are R chemical reactions running in the balancing 
node (reactor). The stoichiometry of the reactions can be expressed in form of the 
matrix of stoichiometric coefficients B whose elements Brk  represent the 
stoichiometric coefficients of the k-th species in the r-th equation (by convention, the 
initial reaction species have positive, the products negative stoichiometric 
coefficients).  
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
k

Brk Sk = 0  ,  r = 1,…,R       (2.3-7) 

 

where Sk is the k-th species. 

The values of the stoichiometric coefficients depend on the units used in the 
balancing. In chemistry, the balancing of chemical species is traditionally in molar 
units, such as kilomoles (kmol). In technological practice, more common is the 
balancing of mass variables, for example kilograms. In this case, the stoichiometric 
coefficients are given as products of the species (molar) coefficient and mole mass of  
the respective species (kg/kmol).  

 

Example 2.3-1: Chlorination of methane 

In a reactor, the chlorination of methane is described by the following stoichiometric 
equations: 

 

CH4 + Cl2  =  CH3Cl + HCl        (2.3-8) 

CH3Cl + Cl2  =  CH2Cl2 + HCl 

 

There are 5 species in the system: CH4(1), Cl2(2), CH3Cl(3), CH2Cl2(4) and HCl(5).  The set 
of stoichiometric equations (2.3-8) then can be expressed by the matrix of stoichiometric 
coefficients 

 

No. of species  1 2 3 4 5 No. of reaction 

                           
                  1 1 -1 0 -1        1 

B = 
             0 1 1 -1 -1        2   

 

In terms of mass the matrix of stoichiometric coefficients reads (rounded-off )  

 

 16.0 70.9 -50.5 0 -36.5     1 
B = 

 0 70.9 50.5 -84.9 -36.5     2   
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The source of the k-th species in Eq. (2.3-6) can then be expressed by the relation 

 

zk =   - 
r

Brk wr ,    k = 1, 2, …, K      (2.3-9) 

 

where  wr is the so-called  extent of the r-th chemical reaction giving how many times 
the reaction has run in the reactor in the given time interval (possibly unit of time).  

The K balances thus read 

 

 


I

i

ikim
1

 – 


R

r

rrk wB
1

 =  0   ,  k = 1, ... , K:           (2.3-10) 

 

where I  is the number of the incident streams. 

 

Example 2.3-2: Chlorination of methane – Example 2.3-1 continued                                                    

E.g. for CH4 (species No. 1) and CH3Cl  (species No. 3)  the equations (2.3-9) in molar units 
are of the form 

 

z1 =  -  x1           (2.3-11) 

z3 =  x1 – x2   ,        (2.3-12) 

 

because CH4 is  present only in the first equation  with coefficient 1 and CH3Cl  is in the first 
equation with coefficient 1 and in the second equation with coefficient  – 1. So if the first 
equation runs once (with extent 1) then 1 unit of methane (e.g. kilomole) is consumed, while 
if both reactions run with extent one then the variable of CH3Cl remains unchanged (the 

generation by the first reaction equals the consumption in the second one)  

Note: Component balance of reacting systems can be generally described by a system of 
independent chemical reactions, as was described above. Anyway, in practice we can meet 
sometimes tasks with complex stoichiometry where it is not a priori known reaction 
mechanism. This situation is typical for complex syntheses in organic chemistry or for 
bioengineering problems. In other cases we can deal with components which are mixtures of 
many species (let’s imagine a heavy crude oil fraction or a coal where we know some 
empirical composition only). This can be a frequent case of burning fuels in furnaces. 

There exists the alternative approach to balancing of reacting systems – so-called reaction 
invariant balancing. This way of balancing is based on conservation of chemical elements 
or some parts of molecules which are not changed by chemical reactions. Reaction invariant 

balancing is described in Appendix 7.   
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2.3.4 Dynamic mass and component balances 

Up to now we have supposed that a balanced process is continuous and it is at so-
called steady state. This term means that from the start up or from the last 
disturbance all parameters of the process have settled down and are constant. This 
is a hypothetical state which has a clear meaning for example in the area of design of 
continuous processes, or we can speak for example also about a process simulation 
at steady state. 

In practice we never meet processes at steady state. For such cases there is a more 
elaborated approach based on theory of so called stationary processes. Stationary 
processes are generalizations of random variables in time. A process is stationary (in 
the weak sense) if values of all variables fluctuate in time around some mean value 
and the variance (dispersion) around the mean value is constant in time. For details 
see Appendix XX This model is usually a good approximation for modern continuous 
plants. 

There are also other important cases of industrial unsteady processes. A typical 
opposite of continuous processes are batch or semi-batch operations, typical of 
biotechnology, fine chemicals or pharmacy. In a classical batch chemical reactor 
there are no continuous streams connected with it, only a holdup in the reactor where 
some chemical transformations take place. An example of a semi-batch process can 
be an aerobic fermentation batch process where air and other nutrients for 
microorganisms are continuously fed to a fermenter. 

Another frequent unsteady operation concerns movement of mass between 
reservoirs (tanks) with variable holdup. Such processes can range from a small buffer 
tank between 2 processing units to large tank farms for crude oil, intermediates and 
products in a refinery.  

The balance of a general unsteady state process is described by Eq. (2.2-1). The 
accumulation term can be defined as 

 

accumulation  =  closing inventory  -  opening inventory   (2.3-12a) 

or  

a  =    -            (2.3-12b) 

 

where a stands for accumulation 

     opening inventory 

     closing inventory. 

This replacement of the classical accumulation by 2 new terms is not only a formal 
one. Both inventories are better for describing dynamic balances as they can be 
directly measured and their values can be used in models better than the 
accumulation as will be shown later. 

The steady state balance equations (2.3-1) and (2.3-10) can now be generalized for 
unsteady processes. Before this will be done let’s discuss one important difference 
between steady state and unsteady state balancing. 

For steady state balancing  the inputs and outputs of a node are usually regarded as 
rates (e.g. kg/s). For the unsteady state (dynamic) balancing is typical that it can be 
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defined rigorously only for a specified time interval, say from time t1 to time t2. This 

defines the length of the time interval    =  t2  -  t1 . Equations (2.3-1) and (2.3-2) can 
be now re-written as 

 

 
i

t

t
ii

m

2

1

 dt  +    -     =  0         (2.3-13) 

and 

 


I

i

t

t
iki

m
1

2

1

 dt – 


R

r

rrk wB
1

  +  k  -  k   =  0   ,  k = 1, ... , K:         (2.3-14) 

 

where  k  and  k  stands for opening and closing inventories of component k. 

For the original flow rates were substituted integrals of variable flow rates over the 
balancing interval. These integrals can be also expressed in the following form: 

 

  

2

1

d

t

t

i
i

mtm           (2.3-15) 

and 

 

2

1

d

t

t

ik
ik

mtm          (2.3-16) 

 where im  and ikm  are the mean integral values of flow rates over the balancing 

time interval . The introduction of these mean integral values is important when 
dealing with balances based on real plant data. These mean values can be gathered 
from plant information systems (process historians) by standard queries (this does 
not hold for integrals of flow rates).  

It is worth mentioning the problem of determining the opening and closing 
inventories. In the systems chemical engineering we distinguish between systems 
with lumped and distributed parameters.  

A node with lumped parameters has constant values of all state variables in its 
volume. For example, a prototype of a node with lumped parameters is well known 
CSTR (Continuous Stirred Tank Reactor). This model can be accepted for situations 
where state variables are relatively homogenous in the node. Such assumption is 
typical of balancing of tank farms. 

However, there are many situations where this model is not acceptable. The antonym 
to CSTR is a tubular reactor, a typical unit operation with distributed parameters. 
Further, let’s imagine a distillation column with significant concentration profile inside, 
or a pipeline transporting from time to time different liquid products or a gas of 
different density. Such systems can be sometimes “lumped”, which means separation 
of a system with distributed parameters into more subsystems with acceptably almost 
constant values of state variables. 
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From this discussion is clear that the opening and closing inventories of mass or 
even individual components can be relatively easily gathered for nodes with lumped 
parameters, which does not hold for nodes with distributed parameters. 

Now we can go back to models (2.3-13) and (2.3-14). If we are able to gather 
information about integral flows and inventories, the problem of balancing does not 
differ significantly from balancing of processes at steady state. The only difference is 
in inventories, which can be understood as fictitious streams: The opening inventory 
is the fictitious input stream and the closing inventory is the output stream. The 
equations (2.3-13) and (2.3-14) describe all possible variants we can meet in practice 
– steady state, unsteady state, batch and semi-batch processes. In practical terms, if 
you have software for steady state balancing, you can use it also for balancing at 
unsteady states. This holds for one balancing time interval. 

Let’s now focus on the more general case of repeated balancing in time. Let’s 
imagine an industrial balancing system connected to a process data historian or a 
research batch reactor with samples withdrawn during the experiment. There are also 
balancing (Yield Accounting) systems in refineries setting up daily balances for many 
years without interruption. Such applications deserve a systematic treatment.  

There is a schedule of balancing time intervals in the next Figure. 

 

Fig. 2.3-1: Time intervals of balancing 

 

The length of the n-th time interval is defined as  

 

n  = tn - tn-1          (2.3-17) 

 

The individual time intervals can be of constant or of variable length. The constant 
length is typical for automatic balancing systems connected to Distributed Control 
Systems. A variable length of a time interval can be met with in area of laboratory or 
pilot plant research. Also in the Yield Accounting area, balances can be set up daily 
excluding weekend days where several days can be balanced together. If the proper 
balance is set up for all time intervals, it is then possible to aggregate balances to 
longer time intervals (from hours to days, to weeks, etc.). It can be shown that if the 
individual time intervals are balanced (inputs equal outputs), also aggregated time 
intervals are balanced.  

There are 2 basic rules for repeated balances: 

1. The closing inventory of the previous time interval is the opening inventory for the 
next time interval  

2. The balance of the  n+1-th  time interval must not influence results of the balance 
of the n-th time interval. 

 1  2  3  4

t0 t1 t2 t3 t4 
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The rule 1 represents the continuity of the balancing process. The rule 2 guarantees 
the consistency of the whole balancing process: If every time interval is balanced (in 
the sense that inputs equal outputs), also the overall balance from t0 to tn is balanced. 

It is usually supposed that dynamic balancing (balancing of a system at unsteady 
state) is much more difficult than balancing at steady state. However, this assertion 
does not hold generally. Let’s conclude this subsection by several comments: 

 the most important attribute of a balanced system is the presence of inventories 
(holdups). If there are no significant inventories (and no possible accumulation), 
the only difference between steady state and dynamic balancing lies in using 
mean values instead of constant flow rates. This holds also for balancing 
repeated in time 

 if an unsteady state balance is set up only once, it can be treated very similarly as 
a steady state balance. The only change is in introduction of fictitious streams 
representing the opening and closing inventories 

 the only significant difference between steady state and unsteady state balancing 
is in the case of balancing with significant inventories repeated in time.  

There are 2 extensive examples in Chapter 6 dealing with dynamic balancing, which 
will explain more about this interesting and important topic. 

2.4 Balance of energy 

Before all, let us recall that we are distinguishing material streams and streams of 
energy. The energy associated with material streams consists of several items. 
Frequently, we can cope with the following kinds of energy in a material stream. 

 

E  =  U  +  PV  +  Ekin  +  Epot       (2.4-1) 

 

where U  is  internal energy 

 PV  'pressure energy' (say; more precisely interpreted by thermodynamics) 

 Ekin  kinetic energy 

 Epot  potential energy (in gravitational field). 

The sum of the internal and pressure energies is another thermodynamic state 
variable: enthalpy denoted further as H 

 

H  = U  +  PV ,         (2.4-2) 

 

which usually replaces the first two terms of the right-hand side in Eq. (2.4-1). 

In material streams, it is convenient to introduce specific values of energy related to 
the unit of mass of the stream. Thus for example the overall enthalpy of the stream i 
can be expressed as 
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Hi  =  mihi          (2.4-3) 

 

where hi  is the specific enthalpy per unit mass, mi  the flowrate. 

 

In the same manner, the kinetic energy can be written as 

 

 Ekin  = m 
2
1  v2         (2.4-4)

          

Further kinds of energy (for instance the surface energy having some importance for 
tiny droplets of water present in wet steam) will further be regarded as negligible. The 
importance of individual items in the balance has to be judged according to the case, 
taking into account the given conditions (pressure, temperature, velocity of the 
stream and the size of the system). 

Note: In the literature dealing with engineering thermodynamics is given that kinetic energy 
can be neglected for velocities up to 40 m/s. For this velocity the kinetic energy per unit mass 
equals 800 J/kg, which represents for example ca. 0.035 % of the evaporation heat of water 
at normal pressure.  Anyway, it is quite easy to introduce kinetic energy into the balance  in 
the RECON program. The user inputs only the equivalent diameter of the cross section 

through which water or steam flows.   

Besides material streams, the balance takes also into account  the net energy 
streams mentioned above. Heat flows are currently denoted by the letter Q, 
mechanical work (power) by W . 

The balance of energy for a given node in stationary state then generally reads: 

 
in,i

iE  +  
in ,j

jQ   + 
in ,k

kW     =   
out ,i

iE  +  
out ,j

jQ    +  
out ,k

kW    (2.4-5) 

 

Example 2.4-1: Energy balance of a turbine segment 

Let us consider a turbine segment depicted in the following figure. 
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Fig. 2.4-1: Turbine segment 

Steam  enters as stream No.1, exerts work (stream W) and further advances (stream No.2) 
into the next segment, having been partially withdrawn as stream No.3.  The mass balance 
at steady state reads 

m1  =  m2  +  m3        (2.4-6) 

where mi are flowrates. 

So long as we, for example, neglect kinetic and potential energy and heat losses into the 
environment, the energy balance is of the form 

 

m1h1  =  m2h2  +  m3h3  +  W       (2.4-7) 

 

where hi  are specific enthalpies of the streams  

W is power transferred to the turbine shaft  

Setting-up the balance models 'manually' is considerably laborious and the user is 
then likely to commit a series of errors. For the application in practice, balancing 
programs have been formed that make this activity easier. One of them is RECON, 
which makes possible setting-up balancing models of quite complex systems 
relatively easily in the graphical editor. 

2.5 Momentum balance 

In physics, the momentum is defined as product of mass and its velocity vector. In 
problems of fluid flow in a pipeline, the momentum balance means the mathematical 
model of how the kinetic, potential and pressure energies are interrelated and how 
they are dissipated due to friction. A brief description of this general model can be 
found in Appendix 5, possibly also in specialized monographs. 

m1 

m3 

m2 

W 
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The overall rigorous model of flow in pipelines generally consists of three 
conservation laws: 

 conservation of mass called the continuity equation 

 conservation of energy 

 conservation of momentum. 

In practice, the case of interest for us is conveying the fluid through a pipeline of 
constant cross-section between two points characterized by pressure and height. In 
practice we meet two characteristic cases of transport of fluids – transport of liquids 
(water, crude oil, etc.) and transport of gases (air, natural gas, etc.). Even if the 
general differential model of the flow is the same for both cases, the integral models 
may differ in simplifications, which are used. Liquids are usually supposed to be 
incompressible, which does not hold for gases. The influence of temperature is 
usually simplified by averaging of temperatures along a pipeline (imagine complexity 
of a temperature profile in a pipeline depending on energy dissipated by friction, gas 
expansion and heat fluxes caused by temperature differences between a fluid in a 
pipeline and the environment). In the following we will concentrate on isothermal flow 
in pipeline systems, often acceptable in transportation of water, oil and natural gas. 

2.5.1 Flow of liquids 

Let’s imagine the following system for transporting an incompressible liquid. There 
are two reservoirs (tanks) of different geodetic level h1 and h2, which are connected 
by a pipeline equipped with a pump. We will further suppose that: 

 the system is at steady state 

 the temperature of a liquid (and also its density) is constant throughout the 
pipeline 

 cross-section of the pipeline is constant. 

Under such circumstances also the velocities of liquid at the inlet and outlet are the 
same. 

v

p1

p2

balancing envelope

h1

h2mechanical
work

 

 

Fig. 2.5-1: A pipeline system 

The engineering model of such system is described by so-called Bernoulli equation 
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      (2.5-1) 
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which represents the balance of a mechanical energy of a unit mass of a liquid. Here 

ghi stands for the potential energy 



pi  pressure energy ( represents density) 

2

2

v i  kinetic energy 

ghw  work exerted on a unit mass of a liquid in a pump. Here hw represents a work 
head – a notion popular in hydraulic calculations 

ghloss  mechanical energy dissipated due to a friction in flowing liquid, expressed with 
the aid of so-called loss head hloss. 

In other words, in our simple system a work exerted in a pump is transformed into 
higher potential energy of a liquid in the upper reservoir and partially dissipates as a 
heat to the environment. If the reservoirs are opened to the atmosphere, there is 
almost no change in pressure energy. 

Model (2.5-1) can be modified to the more frequent form  

 

hhg
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      (2.5-2) 

  

which has dimension of length, saying that the sum of elevation, pressure and 
velocity heads at the inlet equals their sum at the outlet minus the work head plus the 
loss head. 

Any detailed calculation of such system requires definition of  

 parameters of 2 nodes located at the input and output of a pipeline (pressures 
and elevations) 

 operational characteristic of a pump (typical operational characteristic of a pump 
is a dependence of a work head on flow through a pump, usually provided by 
pump vendors). 

 model of a loss head (friction) in a pipeline. 

 

Modeling of a pressure drop due to friction belongs to very well developed part of 
engineering science. The most frequently used solution is based on the Darcy – 
Weisbach equation: 

 

g
v

D
L

fhloss 2

2

          (2.5-3) 
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where 

f means so-called friction factor 
L length of a pipeline 
D internal diameter of a pipeline 

The friction factor is a function of two variables: 

Reynolds number Re = vD/ where  is a dynamic viscosity 

and 

so-called relative sand-grain roughness factor e/D (where e is the pipe roughness). 
Values of e are tabulated for different pipeline materials (see Table 2.5-1) or can be 
identified from experimental data.  

 

Table 2.5-1: Pipe roughnesses [8] 

Material e [mm] 

Riveted steel 0.9 – 9.0 

Concrete 0.3 – 3.0 

Cast iron 0.26 

Galvanized iron 0.15 

Asphalted cast iron 0.12 

Commercial or welded steel 0.045 

PVC, drawn tubing, glass 0.0015 

 

The calculation of a friction factor depends on the type of flow characterized by a 
value of the Reynolds number. For laminar flow (up to Re = 2300)  

 

f   =  64/Re          (2.5-4) 

 

For turbulent flow (Re > 4000) is recommended so-called Colebrook – White 
equation which is implicit in f. 

 









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

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log
f

9.35
21.14

1
10

       (2.5-5) 

 

In the interval of  2300 < Re < 4000  is an unstable region where the turbulence is not 
fully developed (the flow can be laminar or turbulent). From numerical point of view in 
this interval models (2.5-4) and (2.5-5) can be joined together to form some smooth 
transitional curve. In practice the flow is usually fully turbulent and the model (2.5-5) 
is used.  
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Until now we have solved a problem of flow in a simple pipe of a constant diameter. 
In practice we meet complex systems composed of pipes of changing cross sections 
equipped with valves, elbows and other appurtenances. Such items cause disruption 
of the flow manifested by additional pressure losses. We speak about so-called local 
losses. 

Sometimes local losses can be neglected, especially in the case of long pipelines, 
but generally they should be included in the model. Usually a pressure loss is related 
to the square of the flow velocity and the function must be found empirically. There 
exist two approaches to solving this problem. 

Local losses hL can be computed from the equation 

 

g
v

Kh LL 2

2

          (2.5-6) 

 

where KL is the loss coefficient. Values of KL can be found in specialized literature, 
for example in [8]. Some KL values are presented in Table 2.5-2. Local loss can be 
caused also by an abrupt contraction or enlargement of the pipeline. Special cases of 
these situations are a pipe entrance to a reservoir and outflow from a reservoir. See 
literature [8] for details. 

Table 2.5-2: Some loss coefficients 

Fitting KL 

Globe valve, fully open 10 

Short radius (standard)elbow, 90 o 0.9 

Elbow, 120 o 0.55 

Elbow, 150 o 0.2 

Bend 90 o  r=3D 0.14 

Pipe entrance, square edged 0.5 

Pipe outflow 1 

 

Local loss can be also solved by the equivalent length concept. Here it is supposed 
that a fitting causes the same pressure drop as a certain length of a straight pipe Le.  

 

g
v

D
Lfh

e
L 2

2

           (2.5-7) 

 

These equivalent lengths of fittings are also tabulated, usually as multiples of a pipe 
diameter. Even if this solution is very comfortable (user needs just to add equivalent 
lengths of all fittings to a length of a pipeline), this solution has one drawback. While 
KL is supposed to be relatively constant for a given fitting type, the equivalent length 
depends on a pipe diameter. So, if we prefer this approach, it is better to calculate 
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the equivalent length from the following equation, which results from comparison of 
Equations (2.5-6) and (2.5-7): 

 

f

DK
L

L
e
           (2.5-8) 

 

To summarize the problem of local losses: In Equation (2.5-2) the loss head hloss 
represents a loss head of the straight pipeline plus all local losses. 

A model of momentum balance of a pipeline flow (2.5-1) consists of one equation 
between pressures p1 and p2 and the velocity v.  If these variables are all measured, 
this is just sufficient for the identification of the roughness e. After that it is possible to 
use this roughness as a constant of the model. The question is, whether the 
roughness can be considered constant (consider corrosion, fouling of the pipeline 
etc.). In the latter case the model of momentum conservation has no longer absolute 
validity, but it can be used for the detection of changes that occur in the course of 
time in any system. The justification of applying the momentum equation to the data 
validation can be disputable and requires always a detailed analysis. 

In the Equation (2.5-1) is also the work head hw. representing the work exerted by a 
pump (in a similar way could be treated a turbine exhausting energy from this 
system). The behavior of a pump is described by its characteristics, which is an 

equation between a pumped volume and a pressure difference p or a pressure 
head hw. Such characteristics are provided by pump vendors, usually as a graph, 
which can be transformed to a polynomial function: 

 

p  =  a  +  bQ  +  cQ2  +  …..      (2.5-9) 

 

hw  =  a’  +  b’Q  +  c’Q2  +  …..      (2.5-10) 

 

where Q is a flow-rate, 

a, b, and c  are empirical parameters. 

2.5.2 Flow of gases 

In the previous subsection we have solved a problem of isothermal flow of liquids. 
Under such assumption the physical properties (density and viscosity) are supposed 
to be constant, which significantly simplifies the solution (the integration of model 
equation along a pipeline). In the next we will concentrate on a gas flow in pipelines 
where significant changes of density, viscosity and velocity along a pipeline can be 
observed due to gas expansion as a result of a pressure drop. Practical solution 
(integration of model equation along a pipeline) requires acceptance of several 
simplifying assumptions. Numerous flow equations among basic variables (input and 
output pressure and the flow) were developed, based on different simplifying 
assumptions. Reader can consult for example monograph [9]. Further on we will limit 
to isothermal flow as in the previous case of liquid systems.  
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Important is that all model equations (for example (2.5-2)) hold for very short 
(infinitesimal) length of a pipe, where all physical properties of gas are supposed to 
be constant. In practice, models for incompressible liquids can be applied also to 
gases if the overall pressure drop is less than several per cents of the input pressure. 
Physical properties of gas are then calculated for the average pressure.  

In the monograph [10] is developed a model based on the integration of the flow 
equation based on several simplifying assumptions. It was shown there that the best 
approximation of the pressure in a pipeline is so-called integral median value of 
pressure pmean defined by the following equation 
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       (2.5-11) 

 

 

where 

pin and pout are input and output pressures of a pipeline. 

For long pipelines special attention should be paid also to problems of pipeline 
curvature and to special effects caused by pipeline elevation. Details can be found in 
[9].  

All these problem of variable physical properties along a pipeline can be avoided 
relatively easily. A pipeline can be separated into several parts with acceptable 
values of pressure drops. Of course, in this solution pressures inside the pipeline are 
unknown and must be calculated from the model. In this way the calculation is 
approaching to specialized advanced programs which numerically integrate 
differential model equations along a pipeline. 

It should be noted here that the other parts of solution like the Colebrook – White 
equation (2.5-5), or the solution of local losses presented in the previous subsection, 
are valid also for gas pipelines. 

To close this subsection it should be noted, that monographs about gas pipeline 
hydraulics are targeted at design of new systems or to revamps of existing systems. 
Here the absolute accuracy of results is crucial. In the case of monitoring existing 
systems the situation is a little bit different. In the beginning the pipe roughness is 
usually identified from measured data under standard (nominal) conditions, which 
“absorbs” also minor model inadequacies. After a model is tuned in this way it can be 
used with confidence in some reasonable neighborhood of these standard 
conditions. 

2.5.3 Flow of fluids in complex systems with loops 

In practice we meet frequently complex pipeline systems where pipelines are 
connected in junctions called nodes. Such networks can be classified as branched 
and looped 
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a) b)  

Fig. 2.5-2: Branched (a) and looped (b) network 

Here the circles represent nodes and the arrows represent pipelines. Let’s note that 
the simplest looped network are two parallel pipes connected at their ends. 

The flow in such networks is driven by difference of pressures and elevations 
between the couples of nodes belonging to the individual pipelines. Let’s suppose 
that we already have models of flow for all pipelines (systems of equation among 
pressures, flow and other variables) which we cal flow equations. 

The system of flow equations now should be augmented by two sets of so-called 
Kirchoff’s equations (developed originally for electric circuits), see also monograph 
[8]: 

1. The 1st Kirchhoff’s law which is nothing more than the mass balance around the 
individual nodes (the continuity equation) 

2. The 2nd Kirchhoff’s law saying that the algebraic sum of pressure drops in every 
loop is zero. 

For details see the specialized literature [8]. 

2.6 Phase equilibria 

Another type of exactly valid models that can be used in the data validation is that of 
phase equilibria. In practice, it is in particular the equilibrium between liquid water and 
steam at the saturation curve. This equilibrium can be expressed as the function 
representing the dependency of equilibrium vapor pressure P* on temperature. 

 

P*   =  P (T )                (2.6-1) 

 

There are a number of situations where the equilibrium can be assumed with a good 
approximation, such as 

 production of steam in a steam generator 

 transport of wet steam in pipeline 

 release of overheated liquid to lower pressure (expanders) 

 steam saturators. 

In such cases, if pressure and temperature are measured simultaneously in one 
place then these measurements can be reconciled on the basis of the phase 
equilibrium. 
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2.7 User defined variables and equations 

When working with the RECON program, in most cases we can cope with the 
problem definition in the graphical medium. Besides the graphically featured nodes 
and streams, one can here also define further variables: 

 temperatures 

 pressures 

 wetnesses 

 pipeline rougnesses 

All these variables can occur as measured (given), unmeasured  (with the possibility 
of being computed from the model) or fixed (constants). 

For all these variables, RECON also automatically creates the set of equations of the 
mathematical model. In practice however, there arises the need to enrich these 
possibilities by user defined variables and equations.  

The (in RECON called:)  auxiliary variables are most frequently for example 

 specific consumptions 

 process efficiencies 

 phase equilibria 

 measured variables compensated for state conditions 

 dividing ratios of the streams 

 parameters of more complex mathematical models. 

Having in view their heterogeneity, it would not be productive to define these 
variables in the standard manner, i.e. as further groups of variables. So there exists 
here a general group of variables, which can again be of arbitrary types (measured, 
unmeasured or fixed). Substantial for these variables is the fact that they are not 
present in the automatically generated equations.  They can thus play a role in user 
defined equations only. 

The user defined equations give thus the user a chance to  accommodate  the model 
according to his needs.  

In creating the user defined equations there must always be guaranteed that the new 
equations introduced by the user are 'sound' and will not adversely affect the 
solution. Indeed, each equation in DR forms a bond between the variables and if the 
equation is 'bad', it can unfavorably influence the quality of the results. 

The motivation to introducing user defined equations can be different. Justified are 
the cases where the graphical editor in a special situation  does not allow us to create 
the model, even if exactly valid.  An example is the model of phase equilibrium dealt 
with in the preceding section; the latter can only be created in the editor of user 
defined equations. 

A further justified case is introducing the equations that define auxiliary unmeasured 
variables . For example if we have  several steam generators in the system, it is 
useful to create a new variable that is sum of thermal performances of all the steam 
generators: And in order to define this variable, just one equation is needed. From 
the standpoint of the degree of redundancy (see Section 3.3), nothing has changed 
because with one new unknown, one new equation was added.   
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Further examples need not be, however, so clear. Generally, it can be recommended 
to avoid the presence of unobservable variables (see Section 3.2).  This requirement 
can be solved just by completing the model by user defined equations. Of course 
these equations can be of different quality, from the quite justified ones to those 
which can be ranged into  the category of the author's 'pious desires'. If, on creating a 
new equation the value of Qmin (see Section 3.6) has not changed, the new equation 
has only contributed to enhancing the observability. If, however, the value of  Qmin  
has increased then  the new equation has already entered the process of 
reconciliation and must be scrutinized in detail as to its justification.    

While, in creating the model  in the graphical editor, RECON  takes care of whether 
no dependent equations arise, it can happen that the user still creates an equation 
dependent on the already existing ones. The consequences are not fatal – the 
program simply discards this equation. The user is informed about it in the summary 
of  results: the whole number of equations differs from that of the independent ones.. 
To be safe, it is recommended to repeat the computation after introducing each new 
user defined equation and examine possible consequences. 

Note: When creating user defined equations in the RECON program, the following fact is to be taken 
into consideration. The values of the state variables (flowrates, temperatures, pressures etc.) present 
in the equation are inserted by RECON in units of the SI system. Let us for example consider an 
auxiliary variable defined by the user's equation as the sum of powers of several (net) energy streams. 
The result for this variable will be in the system SI, i.e. in W, even if individual powers for the 
respective streams are, in the user's system, e.g. in MW (and as such also further presented for him). 
If we require to have also this new power in MW, the necessary re-calculation must be prescribed 

already with the user defined equation  

2.8 Stream properties 

For the models in  the power industry, of basic importance is to know the enthalpy of 
the streams, which plays the main role in the energy balances. Because one deals 
here with a variable that cannot be directly measured in practice, one can speak of its 
modeling, which represents a relevant part of engineering thermodynamics. We must 
rely upon the results of works performed by generations before us.  

We must naturally also rely upon the program RECON where these models are 
intrinsically programmed. RECON contains, in essence, three models for computing 
the enthalpy. 

1. the well-known database for water and steam properties IAPWS IF-97, which 
nowadays represents the worldwide standard 

2. Berghoff's model for computing the enthalpies of crude oil and its fractions 

3. general polynomial model for enthalpy 

The last two models must be configured by the user (inserting the proper values of 
the parameters). 

For the calculations in power industry, the first variant is essential. In computing the 
enthalpies, RECON makes use of altogether 5 functions. Besides the thermodynamic 
state variables T (temperature) and P (pressure) there also occurs (in systems where 
water and steam are in equilibrium) the so-called wetness X, i.e. the mass fraction 
(%) of liquid water  in the mixture with steam. The value X = 0 means dry steam and 
X = 100 means liquid water. 
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1. H2O(P,X) – enthalpy of equilibrium steam-water mixture at pressure P and 
wetness X  

2. H2O(T,P) – enthalpy of water or steam defined by temperature and pressure. The 
program itself finds, if one deals with liquid or steam  

3. H2O(T,X) – enthalpy of equilibrium steam-water mixture at temperature T and 
wetness X 

4. H2OL(T,P) – enthalpy of liquid water defined by temperature and pressure. If 
temperature and pressure don't correspond to the liquid phase, the nearest 
values of the variables corresponding to liquid phase are chosen 

5. H2OV(T,P) – enthalpy of water vapor defined by temperature and pressure. If 
temperature and pressure don't correspond to the vapor phase, the nearest 
values of the variables corresponding to vapor phase are chosen. 

The last two variants are chosen when we are sure that one deals with the given 
phase and the state is defined by temperature and pressure. It can, indeed, happen 
that due to temperature or pressure measurement errors, possibly during the 
computation, this computation 'slides' into a state to which corresponds the wrong 
phase.  This would then cause a great jump change in the enthalpy and the 
computation proper would meet with serious problems. In such cases, the functions 
No. 4 and 5 replace the function No. 2. 

Concluding this section, let us in addition mention one anomaly in the system water-
steam. In Fig. 2.6-1, we have the so-called p-i diagram for this system, which is the 
dependence of water vapor pressure on its enthalpy. 

 

Fig. 2.6-1: p-i diagram 

The details about this diagram can be found in textbooks on engineering 
thermodynamics, (a similar diagram could also be set up for temperature). Here, also 
drawn are curves of constant temperature T and steam wetness X (X = 0 means dry 
steam, X = 100 means water at boiling point).  

In the diagram, two relevant points are marked. K represents the well-known critical point. M represents the state 

where the vapor phase at equilibrium has, as dependent on pressure (or also temperature) the maximum specific 

enthalpy. This point is characterized by the pressure ca. 3.0 MPa, resp. temperature 234
o
C. The consequence is 

that in the neighborhood of this point, the enthalpy of saturated vapor is not a unique function of  pressure  and 

the dependency of enthalpy on the state variables is quite flat (as the reader can easily verify in tables of steam 

properties). This fact is important in the balance calculations, as will be shown later. 
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2.9 Model of an industrial system 

So far, we have only dealt with balancing  models of one node, contingently with 
hydraulic calculations of one stream. The model of a production system is formed by 
nodes interconnected by streams. A simple example is the balance system of a 
steam generator created in the graphical editor of the RECON program. 

 

Fig. 2.9-1: Balance scheme of a steam generator 

The balance scheme of steam generator in a nuclear power plant consists of two 
nodes. Node SG-W represents the tube space of the generator, where hot water 
(HW) flows. The other node is the steam space SG-S where steam (STEAM) is 
generated from the feed water (FW). Further stream leaving the system is  BD (Blow 
Down). Both nodes (isolated as for the mass flow) are connected by (net) energy 
stream Q-SG representing heat flow from hot water into the steam space. 

As we'll see in the chapter dealing with typical operations in the power industry, 
around each node the program RECON can generate two equations – the mass and 
energy balances. The result of the reconciliation is reconciled (consistent) balances 
of both the nodes for mass as well as energy. 

The information on how individual nodes are connected by streams is generally 
expressed by  so-called incidence matrix A, the elements of which have values 0, 1 
or –1 with the following interpretation:  

 

Aji =  1  if the i-th stream enters the j-th node 

Aji = -1  if the i-th stream leaves the j-th node 

Aji =  0  if the i-th stream is not incident with the j-th node 

 

Example 2.9-1: Incidence matrix of a process flowsheet 

Let us consider the flowsheet consisting of 4 nodes and 8 streams 
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The incidence matrix of this scheme is 

No. of stream  1 2 3 4 5 6 7 8 No. of node 

              1 -1 0 0 0 0 -1 0     1 

A =                    0 0 0 0 0 -1 1 -1     2 

           0 1 -1 0 0 0 0 1     3 

             0 0 1 1 -1 0 0 0     4 

E.g. in the second column of the matrix (which belongs to stream No. 2), we can see that 
stream No. 2 leaves node No. 1 and enters node No. 3. In a corresponding manner, in the 
first row of the matrix (belonging to node No. 1) we can see that stream No. 1 enters and 

streams No. 2 and 7 leave it. 

In an analogous way (even if more compressed), the information about the structure 
of process schemes is stored in the computer memory.  

If m  represents the column vector of the corresponding mass flowrates  mi  (i = 
1,2,…,I), the mathematical model of mass balance can be briefly written as the 
vector-matrix equation 

 

A m =  0  .        (2.9-1) 

 

or in form of vector components for the i-th node (summation over j) 

 

 Ajimi  =  0  for j = 1,2,…,J .    (2.9-2) 

 

Specifically in Example 2.9-1 the balance of node No. 1 reads 

 

m1 – m2 – m7  =  0  .      (2.9-3) 
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Compare with the one-node balance in Section 2.3 – Eq. (2.3-1). 

In the majority of cases we require that the properties of any stream leaving one node 
and those of the same stream entering the other node be also the same. This 
concerns the total mass of the stream as well as its composition and energy. With 
this hypothesis, from the theory of balancing then follows that if all node balances are 
reconciled then also the balance of the whole system is reconciled (the difference  
inputs minus outputs equals zero). 

The only two exception from this rule are the momentum balances and heat 
exchangers, where the input and output states  may differ. 

2.10 Model errors 

The results of DR are sensitive to model errors. If the model does not truly describe  
the reality, the results can be misleading. This holds of course generally  for arbitrary 
exploitation of the models, technological calculations etc. 

In the domain of mass end energy balancing there is no doubt about the validity of 
the balances; the problem is rather in the neglection of certain particular phenomena.  

In the balancing, mainly two problems can play a role. 

 neglecting the accumulation (unjustified stationarity hypothesis) 

 material or energy losses into the environment 

If the deviations from the assumptions cannot be neglected, they must be built into 
the model.  

In the nonstationary case this means creating the dynamic balancing model, in the 
simplest case at least with mass accumulation in certain nodes. 

Example 2.10-1: Unsteady-state balance 

Let us consider a tank, into which one mass stream of water m1 continuously flows, while the 
second stream  m2 continuously flows out. The tank is endowed with a level meter. In the 
control system, the level is re-calculated to the total mass of water in the tank. The scheme 
of measurement is in Fig. 2.10-1 a.  

The balance scheme proper is in Fig. 2.10-1b. 

Fig. 2.10-1: Balance of a tank in unsteady state 

L 

F1 F2 

a) b) 

m1 m2 

OI CI 
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There are here two new fictitious streams  – OI (Opening Inventory) and CI (Closing 
Inventory).   

The balance equation is then of the form 

m1  +  OI  =  m2  +  CI         (2.10-1) 

It is important that the balance equation holds for a defined balance period and the variables 
m1  and m2 are integrals of the flowrates having the physical dimension of mass (not that of 
mass flowrate). The values OI and CI are the states of mass (inventory) at the beginning and 

at the end of the balancing period. 

The losses into the environment are mainly heat losses. A relatively simple solution is 
introducing the loss streams into the model proper. Most often and with sufficient 
precision, the losses can be estimated or measured and then given as fixed values. 
Consider that if the losses are small (though not negligible), it is sufficient to estimate 
them with a precision of tens per cent (and even then, the absolute error will be 
small).  

Let us further draw the reader's attention to the fact that in many cases,  it is not 
expedient  to compute the energy losses into the environment from the balance 
(inputs minus outputs). If the losses are small (several units per cent of the input 
energy), as a result of measurement errors one may easily come to the conclusion 
that energy is not lost but gained. 

It holds generally that the mentioned effects can be neglected when they are 
substantially smaller than the error in the main balance streams.  

Let us for example consider a tank ranged in the flow of condensate (according to Fig. 2.10-
1). The balancing interval is 1 hour and the mean flowrate 1000 t/h. Let the measurement 
uncertainty be 3 % of the measured flowrate. The uncertainty in the throughput is thus 30 t. 
The level fluctuation in the tank thus can certainly be tolerated if it represents  less than 3 t 
(which is  1/10  of the flowrate measurement error). In practice, one could be even 
considerably more benevolent. The uncertainty proper in the flowrate measurement error is 
certainly more than 10 %. 

In using the phase equilibria, a possible problem is the existence of metastable 
regions (subcooled vapor or overheated liquid). This can be a menace mainly with 
rapid phenomena where the equilibrium need not be installed instantaneously (in fact 
for example during the condensation, due to the surface tension and curvature, at 
given pressure the equilibrium temperature near the surface of the arising small 
droplets [nuclei] is lower than the standard equilibrium value  –  this even is  the 
metastability). Generally, the problem is quite complicated and cannot  be discussed 
here in detail. The best way is starting from real data  and verify if they are, in long 
term, compatible with the phase equilibrium model. If it is not the case, the best 
solution is to discard the contradictory parts of the model.  Sometimes, it is possible 
to take advantage of  the fact that certain subsystems occur in the scheme 
repeatedly (e.g. the existence of several practically identical steam generators in one 
power plant). If the model works properly in the majority of the identical (macro)units 
and in certain cases doesn't, the error is to be sought rather in concrete data.    
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3 Statistical treatment of measured data 

The validation of data is based on the confrontation of the measured data with 
generally valid laws expressed in the form of mathematical models. In this context, 
mathematical statistics and the theory of measurement errors is of considerable 
importance.  

3.1 Measurement errors 

It is universally accepted that any measurement is charged with some error. The 
measurement error is defined by the following equation. 

 

x+  =  x  +  e          (3.1-1) 

 

where x+ is the measured value  

 x  is the true (unknown) value 

 e  is the measurement error 

Given one set of data, the errors proper are further divided into random and gross. 
The random errors  are an unavoidable part of any measurement; they are 

characterized  by standard deviation i . Gross errors are remarkably greater than 

random errors and if the whole measurement has not to be disvalued , they must be 
eliminated from the  measured data set. If we have several sets of data (time series) 
and the error is deterministically repeated in time, we speak of a systematic error.   

Information about possible errors of measurement is indispensable for the data 
reconciliation to be discussed later. Sometimes, one speaks of the uncertainty in the 
result of measurement, basically identical with so-called maximum error that is 
assumed for the result. With measurement by instruments, there is often given the 
so-called tolerance , which again has the character of maximum error assumed at the 
measurement (or guaranteed by the producer). The tolerance expressed in per cents 
of the instrument's range is called class of accuracy. For example class of accuracy 2 
means maximum error  2 %  of the instrument's range. 

Example 3.1-1: The producer of the flowmeter declares that the maximum error in the 
flowrate will not be greater than 1 % from the range of the instrument. One can thus suppose 
that the (unknown) true value x  occurs in the interval  

 

x    <x+ - emax ; x
+ + emax >        (3.1-2) 

 

where emax  is the maximum error. 

In the statistical treatment of data , one sometimes requires the knowledge of so-called 

standard deviation   of the measured value. In practice, we here take half the maximum 
error  

 

  =  1/2 emax          (3.1-3) 
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More details about the measurement errors are given in Appendix 2. 

3.2 Classification of variables 

The physical variables occurring in the problem can be classified from different points 
of view. According to whether it is possible at all to measure the variable by some 
feasible method, the variables are divided into directly measurable and directly 
unmeasurable.  

E.g. for the flowrate measurement  of feed introduced into the distillation column, 
there is a number of possibilities. They differ  by the easiness if installation, precision, 
price and further properties. So one deals with a directly measurable variable.  On 
the other hand let us imagine a turbine segment with outlet steam that enters the 
following segment. We here hardly can imagine a method which would make 
possible to measure directly the steam flowrate. This variable is thus directly 
unmeasurable (but it can be found by computation; we then speak of an indirectly 
measured variable, thus identifiable by computation from other directly measured 
variables). If a directly unmeasurable variable has the character of a constant, it is 
called parameter of the model.  

Another viewpoint is whether the measurement has been realized in the concrete 
case.  The variables are then divided into measured and unmeasured. As to the 
measured variables, an important property of the measured value is also its 
uncertainty, which limits the magnitude of possible random error. In certain cases, the 
measurement is (perhaps by convention) regarded as errorless (with null error) – let 
us imagine for example a very precise custody – transfer flowmeter which serves as 
the basis of accounting between two companies.  

Further classification of variables is simultaneously based on the division of the 
variables into measured and unmeasured, and on the properties of the mathematical 
model binding them together. It will be clarified with the aid of the following example. 

Example 3.2-1: Classification of variables 

In Fig. 3.2-1, we have a simple mass balance scheme. The full arrows denote measured 
streams, the dashed ones unmeasured streams. 

 

Fig. 3.2-1: Mass balance scheme 

For this system, altogether 3 balance equations with 6 flowrates can be written. 

m1 
I II III 

m2 

m3 m5 

m6 

m7 

m4 
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m1 = m2 + m3          (3.2-1) 

m3 = m4  +  m5          (3.2-2) 

m5 = m6 + m7          (3.2-3) 

We can see here several characteristic situations.  

All the variables around node I  are measured. One has to do with so-called redundant 
variables.  One of them could be computed from the latter two. Further consequence of this 
situation is the fact that due to measurement errors, with the measured values the equation 
will not be exactly satisfied.  We are thus led to the necessity of data reconciliation. The 
measured flowrates around the node must  further be adjusted, i.e. reconciled, in order that 
this balance equation be obeyed. This holds for redundant measurements generally.  

From the second equation, we can compute the magnitude of stream No.5. This unmeasured 
variable is called observable (it can be derived from the measured ones).  

In the third equation, we already know the variable  m5 ; however, it does not suffice for the 
computation of flowrates m6 and m7. Indeed, we here have one equation for two unknowns. 
These unmeasured variables cannot be uniquely computed from the model and we call them 

unobservable  

In addition to the variables measured with some error  and the unmeasured ones, we 
sometimes introduce also a special kind of measured values that we call errorless. 
They are thus a priori known variables, often obtained  by very precise measurement 
where the error can be neglected. If they belong to the redundant ones,  their 
adjustment by the reconciliation is not admitted.  These variables thus have the 
character of constants  during the whole reconciliation process. They are sometimes 
also called fixed.  The whole situation is depicted in the following figure.  

 

 

Fig. 3.2-2: Classification of variables  



 

 32 

Further properties of the variables follow from the results of reconciliation. The 
redundant ones are then adjusted  and they are thus also called adjustable. The 
remaining ones are called nonadjustable.  

The example shows that in one balance scheme, one can meet with a whole 
spectrum of variables. While in one place (around one node), all measurements are 
redundant, on the contrary in another place the measurement is absent and certain 
variables are unobservable.  

Generally, the user is to be recommended to avoid, when possible, the models 
with unobservable variables.  Otherwise, in the latter case one can meet with a 
number of theoretical problems  which, alas, manifest themselves also in practice.  
Basically, there are two ways how to attain full observability of all the unmeasured 
variables.  

 simplify (reduce) the system in places where the measurement is insufficient (in 
particular by merging several balancing nodes)  

 complete the model by user defined equations. 

In general, the classification of variables is not an easy task. In the Appendix 6 there 
is described the method based on the solvability analysis of a system of equations 
which is used in RECON. 

3.3 Degree of redundancy 

In the above example (Fig. 3.2.-1), there was one node around which all the flowrates 
were measured. If we ranged arbitrary one of these flowrates among the unmeasured 
ones (deleted the respective measurement), this flowrate could be computed from 
the balance equation. In this case, it holds that we here have just one degree of 
redundancy. For the mass balance of a system, assuming that all flowrates are 

observable , the degree of redundancy  is found according to the simple relation  

 

  =  M  -  N          (3.3-1) 

 

where  M  is the number of equations 

            N  is the number of unmeasured variables. 

Note: If this formula were applied to the above example, one would obtain a wrong result 
due to the presence of unobservable variables. For more complex systems, it is not so easy 

to identify the degree of redundancy and it is necessary to rely upon the program RECON 

It holds true generally that the degree of redundancy is a measure of the overall 
excess in the measurement places of the whole system. Its high value indicates good 
chances for the data validation. It is also to be noted that  positive redundancy is a 
necessary condition for the data reconciliation and validation. If the redundancy 
is null, the data validation is not possible.  

3.4 Data reconciliation 

Let us start from the mathematical model   
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F(x,y,c) = 0         (3.4-1) 

where F( ) is the vector of model equations 

 x     is the vector of directly measured variables  

 y     is the vector of directly unmeasured variables 

 c     is the vector of precisely known constants 

Eq. ( 3.4-1) holds for the true (unknown) values of the variables. If we replace them 
by the measured values  x+, the equations need not (and most likely will not) be 
exactly satisfied:  

 

F(x+,y,c) ≠ 0         (3.4-2) 

 

whatever be  the values of the unmeasured variables (unless the degree of 
redundancy equals zero). 

The basic idea of DR is the adjustment of the measured values in the manner that 
the reconciled values are as close as possible to the true (unknown) ones. The 
reconciled values xi‘ (marked by apostrophe) result from the relation 

xi‘ = xi
+  + vi   ,      (3.4-3) 

where to the measured values, so-called adjustments  vi. are added. In the ideal 
case, these adjustments should be equal to the minus errors, but these are unknown. 
If, however, we have the mathematical model that must be obeyed by the correct 
values then the optimal solution is as follows (method of maximum likelihood) 
[1,2,3,4]. 

The adjustments must satisfy two fundamental conditions: 

1) The reconciled values obey  Eq. (3.4-1) – we say that they are consistent with the 
model   

F(x‘,y‘,c) = 0         (3.4-4) 

2) The adjustments are minimal. Most frequently, one minimizes the weighted sum of 
squares of the adjustments using the well-known least squares method  

minimize          (vi /i)
2  =   ((xi‘ - xi

+)/i)
2.    (3.4-5a) 

 

The inverse values of the dispersions (squared standard deviations) – so-called 
weights –  then guarantee that more (statistically) precise values are less corrected 
than the less precise ones (this is a relevant property of the method). 

The least squares function (3.4-5a) is used in the case of uncorrelated (statistically 
independent) errors (see Appendix 2). In the case of correlated errors a more general 
criterion is minimized: 

 

minimize   vTF -1v       (3.4-5b) 
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where v is vector of adjustments and F is covariance matrix.    

The reconciliation proper is an optimization problem requiring computer technique  
and effective software. In contrast to many other engineering calculations, the DR 
cannot be carried out manually (using a pocket calculator)  even with very simple 
problems.  

The mathematics of the solution itself was , in the last decades many times described 
in the literature (e.g. [1,2,3,4]) and will not be mentioned in the sequel. See also the  
Balancing and Data Reconciliation Minibook [5], which is free of charge at hand to be 
downloaded from internet. 

So let us further suppose that at our disposal, there is the program RECON ready to  
use for DR. Schematically, it is the Data Reconciliation Engine depicted in the 
following figure. 

    

Fig. 3.4-1: The Data Reconciliation Engine 

 

The program thus transforms the input measured data (vector x+) to the reconciled 
x’, further in addition computes the directly unmeasured variables y’ and provides 
also other information, which will be needed in further sections. 

We can then write symbolically  

x’   =   h1(x
+)          (3.4-6) 

y’   =   h2(x
+)          (3.4-7) 

Example 3.4-1: Reconciliation of mass balance  

Let us consider the scheme according to the following figure. 
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Fig. 3.4-2: Mass balance scheme created in RECON 

The scheme consists of four nodes and eight streams. The model contains 4 linear equations 
for 8 streams. The input data and results of the reconciliation are  given in the following table.  

Table 3.4-1 

Stream Type Measured 
value (kg/h) 

Measurement 
uncertainty 

(%) 

Reconciled 
value 

S1 M 100.1 2 99.29 

S2 M 41.1 4 41.10 

S3 M 79.0 2 79.36 

S4 M 30.6 10 30.05 

S5 M 108.3 4 109.41 

S6 M 19.8 4 19.93 

S7 N 10.0 - 58.19 

S8 N 10.0 - 38.26 

At the type of measurement,  M means measured, N unmeasured (nonmeasured) value. The 
measurement uncertainty (maximum error) is expressed in per cents of the measured value.   

The 'measured value' for unmeasured variables represents so-called first guess required by 
the RECON program so as to initiate the computation. It cannot be told  generally, how close 
to the truth it shall be. It ought not to be a nonsense, but rather a technical estimate that the 
practician improvises without long thinking. Theoretically, the estimated value should not 
influence the final value. However a good estimate facilitates and makes faster the 
computation, and minimizes the risk of possible nonconvergence. For reasons not to be 

analyzed here, RECON does not accept as first estimate the value 0 (zero). 

3.5 Benefits of the reconciled data 

They are several. 
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1. Reconciled data are in agreement with laws of nature. In addition to higher 
credibility, they are also acceptable in accounting, where disproportions in data 
cause significant problems. 

2. Reconciled data are more precise in the statistical sense, if compared with the 
measured ones. The enhanced precision can be quantified with the aid of the 
standard deviation  of the reconciled value, which is always smaller (or, 
exceptionally, at least not greater) than the standard deviation of the 
measurement error.  

 

x’  <  x
+           (3.5-1) 

 

The measure of the precision improvement is so-called adjustability defined as 

 

a  =  1  -  x’ / x+        (3.5-2) 

 

The adjustability characterizes the reduction of the standard deviation thus  also 
that of the uncertainty in the result, if compared with the primary measurement. If 
for example the adjustability of the reconciled value is 0.5, the uncertainty has 
been reduced by half. Adjustability 0.25 means reducing the uncertainty by a 
quarter,  and so on. The greater the adjustability is, the greater is also the 
reduction of the uncertainty.  

There is generally a relation between adjustability and redundancy. With 
increasing redundancy, also adjustability increases.  Of null adjustability are 
nonadjustable (just determined)  variables. As follows from their name, the latter 
variables remain unchanged  by the reconciliation and are not influenced by other 
measured variables.  

Example 3.5-1: Enhanced precision of the results 

The following table summarizes the enhancement of the results' precision as a 
consequence of the reconciliation. The example is a continuation of the preceding 
example 3.4-1 – see Fig. 3.4-2. 

Table 3.5-1 

Stream Measurement 
uncertainty 

(kg/h) 

Uncertainty of 
reconciled 

values (kg/h) 

Adjustability 

S1 2.02 1.30 0.35 

S2 1.64 1.64 0.00 

S3 1.58 1.24 0.22 

S4 3.06 2.53 0.17 

S5 4.33 2.63 0.39 

S6 0.79 0.76 0.05 

One can see that the adjustabilities are quite different and range from zero value for 

stream S2 (nonadjustable variable) up to the highest value at stream S5 
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3. Detection and elimination of gross errors. A possible gross error among the 
measured variables would, as a consequence of the reconciliation, spread and 
corrupt also other measured and reconciled variables. So long as DR is applied, 
one must therefore find a systematic solution for safeguarding the data  against 
gross errors. One of the results of the reconciliation is thus an indication that 
signals the (possible) presence of a gross error. In such a case the results cannot 
be exploited , until  gross error(s) is (are) identified and eliminated. The systematic 
use of DR guarantees, in this manner, the protection of final results against gross 
errors. 

Besides the methodology itself for gross errors presence detection, also effective 
methods for the localization of gross error sources have been elaborated in the 
frame of DR. Automatically, a small group of suspected variables is found to be 
further scrutinized. 

4. Uncertainties of results.  One of the side products of DR is also information on 
uncertainties as well in the reconciled as in the observable directly unmeasured 
values. This information is important not only when judging the overall quality of 
the results, but for example also when comparing the results of various process 
tests and the like.  

5. Propagation of errors and optimization of the systems of measurement. In 
the frame of DR, one can also trace the propagation of errors in the primary 
variables during the data processing. One can thus find, which of the primary 
variables are the key ones from the viewpoint of the target values precision (the 
latter are those, whose identification is the goal of the whole measurement). It is 
then relatively easy to find the bottlenecks for the measurement system precision 
and to optimize the system.    

The elimination of gross errors plays the key role in data validation. In essence, it 
consists of three steps. 

 detection, i.e. their presence indication 

 identification, i.e. finding their sources 

 elimination of these errors.  

Let us now successively go through the named steps. 

3.6 Detection of gross errors 

The process data treatment could be called 'struggle against gross errors of 
measurement'. As already mentioned above, a single gross error can, as a 
consequence of the reconciliation, propagate and corrupt the whole set of data. If 
these errors did not exist, working with data would be a delightful activity. Alas, this is 
not the case and therefore, from the very beginning of the industrial DR application, 
this problem has been paid much attention; successively, several effective methods 
were elaborated for the detection of gross error(s) presence.  

Let us recall once more that  gross measurement error means an error that is greater 
than the uncertainty in the given measurement. Let us start from the weighted sum of 
squares of adjustments defined in Eq. (3.4-5a); it will be denoted by  Qmin.  
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Qmin  =   (vi/i)
2         (3.6-1) 

Clearly, if there were no errors present then no adjustments would be necessary and 
Qmin  would equal zero. If only random errors are present with Gauss (normal) 

distribution, one can show that Qmin  is a random variable with so-called 2 - 

distribution  and    degrees of freedom  (called so in statistics). This  is here equal 
to the degree of redundancy introduced in Section 3.3 and denoted by the same 
letter. If only random errors are present in the frame of our hypotheses about the 
precision (uncertainty) of individual measurements, there must hold with probability 

(1-):   

 

Qmin  <  2 (1-)()         (3.6-2) 

 

where 2 (1-)() is critical value of the 2 - distribution with  degrees of freedom. 

This value will further be called Qcrit. 

The value of , so-called level of significance,  is in technological practice usually 

taken as 0.05 i.e. 5 %. The Qcrit  for different values of  and   can be found in 
statistical tables, but its values are also at hand in the frame of the RECON program.  

So far about the statistical properties of the variable Qmin  in the presence of random 
errors only. If one or more gross errors occur in the measured data, it is likely that  
the adjustments must be greater and such must also be the value of Qmin . This is 
also the basis for testing  the gross error presence hypothesis (in fact the gross error 
absence hypothesis is tested). In order to brush up the knowledge about testing 
statistical hypotheses, Appendix 3 is enclosed.  

The essence consists in the fact that if the inequality (3.6-2) is not satisfied thus 
(omitting the equality) if 

 

Qmin  > Qcrit ,         (3.6-3) 

 

the (possible) presence of a gross error has been detected. Further steps are its 
identification and elimination. 

Example 3.6-1: Gross error detection 

This example is  continuation of the preceding Example 3.4-1 –  see Fig. 3.4.-2.  

Let us first summarize the information from the preceding example. The model is formed by 
four equations in eight variables.  Altogether two variables are unmeasured. Both the 
unmeasured variables are observable thus there are two degrees of redundancy in the 
problem.  The critical value of the chi-square distribution for the significance level 0.05 is 
5.97. The Qmin - value found in the original example was 1.308. If put into the inequality    
(3.6-3) we have  

1.308  <  5.97          (3.6-4) 
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and no gross error is detected. 

Let us now introduce a gross error into the data, say +10 kg/h at stream S1. The data 
processed by RECON are in the following table. 

Table 3.6-1 

Stream Type Measured 
value (kg/h) 

Measurement 
uncertainty (%) 

Reconciled  
value (kg/h) 

Reconciled 
value without  a 

gross error 

S1 M 110.1 2 102.98 99.29 

S2 M 41.1 4 41.1 41.10 

S3 M 79.0 2 82.26 79.36 

S4 M 30.6 10 29.08 30.05 

S5 M 108.3 4 111.34 109.41 

S6 M 19.8 4 20.72 19.93 

S7 N 10.0 - 61.88 58.19 

S8 N 10.0 - 41.16 38.26 

Further information: 

Degree of redundancy    =  2 

Qmin  =  64.54 

Qcrit   =    5.97 

On substituting in Ineq. (3.6-3) we can see that gross error has been detected. For 
comparison, in the last column of the table are given the reconciled values  for data without 
gross error, taken over from Example 3.4-1. One can see that a single gross error has been, 
indeed, 'diffused'  among the other reconciled values. The only exception is the 

nonadjustable stream S2 

Note: The test based on inequality (3.6-3) is called a global one. The second test most 
frequently mentioned in literature is so-called measurement test. This test is based on 
magnitudes of standardized adjustments defined in the next Section by Eq. (3.7-3). 
Standardized adjustments are normally distributed random variables which are also sensitive 
to presence of gross error(s).  

The major problem in using them for a gross error detection is in their number which equals 
the number of adjustable redundant variables (usually in hundreds in real-size problems). 
Even if there are no gross errors in data present, there can be some standardized 
adjustments greater than the critical value of this distribution (which is 1.96 for the confidence 
level 0.05). This approach requires a much more sophisticated technique based on testing 
the maximum standardized adjustment (in absolute value) which is not normally distributed. 
This approach is described for example in [8]. Straightforward testing of individual 
standardized adjustments described in some literature is useless and can not be 

recommended 
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3.7 Identification and elimination of gross errors 

The number of measured variables in real balancing models is usually considerable 
and can be several hundreds. Screening all meters  is thus, in most cases not 
realistic. Fortunately, there exist relatively effective methods of looking for 
measurements charged with gross errors. Although one usually does not succeed in 
finding directly the source of gross error, it is sufficient to find a small group of 
suspected variables upon which one can concentrate the attention.  

The simplest method is to examine the balance differences around individual 

nodes. The balance difference  for mass or energy balance is defined as 

 

  =  sum of inputs – sum of outputs.     (3.7-1) 

 

It can also be expressed relatively in per cents from the (arithmetic) mean flowrate 
around the node 

 

rel  =  (2/(sum of inputs + sum of outputs))*100    (3.7-2) 

 

If the absolute value of rel  exceeds the threshold value, it is advisable to examine 
the values connected with this node. The threshold value depends on the 
uncertainties of individual measurements. 

The weak point of this method consists in the frequent occurrence of unmeasured 
variables among the inputs and outputs. The method works even with estimates of 
the unmeasured variables, but its reliability is then smaller. Still,  this method is 
recommendable because of its simplicity and easy comprehensibility. In any case, it 
is very convenient for the creation of models. Indeed, it makes possible to find not 
only gross measurement errors, but also mistakes at the model creation. The 
program RECON  enables the user to easily create the survey of all balance 
differences.  

Considerably more sophisticated is the method of normalized (standardized) 
adjustments. It starts from the idea that the adjustments are in fact estimates of 

errors. Any adjustment v is a random variable, which has its standard deviation v. 
The normalized adjustment u is defined by the relation  

 

u  =  v/v          (3.7-3) 

 
The normalized adjustment has the normalized (standard) normal distribution. It is 
well known that if the variable is corrupted by a gross error, its normalized adjustment 
belongs to the largest in absolute value. It is thus sufficient to compute the 
normalized adjustments for all adjustable variables and to range them according to 
the increasing absolute value. At the end of the sequence, there is then a group with 
highest values of the normalized adjustments and thus a group with most suspected 
variables.  



 

 41 

Having the group of suspected variables, we can go further. A suspected variable 
can be scrutinized on ranging it among the unmeasured ones and carry out the data 
reconciliation. If then no gross error is detected, this variable could be the source of 
the gross error. By the ranging of the variable charged with a gross error among the 
unmeasured ones, we in fact have carried out the gross error elimination.  

If it happens that the elimination of any one of the suspected variables does not 
suffice (a gross error is still detected), it is possible that more gross errors are 
present.  In the course of the successive elimination we then trace the decrease of 
the variable  Qmin . Suspected are those variables where the decrease is largest. 

The method of normalized adjustments with the elimination of variables is quite 
effective, although not universal. It is suitable for gross errors of measurement, not 
for model errors.  

 

Example 3.7-1: Identification of a gross error  

This example is  continuation of the preceding example 3.4-1 – see also Fig.3.4-2.  

Let us begin with the method of normalized adjustments. In the following table, there are 
given the normalized adjustments for the measured streams. Only normalized adjustments 
greater than 1.96 are shown, where 1.96 is the critical value for the normal distribution.   

Table 3.7-1 

Stream Type Normalized  
adjustment  

S1 M -8.02 

S3 M 6.81 

S6 M 8.02 

One can see that three suspected streams of the ordered sequence have remained.  The 
greatest absolute value belongs to streams S1 and S6, however stream S3 remains only 
slightly back. 

Let us further continue according to the method of suspected variables elimination.  
Successively, individual streams are ranged among unmeasured and reconciliation is carried 
out. The results are given in the following table.  

Table 3.7-2 

Stream Type Qmin Qcrit 

S1 N 0.21 3.84 

S3 N 18.15 3.84 

S6 N 0.21 3.84 

The individual streams are now unmeasured. Let us first take note of the last column of the 
table. The critical value is now smaller than in the preceding case. Indeed, including one 
variable in the unmeasured ones the degree of redundancy has decreased by one. The 
important thing is that only at stream S3, Qmin  remains greater than the critical value  Qcrit 
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and gross error is thus still detected. In other words, including S3 in the unmeasured set did 
not help so this stream can be immediately discarded from the list of the suspects.  

There thus remain two suspected streams S1 and S6. Both methods of localization rate them 
equally and what remains is the classical procedure, for example 

 revision of the individual flowmeters  

 tracing the trends of the variables at the time when the problem has arisen 

 judge the measured values also from other points of view than those from which they are 
treated by the model proper (physical meaning of the variables, further information not 

included in the model and data processed)   

Let us finally state that although the above described methods represent a valuable 
aid in searching for gross errors, they alone quite often do not lead to finding the 
unique and true sources of gross errors. One says that these methods are not 
sufficiently selective in the gross errors identification. It is thus indispensable to 
complete these methods by verification of suspected meters  directly in site. It 
is also necessary to utilize practical knowledge about the measured system. 
For these reasons, it also cannot be recommended  to apply the methods of 
automatic elimination of gross errors without the intervention of man (methods 
sometimes offered by the vendors of data validation software).  

3.8 Efficiency of gross measurement errors detection 

The following section is addressed to those who are more deeply interested in the 
DR. At the first reading, the section can be skipped. We'll further confine ourselves to 
the problems of gross measurement errors, where a consistent theory is available. 
The cases of gross model errors are more complicated and must be solved 
according to the case.  

One often meets with the idea that DR automatically protects the results against all 
possible gross errors. Although this is usually  the main argument of the DR software 
vendors, these ideas have to be put right. 

The possibility of gross errors detection is limited by the redundancy of the data. As 
shown above, in a real process scheme there can exist simultaneously places with 
high redundancy (with many measurements) and places with few measurements 
where the redundancy is null or even unobservable unmeasured variables are 
present. It is thus legitimate to suppose that the possibilities of gross error detection 
for individual  variables will differ from case to case. The whole topic is elaborated  in 
details in Appendices 3 and 4 where the reader can also find the explanation of 
certain statistical concepts made use of in the sequel.   

The probability that a gross error will be detected is not a general property of the 
given model , but it must be stated for any measured variable separately. The 
probability depends on three factors.  

1. On the redundancy of the given variable expressed via its adjustability (see Eq. 
(3.5-2)): The higher the adjustability is, the easier is the detection of the gross 
error for this variable. On the other hand the probability of gross error detection for 
a nonadjustable variable equals zero. This  is given by the fact that the latter 
variables, in a certain manner stand aside from the other measured variables.  
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2. On the magnitude of the gross error: This is comprehensible as the higher the 
gross error, the easier it will be detected. Clearly, small gross errors (or slightly 
greater than the uncertainty of the measurement proper) can easily be masked by 
the presence of the other random errors. 

3. On the degree of redundancy  of the whole problem (see Eq. (3.3-1)): This 
influence is not too relevant for one given model and makes itself valid for all the 
variables nearly equally.  

The detailed analysis of these influences is carried out in the above mentioned 
Appendix 4. It is essential that any redundant variable can be characterized, from  the 
standpoint of gross error detection, by its so-called  gross error threshold value.  

 

   Gross error threshold value  tv  is the value that will be detected with probability  

 

The threshold value is thus of probabilistic character. Whether a gross error will be 
really detected, that depends not only on its magnitude but also on the other random 
errors in the given data set , which may compensate the impact of the gross error on 

the testing criterion Qmin . The probability value   to be further applied is 0.9 (90 %). 
It is obvious that the smaller the value of tv is, the greater is the chance for the gross 
error detection.  Nonadjustable (just determined) variables have an infinitely great 
threshold value.  

Example 3.8-1: Gross error identification  

This example is continuation of the preceding Example 3.4-1 – see also Fig. 3.4-2.  

In the following table are given threshold values tv90 of the gross error detection  for individual 
measured variables. 

Table 3.8-1 

Stream Type Measured 
value (kg/h) 

Threshold value of 
gross error detection 

tv90 

(kg/h) 

Threshold value of 
gross error detection 

tv90 

(%) 

S1 M 100.1 4.78 4.8 

S2 M 41.1   

S3 M 79.0 4.62 5.8 

S4 M 30.6 9.90 32 

S5 M 108.3 9.90 9.1 

S6 M 19.8 4.78 24 

The last two columns of the table contain the threshold values (absolute in kg/h and relative 
in percents of the measured value). The interpretation is, e.g. for stream S1  

Gross error 4.78 kg/h will be detected with probability  90 % 
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If the gross error is greater, of course also the probability of its detection will be greater. Let 
us stress the probabilistic character of this assertion. One can see that the threshold values 
for individual streams differ considerably as absolutely, as relatively with respect to the value 
of given variable. For nonadjustable variables (stream S2), an arbitrarily great gross error will 

never be detected. 

Concluding this section, let us still put the question how to distinguish the case of an 
actual (great) gross error from  an error of the 1st kind  (5 % of cases in the testing); 
see Appendix 3. It is then possible to start from the sum of squares of adjustments 
Qmin  and its comparison with the chi-square distribution (see Appendix 1). From the 
course of the probability density for this distribution one can see that the probability of 
values  greater  than the critical one decreases rapidly with increasing value of the 
random variable (this holds in particular for the degrees of redundancy higher than 
10). It is legitimate to suppose that by random errors, higher Qmin-values cannot be 
caused than for example twice the critical value. 

3.9 Propagation of errors at data processing and measurement system 
optimization 

The symbolical equations between measured and reconciled variables (3.4-6 and 7)  
comprise the information about how the measurement errors proper are propagated 
during the data processing. One can thus (in the statistical sense) trace back, which 
of the directly measured variables are the key ones from the point of view of the 
results uncertainty and upon which one must concentrate when enhancing the results 
precision. The problems to be solved will first be made clear using a very simple 
example. 

Example 3.9-1: Propagation of measurement errors at measured data processing  

Let us suppose that a directly unmeasured variable y is linear function of two directly 
measured variables x1 and x2   

y  = ax1 + bx2          (3.9-1) 

where a and b are constants a = 1 and b = 2. Let us further assume that the errors in x1 and 

x2 are uncorrelated and their standard deviations equal 1 = 1  and  2 = 2. For the dispersion 
(variance) of variable  y we then have  [2] 

2
y  =  a21

2  +   b22
2         (3.9-2) 

The terms  a21
2  and   b22

2  thus represent  contributions of individual measured variables 
to the dispersion of the resulting variable y.  

Evaluation yields   

2
y  =  1212  +   2222   =  1  +  16  =  17      (3.9-3) 

In this case we  see that the dominant influence upon the dispersion of the result is that of 
variable x2 , which contributes by ca. 94 % while variable  x1 only by 6 %. If requiring higher 
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precision of the result, one has to concentrate on variable  x2  that represents the bottleneck 
of the whole process of measurement. If its dispersion is lowered to one half (e.g. by 
installing a more precise meter) , the dispersion of the result decreases according to (3.9-2) 

from 17 to 5. On the contrary even an errorless measurement of variable x1 (1 = 0) lowers 

the result to 16 only . 

The above procedure can be applied to an arbitrary linear function of measured 
variables under the assumption  that the measurement errors are uncorrelated. In 
practice, it can be applied with a certain imprecision even to nonlinear functions, so 
long as we linearize them by the Taylor series development. Eq. (3.9-2) then can be, 
for one variable y,  approximated by the development at point x+ in the symbolic form 

 

y  =   h(x)    h(x+)  +   h(x)/xixi      (3.9-4) 

 

and for the dispersion of variable  y  we then have 

 

2
y    ( h(x)/xi)

2i
2        (3.9-5) 

 

The terms on the right hand side of Eq. (3.9-5) are always nonnegative and represent 
the contributions of individual measured variables to the dispersion of the result. We 
now form the vector of the relative contributions thus shares s = (s1,s2, … ,sI)

T , the 
elements of which represent the percentual share of individual measured variables 
on the dispersion of the result: 

 

si  =  100 [( h(x)/xi)
2i

2]/2
y       (3.9-6) 

 

The sum of the shares (vector elements of s) is clearly 100 %. The value of the 
vector indicates, for which of the measurements it makes sense to strive for making 
them more precise and on the contrary, which of them are irrelevant from the 
viewpoint of the measurement system optimization.  

It remains to note that from the viewpoint of minimizing the result uncertainty, 
deciding is its standard deviation, which is the square root of the dispersion. 
Minimizing the dispersion thus, indeed, leads to minimizing the result uncertainty; 
however the relative importance of individual variables is partially deformed by the 
nonlinear relation between the standard deviation and dispersion. The vector of 
shares itself is thus to be interpreted as the first information for further optimization 
steps supported by detailed calculations. 

Example 3.9-2: Propagation of errors in mass balance 

This example is continuation of the previous Example 3.4-1 – see also Fig.3.4-2.  

The following table gives the share vectors for directly unmeasured streams S7 and S8. 
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Table 3.9-1 

Stream S1 S2 S3 S6 Sum 

S7 16 62 16 5 99 

S8 10 64 22 - 96 

 

The interpretation of this table can be such that for stream S7, 16 % of the dispersion is 
caused by stream S1,  62 % by stream S2 etc. We see that  for the uncertainty in computed 
(observable) streams S7 and S8, only measured streams S1, S2, S3 and S6 are of practical 
importance. The remaining two streams are of negligible influence and are also omitted here 
by the RECON program ( they represent only 1 % for stream 7 and 4 % for stream 8).   

The variable S2 is of dominant influence on the uncertainty (dispersion) in both streams; also 
non-negligible but smaller  is the influence of streams S1 and S3. This means that if we want 
to decrease the uncertainty in both the computed streams, it is reasonable to enhance the 
measurement precision of stream S2.   

Let us now suppose that we have the possibility of installing, for this stream, a new flowmeter 
with half the original uncertainty (maximum error). The previous maximum error was 4 % of 
the measured value, so let us further assume 2 %.  

Table 3.9-2 

Stream Type Measured 
value (kg/h) 

Measurement 
uncertainty 

(%) 

Uncertainty 
of results 

(kg/h) 

Measurement 
uncertainty 

(%) 

Uncertainty 
of results 

(kg/h) 

S1 M 100.1 2 1.30 2 1.30 

S2 M 41.1 4 1.64 2 0.82 

S3 M 79.0 2 1.24 2 1.24 

S4 M 30.6 10 2.53 10 2.53 

S5 M 108.3 4 2.63 4 2.63 

S6 M 19.8 4 0.76 4 0.76 

S7 N 10.0 - 2.10 - 1.54 

S8 N 10.0 - 2.06 - 1.49 

One can see that the uncertainties in the computed streams S7 and S8 have decreased to 
73 % resp. 72 % of the original values. If the uncertainties in some of the other variables 
were lowered, the result would not be so pronounced.  

Finally, let as look at the new vectors of shares.  

Table 3.9-3 

Stream S1 S2 S3 S5 S6 Sum 

S7 30 29 30 - 9 98 
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S8 20 31 43 3 3 99 

If comparing this table with the preceding one we see that the situation has changed 
sensibly. The stream S2, from the viewpoint of its importance is no longer dominating and it 
is now better to concentrate on decreasing the uncertainty at stream S3. As already stated 

beforehand, in optimizing the measurement system one must proceed step by step.  

3.10 Parametric sensitivity 

Parametric sensitivity is a well-known concept in the domain of mathematical 
modeling. With a considerable simplification, it can be formulated as the question:  

 

What is the change in the result of computation with unit change in the parameter 
value? 

Note: Consider for example the typical problem of nuclear power engineering. How 
influenced is the nuclear reactor thermal power identification by the  measurement error in a 
certain temperature? What error would be caused by the measurement of this temperature 
with error for example 2 deg C? In the preceding section, this problem was solved in the 
statistical sense in terms of standard deviation of the result. Now, one deals with a 

deterministic problem under certain constellation of all the measured data. 

In the common mathematical modeling (e.g. simulation calculations), the situation is 
relatively straightforward. If the model is linear, the parametric sensitivity can be 
found easily and exactly. With nonlinear models, we find an approximate solution via 
the linearization of the model by Taylor series development. If the precise value of 
parametric sensitivity is to be identified, there is no other way than successive 
perturbation of all values of the variables, with so many calculations as is the number 
of the parameters.  

In the case of DR, the situation is even more complicated. Let us again start from the 
symbolic formulation of the DR process by Eq. (3.4-7). In the previous section (Eq. 
(3.9-4)), we have already given the linearized form of the relation between measured 
variables and results. In contrast to classical mathematical modeling, the situation is 
now complicated by the fact that the reconciliation operator depends not only on the 
variables' values and the model form, but also on standard deviations of the 
measurement (which can again be defined as functions of the measured variables' 
values.) This is typical of the flowrates, where the measurement uncertainty is often 
expressed in per cents of the measured value. For this reason, one must take all 
results based on  the linearization as orientative and when needed, scrutinize them 
by detailed calculations with perturbed variables.  

Example 3.10-1: Parametric sensitivity in mass balance 

This example is continuation of the previous example 3.4-1 – see also Fig. 3.4-2. The 
following table  gives vectors of parametric sensitivity for streams S7 and S8. 

Table 3.10-1 

Stream S1 S2 S3 S4 S5 S6 

S7 0.42 -1.00 0.53 -0.05 0.05 0.58 
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S8 0.33 -1.00 0.62 -0.06 0.06 -0.33 

This table can be interpreted in the manner that increasing the S1 flowrate value by unity 
increases the S7 flowrate value approximately by 0.42 kg/h, etc.  It is to be noted that these 
conclusions hold only for the given set of measured values. They can thus be generally 

applied to processes running at steady state for a long time. 

3.11 Data validation in industrial processes monitoring 

So far, we always solved the problem for one data set. Let us now consider that the 
data validation is part of a monitoring system evaluating the data automatically and 
regularly (e.g. every hour). Under these assumptions, we can trace the time series of 
measured and reconciled variables. Let us however consider first the data quality 
indicators. Recall that we here have  

Qmin – weighted sum of squares of the adjustments due to reconciliation 

Qcrit – critical value for Qmin, which should not be exceeded. This variable is constant 

          for given number of degrees of freedom of the chi-square distribution  

          (thus in our case the degree of redundancy) 

 

It is in addition convenient to introduce so-called data status S defined by the relation 

 

S  = Qmin / Qcrit         (3.11-1) 

 

Clearly, if it holds  

 
S  >  1   ,          (3.11-2) 

 
the gross error presence has been detected. So the status summarizes in one 
number the information on data quality.  If thus, during the monitoring, for a given 
data set the status is higher than 1 then the results of this set should not be accepted 
for further processing (until the gross error is found and eliminated).   

In the following figure, we have the diagram of the S values evaluated on the basis of 
one hour averages for a period of 14 days (altogether 336 values). For completeness 
let us add that in this case, the degree of redundancy was 30, to which corresponds  
the critical value Qcrit = 43.64. 
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Fig. 3.11-1: Time series of variable S (status) 

  

Altogether in 4 cases, a gross error was detected (S > 1) and the average value of 
the status (dashed line) is 0.79. Let us now put the question what this information 
says about the data quality. Let us further examine certain properties of this time 
series.  

MEAN STATUS VALUE 
The starting point of further considerations is the fact that the sum of squares of  the 
adjustments  Qmin   is a random variable with chi-square distribution having 30 
degrees of freedom. For this random variable it holds that its mean value equals the 
number of degrees of freedom. So the mean value of Qmin should be, in the given 
case about 30.  With the critical value 43.64 , the assumed status results as 30/43.64 
=  0.69  (such  status should result as the average  after a long-term tracing, provided 
that all of our assumptions hold true). This value is fairly near to (though somewhat 
smaller than) the actual value 0.79. 

FREQUENCY OF GROSS ERROR DETECTION 
Another viewpoint is the frequency of exceeding the critical value for Qmin thus Qcrit ,  
i.e. the gross error presence detection. The testing is carried out at the significance 
level 0.05. This means that the probability of an error of  the  Ist  kind equals 0.05. In 
5 % of cases we thus can expect that a gross error will be detected, although absent 
in reality. With the number of data 336 as is our case, we arrive at the number 
3360.05 = 17.  This value is substantially higher than the above number 4 in our 
example. 

TIME CORRELATEDNESS OF THE STATUS 
If only random errors made themselves valid, the status values would oscillate 
around the mean value.  The actual value would be independent of the previous 
ones. In Fig. 3.11-1 one can see that this is not the case.  One can see here irregular 
'waves' where the values go up and down again. It is a consequence of the fact that 
besides the random errors, also systematic errors are present. Moreover, the 
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systematic errors may  work for an arbitrarily long time – let us consider for example 
effects with daily, seasonal or one year's frequency, or defects of instruments 
causing a jump change until the instrument is repaired. Further causes can be for 
example calibration of meters or their swapping during the run of the production 
process. It is well known that with the measurement by instruments, systematic errors 
are mostly of greater importance than random errors.  

Even better than using the status, the importance of systematic errors can be seen in 
the diagram of measured and reconciled variables. See for example the following 
figure.  

 

Fig. 3.11-2: Example of measured and reconciled values 

Points marked by triangles represent reconciled values (the upper diagram), squares 
are measured values.  If only random errors were present, the two diagrams should 
'interpenetrate'. In addition the adjustments (differences between reconciled and 
measured values) should oscillate around zero. The figure shows clearly, that this is 
not the case.  The measured values , but for several exceptions, are adjusted in the 
direction to higher values. The influence of systematic errors is here dominating.   

The observation can be summarized as follows.  

 The status average (0.79) is near to the theoretical value (0.69). As a whole, the 
system (the model proper and assumed measurement errors) is well designed, 
actual errors are somewhat higher than assumed  

 In 4 cases, a gross error has been detected , which is less than  corresponds to 
the significance level 0.05 (17 cases)  

 The maximum value of the status ca. 1.2 indicates that in the whole period, no 
gross error was present (see the discussion in Section 3.8)   
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The above observations can be explained by the presence of relevant systematic 
errors. This fact however does not make the usefulness of DR doubtful  – both 
random and systematic errors are reconciled and their impact is thus diminished. We 
are reconciling single data sets and in that moment we need not bother about the  
previous results. The thus arisen time series are analyzed only later off-line and the 
conclusions help us first better understand the whole data treatment process, and 
further  eliminate the possible errors identified thereby.  

The so far given illustration is example of data without serious problems. Let us 
further give still other examples, where the data requires correction. 

 

Fig. 3.11-3: Long-term trend of the Status – occurrence of isolated gross errors  

In this figure one can see a long-time trend of the status (2.5 month)  where several 
times, the status value exceeds 1 in the order of magnitude. In such cases, a Ist kind 
error does not come into consideration. It is most often a failure in data where data 
about one or several variables are absent. Because one deals with short periods, it is 
most likely not gross errors of the measuring instruments.  

 



 

 52 

 

Fig. 3.11-4: Example of systematic increase in the Status  

In this figure, one can see the systematic increase of the Status signaling successive 
deterioration of data quality. Until the cause is identified, most of the data are of no 
use.  

3.12 Integration of DR into process information systems  

Only in rare cases the balancing systems, DR included, can exist for themselves. 
Their routine application is conditioned by the automation of measured data input 
provided by production control and information systems. The up-to-date trend is to 
create a central Process Data Warehouse (relational database) denoted further as 
PDW, into which the data are imported.  

The filling of the PDW is denoted by the abbreviation ETL (Extraction, Transformation 
and Loading) – see the monograph [7]. In the case of PDW,  the key role in the 
process industry belongs to the data validation, which is part of the module 
Transformation.  

In the PDW, process data are stored from the database of real-time process data or 
from that of aggregated data (average values etc.). Data from the PDW serves for a 
number of applications. Based thereon,  adjustment of balances is carried out and 
the adjusted (reconciled) values are stored again in the PDW. They can then serve 
for other applications such as planning, scheduling, process monitoring, etc.  

If there is no PDW as yet, the RECON system for DR can serve as the first step in 
creating it. The situation is depicted in the following figure.  
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Fig. 3.12-1: Creating the data store in the frame of DR  

 

During the on-line operation of the RECON program, all the three steps of the ETL 
can be carried out.  

1. EXTRACTION –  Read data from process data database and carry out their 
aggregation, i.e. creating average values with required frequency  

2. TRANSFORMATION – Reconcile and validate the data  
3. LOADING – Store the data in the data store.  

In the data store, the data then can be at hand for tens of years. As PDW serves so-
called native database of the RECON program preserving information on measured 
and reconciled values, data quality included. The simplest platform supported by 
RECON program is the MS ACCESS. For more extensive data systems, one can  
recommended  relational databases of the client – server type – for example Oracle, 
Microsoft SQL or MySQL.  

In the frame of the RECON program, these databases are supported by the means 
for database administration, data visualization and exports of selected data into the 
MS Excel. The data can be filtered according to whether one deals with  good quality 
data  or data that did not pass the test and require to be cleaned from gross errors. 
For easier tracing, data can be ranged into thematic groups. Further available is the 
module for creating general reports in the Excel environment based on user-defined 
templates.  

Besides these activities oriented towards their native database, RECON can of 
course simultaneously store the reconciled data into the original process data 
sources, as is depicted in the previous figure. 

3.13 History of Data Reconciliation  

Data reconciliation by the least squares method is not new. It was discovered 
probably independently by A.M.Legendre (published 1806 and introduced its name – 
method of least squares), R.Andrain (1808) and K.F.Gauss (1809) who used it 
allegedly in his works already in 1802. All first applications were from area of 
astronomy and geodesy. A massive use of DR in pre-computer era was in area of 
geodesy and cartography (reconciliation of measurement of angles and distances in 
triangular networks and leveling measurements). Method of least squares became 
then a standard method of data processing with hundreds of papers presented every 
year. 

The first applications from industry were reported in early sixties from area of mass 
balancing (linear models of mass balance typical for crude oil processing). Since 
then, further problems were solved in hundreds of research papers (nonlinear 
component and energy balance models, dynamic balancing of nonstationary 
processes, gross errors detection and identification, optimal placement of 
instruments, and others. 

It is not possible to mention here even the most important papers, which form the 
history of using DR in industry. There exist now also at least 2 books fully devoted to 

Database  of 
process data 

 

RECON 
Process Data 
Warehouse 



 

 54 

DR [3,4] and several others which systematically use DR in areas of their interest 
(Process Structures and Information Flows [8], Plant performance monitoring [2], 
Mass and energy balancing [1] and Plant instrumentation design and optimization 
[6]). A Balancing and Data Reconciliation Minibook [5] is available free on the 
Internet. 

DR is also thoroughly treated in [7], which was planned to be a guideline in area of 
energy systems data processing. This quite new document (published in 2000) 
seems to be created off the world DR main stream. It is a little bit obsolete now and 
contains some things which are at least disputable (ignoring the existence of 
unmeasured variables and replacing them by pseudo-measured “plausible 
estimates”, recommending the DR method unsuitable for nonlinear models and some 
others). Using this document as a standard is doubtful.  

 



 

 55 

4 Examples of mass and component balances  

Let us further give several typical examples of mass and component balances. This 
chapter will enable the reader to create simple models in the RECON program and 
check the results.  

The structure of all sections is as follows.  

1. BALANCE SCHEME. It is a copy of the scheme created in the graphical editor of 
program RECON.   

2. INPUT DATA. It is a somewhat abridged extract from the data of the problem 
created in program RECON – menu Flowsheet–Data review. It contains all 
information necessary for the problem configuration.  

3. RESULTS. It is an abridged extract from the results for the user's inspection, 
created in program RECON – menu Calculate –Results.   

Although this manual cannot replace  detailed manual to the RECON program, let us 
still briefly describe the procedure to be maintained in the problem creation.  

1. Enter the name of the problem that is also the name of the file of the model being 
created  

2. Enter the text of the problem title (long name) – not obligatory.  

3. In the further panel, change the physical units (when necessary). Units selected 
in individual examples are given in the part INPUT DATA.   

4. Enter the names of components (species). In the case of single-component 
balances, we recommend to enter 'mass'; full name need not be filled in.  

5. The graphical editor screen turns up. The scheme drawing proper is 
recommended to be started by drawing first all nodes, which are conveniently 
placed on the screen (at later changes in size and placement of the nodes, the 
shape of the streams drawn can change). Helpful is also a lattice that can be 
called up in menu Settings - Gridlines. At the nodes, we fill in only Name (it is in 
the scheme) and Description (one need not fill in, or we devise some).  

6. We then finish by drawing the streams. Their short names are given in the 
scheme, we invent again the description. Types of streams, values and possible 
errors (for the measured variables) can be found in part INPUT DATA. The 
problem definition for mass balance is thus complete.  

7. After the configuration of all streams and nodes, one can carry out the 
computation.   

Let us in addition explain certain abbreviations used in the RECON program.  

F type of variable - Fixed variable ( known as errorless) 
M type of variable - Measured variable 
MC type of variable - Measured variable, adjustable (can be Corrected) 
MN type of variable - Measured variable, Nonadjustable 
N type of variable - uNmeasured variable  
NO type of variable - uNmeasured variable, Observable 
NN type of variable - uNmeasured variable, uNobservable 
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For most of the examples given in this chapter, the reader will have at hand also their 
model solutions, i.e. files with respective models. Names of the files are given in the 
text. 

4.1 Mass balance at steady state without redundancy 

In the following four examples, we'll show basic situations that can occur at the data 
validation. We'll make use of a simple scheme with four nodes and eight streams. 
One deals with a single-component balance. From the mathematical point of view, 
one deals with a linear model.  

In the first example, in the problem are measured just so many variables how many 
are necessary for solving the set of balance equations (4 equations for 4  
unmeasured variables). The degree of redundancy equals zero and in this case, it is 
thus impossible to carry out the data validation. The balance scheme is given in the 
next figure. The full lines represent measured streams, the dash-and dotted ones are 
unmeasured.  

 

 

  

Fig. 4.1-1: Balance scheme (demo Example MC-1) 

 

Input data 

 ID          TYPE           VALUE     MAX.ERROR 

 S1          M           100.1000      2.0000 % 

 S2          M            41.1000      4.0000 % 

 S3          M            79.0000      2.0000 % 

 S4          M            30.6000     10.0000 % 

 S5          N            10.0000 

 S6          N            10.0000 

 S7          N            10.0000 

 S8          N            10.0000 

 

At the unmeasured variables (type N), their values represent the estimate necessary 
for starting the computation (so-called initial guess). This value has no influence on 
the final result. Still, it should be as close as possible to the actual value. The 
program finds thus easier  the solution, and the risk of divergence of the computation 
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process is diminished (this risk can never be quite precluded). As the initial guess, 
RECON does not accept  zero value.   

 

Fig. 4.1-2: Example of stream definition panel  

In this panel, we can enter or modify the name of the stream, its description, type 
(M,N, or F). In case of type M, we must enter the maximum error (absolute or in per 
cents). In the case of mass (single-component) balance only, the concentration of the 
one component is always 100 % (obligatorily fixed).  

In the next figure, a node property definition is illustrated.  

 

 

 Fig.4.1-3: Illustration of the node definition panel  

Here, we again utilize the possibility of entering the name of the node (ID), 
contingently its description.  

RESULTS 

 
I T E R A T I O N  

Iter            Qeq            Qx              Qy            Qmin 

START    2.8722E+01 

    1      0.0000E+00    0.0000E+00      2.8748E+01      0.0000E+00 

    2      0.0000E+00    0.0000E+00      0.0000E+00      0.0000E+00 

 

  Key: 

  Qeq   mean residual of equations 

  Qx    mean increment of measured variables in iteration 
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  Qy    mean increment of unmeasured variables in iteration 

  Qmin  least squares function  

 

  G L O B A L  D A T A   

  Number of nodes                                  4 

  Number of streams                                8 

  Number of components                             1 

  Number of measured variables                     4 

  Number of adjusted variables                     0 

  Degree of redundancy                             0 

  Number of unmeasured variables                   4 

  Number of observable variables                   4 

  Number of unobservable variables                 0 

  Number of free variables                         0 

  Number of equations                              4 

  Number of independent equations                  4 

  Number of user defined equations                 0 

 

  Mean residual of the equations                   0 

  Qmin                                             0 

  Qcrit                                            0 

  Status (Qmin/Qcrit)                              0 

 

  S T R E A M S     [KG/S] 

  Name       Type       Inp.value      Rec.value      Abs.error 

  S1         MN          100.100        100.100          2.002 

  S2         MN           41.100         41.100          1.644 

  S3         MN           79.000         79.000          1.580 

  S4         MN           30.600         30.600          3.060 

  S5         NO           10.000        109.600          3.444 

  S6         NO           10.000         21.100          2.550 

  S7         NO           10.000         59.000          2.591 

  S8         NO           10.000         37.900          2.280 

 

In this first example, let us describe in detail individual information given in the 
extract.  

 Variable Qeq is the residual of the equations. The starting value (START) gives 
the mean quadratic residual of the model equations with the values of measured  
and estimates (guesses) of unmeasured data.  

 Variable Qx is mean quadratic increment of measured variables in the iteration.  
Because one deals with an example without data redundancy,  the measured 
variables need not be adjusted and this value is zero.  

 Variable Qy is mean quadratic increment of unmeasured variables in the iteration. 
In the given case (linear model), the values of unmeasured variables are adjusted 
in just one step (calculated from the measured values). The second iteration is 
only of checking importance.  

 Variable Qmin (least squares function) is here zero, as no measured values 
corrections (adjustments) take place. 

The global data need no commentary. Let us perhaps only state the fact that the 
degree of redundancy is zero, because one does not deal with a redundant system. . 

The measured streams are marked by MN, which means that they are Measured and 
Not corrected (non-adjusted). At unmeasured variables, NO means Non-measured 
and Observable.  

In the results (table Streams), Inp.value means measured value or initial estimate for 
unmeasured variables. Rec.value means either adjusted (reconciled) measured 
value, or computed unmeasured value. In the last column, we have the maximum 
error of the result.  
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For example the unmeasured variable S5 was initially estimated (guessed) by the 
value 10, the computed value was 109.60 and the maximum error was 3.44, all in 
kg/s. The given value of the error means that the actual (unknown) value lies with 
probability 95 % in the interval   

<109.600 - 3.444; 109.600 + 3.444>.  
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4.2 Mass balance at steady state with redundancy  

The example in the preceding section is modified in the manner that streams No. 5 
and 6 are now regarded as measured. This assumption reduces the number of 
unknowns to 2. As we now have 4 balance equations and 2 unknowns, the degree of 
redundancy according to Eq. (3.3-1) is 4 – 2 = 2. Some results for this example were 
already given in Section 3.4 (Example 3.4-1).  This information will now be 
completed.  

 

Fig. 4.2-1: Balance scheme (demo Example MC-2)  

Dash-and-dotted lines at streams S7 and S8 designate unmeasured streams.  The 
input data are the following:  

 

M A T E R I A L   S T R E A M S   [KG/S] 

 ID          TYPE       VALUE       MAX. ERROR 

 S1          M           100.1000         2.0000 % 
 S2          M             41.1000         4.0000 % 
 S3          M             79.0000         2.0000 % 
 S4          M             30.6000       10.0000 % 
 S5          M           108.3000         4.0000 % 
 S6          M             19.8000         4.0000 % 
 S7          N             10.0000 
 S8          N             10.0000 

 

The results of data reconciliation are:  

I T E R A T I O N  

  Iter            Qeq            Qx              Qy            Qmin 

  START    1.4944E+01 

    1      3.5527E-15    3.0571E-01      2.7931E+01      1.3081E+00 

    2      3.5527E-15    2.0136E-15      5.1227E-16      1.3081E+00 

 

  Qeq   mean residual of equations 

  Qx    mean increment of measured variables in iteration 

  Qy    mean increment of unmeasured variables in iteration 

  Qmin  least squares function  

 

G L O B A L  D A T A  

  Number of nodes                                  4 

  Number of streams                                8 

  Number of components                             1 
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  Number of measured variables                     6 

  Number of adjusted variables                     5 

  Degree of redundancy                             2 

  Number of unmeasured variables                   2 

  Number of observable variables                   2 

  Number of unobservable variables                 0 

  Number of free variables                         0 

  Number of equations                              4 

  Number of independent equations                  4 

  Number of user defined equations                 0 

 

  Mean residual of the equations          3.5527E-15 

  Qmin                                    1.3081E+00 

  Qcrit                                   5.9739E+00 

  Status (Qmin/Qcrit)                       0.218963 

 

S T R E A M S  [KG/S] 

  Name       Type       Inp.value       Rec.value      Abs.error 

  S1         MC          100.100         99.287          1.300 

  S2         MN           41.100         41.100          1.644 

  S3         MC           79.000         79.359          1.239 

  S4         MC           30.600         30.048          2.533 

  S5         MC          108.300        109.407          2.632 

  S6         MC           19.800         19.927          0.755 

  S7         NO           10.000         58.187          2.096 

  S8         NO           10.000         38.259          2.058 

 

In the information about the course of computation we see that in contrast to the 
preceding example, the measured values are now adjusted (column Qx in part 
Iteration). In the second iteration, the increments of variables and residuals are 
practically zero (given by the number of digits with which  the numbers are stored in 
the computer).  

The value of the weighted sum of squares of the adjustments Qmin equals 1.308, 
which is less than the critical value Qcrit = 5.9739 (for the chi-square distribution with 
two degrees of freedom  and significance level 95 %). The situation is well 
characterized by so-called Status of the data quality defined by equation (3.11-1), 
which is the ratio   Qmin/Qcrit.  So long as  Qmin < Qcrit,  the data are in  order (no gross 
error presence detected). In  this  case, the Status must clearly be smaller than or 
equal to the value 1.  

Concerning this case there are several studies in Chapter 3, which will not be 
repeated here. Only for brief information:  

 enhancing the precision of results as a consequence of reconciliation (Example 
3.5-1)  

 gross error presence detection (Example 3.6-1)  

 gross error identification (Example 3.7-1) 

 efficiency of gross errors detection (Example 3.8-1) 

 propagation of errors in data processing and measurement system optimization 
(Example 3.9-2) 

 parametric sensitivity (Example 3.10-1).  
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4.3 Mass balance in steady state with unobservable variables 

The aim of this example is to show the consequences of  insufficient instrumentation 
of the measurement system.  

 

Fig. 4.3-1: Balance scheme (demo Example MC-4) 

We have here 4 unmeasured streams (dash-and-dotted), so one could believe that 
they could be computed from the 4 balance equations. The input data are: 

 
M A T E R I Á L  S T R E A M S  [KG/S] 

 

 ID         TYPE          VALUE      MAX.ERROR 

 S1          N           100.1000 

 S2          N            41.1000 

 S3          M            79.0000      2.0000 % 

 S4          M            30.6000     10.0000 % 

 S5          M           108.3000      4.0000 % 

 S6          M            19.8000      4.0000 % 

 S7          N            10.0000 

 S8          N            10.0000 

 
The abridged results read: 
 
  Number of measured variables                     4 

  Number of adjusted variables                     3 

  Degree of redundancy                             1 

  Number of unmeasured variables                   4 

  Number of observable variables                   1 

  Number of unobservable variables                 3 

  Number of free variables                         1 

  Number of equations                              4 

  Number of independent equations                  4 

 

  W A R N I N G  

  1. Some unobservable variables detected. 

     Please, use menu item 'Calculate > Classification' 

 

S T R E A M S  [KG/S] 

  Name      Type       Inp.value       Rec.value      Abs.error 

  S1         NO          100.100         98.694          1.709 

  S2         NN     UNOBSERVABLE 

  S3         MC           79.000         78.894          1.514 

  S4         MC           30.600         30.203          2.550 

  S5         MC          108.300        109.097          2.696 

  S6         MN           19.800         19.800          0.792 

  S7         NN     UNOBSERVABLE 

  S8         NN     UNOBSERVABLE 
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Here, the situation differs from the case examined in Section 4.1. We have now met 
with the situation where in one part of the scheme, the measurement is quite 
sufficient and redundancy  occurs (around node N4), while in other places, there is 
lack of measurement (around nodes N1, N2, N3). This can be met in practice quite  
often, because certain regions of production units are, due to their importance, 
endowed with meters considerably more than regions of smaller importance.  The 
consequence is then the notice (warning) in the extract from the program, viz. that 
unobservable variables are present.  

Let us first observe that in this case, there no longer holds the relation (3.3-1) that 
under certain circumstances enables us computing the degree of redundancy. This 
relation gives degree of redundancy 0 (no redundancy), while in reality all streams 
connected with node N4 are measured, and also reconciled.  

In the basic information on the results, there is the item Number of free variables ; 
this  is the necessary number of unmeasured variables to be measured or otherwise 
fixed, so as to make all variables observable. In the given case, the number of free 
variables is 1, thus just one unmeasured variable must be given (preferably 
measured) in addition to make the system fully observable. The selection of this 
variable is, however, not arbitrary. The problem is solved by the RECON program in 
menu Calculations – Classification. The result reads as follows. 

 

U N O B S E R V A B L E  V A R I A B L E S 

  

Type Variable 

  MF  S2 

  MF  S7 

  MF  S8 

 

  Unobservable variables: 3 

  1 must be measured or fixed 

 

Among the given streams S2, S7, S8, we can choose. Let us note that it makes no 
sense to measure in addition the further unmeasured stream S1. If we did so, the 
observability problem would not be solved, only the degree of redundancy  would 
increase (as the reader can verify).   
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4.4 Mass balance at steady state – an unsolvable system  

Besides the variables of types M (measured) and N (not measured), the program 
RECON knows also so-called fixed variables thus constants that do not change in the 
course of data processing. They also can be conceived as measured variables, with 
null error. Because the program cannot freely manipulate with their values, in certain 
situations the data reconciliation process cannot be brought to end (to attain zero 
residuals). Such a case takes place with the following scheme.  

 

Fig. 4.4-1: Balance scheme (demo Example MC-5) 

The dashed lines represent here fixed streams. It is obvious at first sight that in the 
node N1 balance, only fixed streams occur. If the values of their flowrates are chosen 
arbitrarily, the balance around this node will most likely not be satisfied. The input 
data are following. 

 

M A T E R I A L  S T R E A M S    [KG/S] 

 

ID          TYPE          VALUE      MAX.ERROR 

 S1          F           100.1000 

 S2          F            41.1000 

 S3          F            79.0000 

 S4          M            30.6000     10.0000 % 

 S5          M           108.3000      4.0000 % 

 S6          M            19.8000      4.0000 % 

 S7          F            58.0000 

 S8          N            10.0000 

 

During the computation with these data, the following results turn up.  

 

I T E R A T I O N 

  Iter            Qeq            Qx              Qy            Qmin 

  START    9.9258E+00 

    1      2.5000E-01    3.3809E-01      2.7900E+01      7.8199E-01 

    2      2.5000E-01    4.2509E-15      0.0000E+00      7.8199E-01 

    3      2.5000E-01    4.2509E-15      0.0000E+00      7.8199E-01 

    4      2.5000E-01    4.2509E-15      0.0000E+00      7.8199E-01 

    5      2.5000E-01    4.2509E-15      0.0000E+00      7.8199E-01 

 

  Task does not converge !!! 



 

 65 

It is seen that one has not been able to attain zero residuals of the equations. If 
employing the service of menu Calculate – Solvability, we obtain the following 
message.  

 

MESSAGE ON SOLVABILITY  

The following fixed variables are not consistent:  

 

 Type of variable 

  MF  S1 

  MF  S2 

  MF  S7 

 

 Legend: 

  MF  Mass flow 

 

 Note 

From these variables 1 must be re-classified to 'M' (measured) or 'N' (unmeasured) 

Please correct your task.   
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4.5 Multicomponent balance of the LPG separation 

The mixture of hydrocarbons  LPG (Liquefied Petroleum Gas) is separated in the 
system of three distillation columns 

 

Fig. 4.5-1: Balance scheme (demo example MC-6) 

We have here altogether 5 components, 3 balancing nodes (distillation columns) and 
8 streams.  

Components:         C1 ethane 
   C2 propane 
   C3 i-butane 
   C4 n-butane 
   C5 pentane+ (pentane and higher hydrocarbons) 

The hydrocarbon mixture  S1 is led into node N1, so-called absorber – desorber. In 
its upper part, heavier hydrocarbons are stripped by the pentane fraction S6 , giving 
rise to so-called lean (residual) gas consisting mainly of ethane. In column N2, 
hydrocarbons  C4 and lighter (stream S4) are separated from pentane and heavier 
hydrocarbons (streams S5 and S6). In column N3, propane (stream S7) is separated 
from the butanes (stream S8). 

All flowrates and their composition are measured with the exception of the stream S3 
composition. The maximum errors at the measurement of concentrations are 
expressed as so-called relative per cents , i.e. per cents from the concentration 
measured itself also in per cents. The input data read as follows. 

 
M A T E R I A L   S T R E A M S  [kg/h],  [%] 

 

 ID         COMPONENT   TYPE         VALUE     MAX.ERROR 

 S1          Flowrate     M       8620.0000      4.0000 % 

             C1          M         10.500000    5.000000 % 

             C2          M         32.000000    3.000000 % 

             C3          M         43.600000    3.000000 % 
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             C4          M          3.000000   15.000000 % 

             C5          M          9.500000    5.000000 % 

 

 S2          Flowrate    M       1040.0000      6.0000 % 

             C1          M         85.700000    2.000000 % 

             C2          M          2.100000   15.000000 % 

             C3          M          2.300000   15.000000 % 

             C4          M          1.300000   15.000000 % 

             C5          M          9.900000    5.000000 % 

 

 S3          Flowrate    M      17800.0000      4.0000 % 

             C1          N          0.100000 

             C2          N         15.000000 

             C3          N         20.000000 

             C4          N          5.000000 

             C5          N         60.000000 

 

 S4          Flowrate    M       6860.0000      4.0000 % 

             C1          M          0.200000   40.000000 % 

             C2          M         41.200000    3.000000 % 

             C3          M         54.200000    3.000000 % 

             C4          M          2.700000    5.000000 % 

             C5          M          0.600000   40.000000 % 

 

 S5          Flowrate    M        810.0000      2.0000 % 

             C1          F          0.00000E+0 

             C2          M          0.400000   40.000000 % 

             C3          M          1.800000   15.000000 % 

             C4          M          8.200000    5.000000 % 

             C5          M         90.200000    1.000000 % 

 

 S6          Flowrate    M      10400.0000      4.0000 % 

             C1          F          0.00000E+0 

             C2          F          0.00000E+0 

             C3          M          0.200000   40.000000 % 

             C4          M          3.300000   15.000000 % 

             C5          M         95.900000    0.500000 % 

 

S7           Flowrate    M       2850.0000      2.0000 % 

             C1          M          0.600000   40.000000 % 

             C2          M         96.200000    0.500000 % 

             C3          M          3.700000   15.000000 % 

             C4          F          0.00000E+0 

             C5          F          0.00000E+0 

 

 S8          Flowrate    M       4060.0000      2.0000 % 

             C1          M          0.100000   40.000000 % 

             C2          M          2.500000   15.000000 % 

             C3          M         91.400000    1.000000 % 

             C4          M          4.500000    5.000000 % 

             C5          M          0.700000   40.000000 % 

 

At the configuration of this problem, we must first enter the components C1 to C5. 
The full name is not filled in.  

 

Fig. 4.5-2: Panel for components definition 

At the creation of streams, besides the flowrates one also fills in the component 
concentrations. 
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Fig. 4.5-3: Panel for filling-in the streams parameters 

We further give the extract of the results. At the stream properties, for the sake of 
space we restrict ourselves to one stream.  

 

Problem: MC-6 (Component balance of system of 3 dist. columns) 

 

 I T E R A T I O N 

  Iter            Qeq            Qx              Qy            Qmin 

   

  START    6.6866E-03 

    1      7.9806E-05    5.5151E-04      4.6870E-03      2.1447E+01 

    2      1.5241E-09    1.9499E-06      5.5365E-05      2.1364E+01 

 

  Key: 

  Qeq   mean residual of equations 

  Qx    mean increment of measured variables in iteration 

  Qy    mean increment of unmeasured variables in iteration 

  Qmin  least squares function 

 

  G L O B A L  D A T A  

  Number of nodes                                  3 

  Number of streams                                8 

  Number of components                             5 

  Number of measured variables                    38 

  Number of adjusted variables                    38 

  Degree of redundancy                            18 

  Number of unmeasured variables                   5 

  Number of observable variables                   5 

  Number of unobservable variables                 0 

  Number of free variables                         0 

  Number of equations                             23 

  Number of independent equations                 23 

  Number of user defined equations                 0 

  Mean residual of the equations                 1.5241E-09 

  Qmin                                           2.1364E+01 

  Qcrit                                          2.8919E+01 

  Status (Qmin/Qcrit)                            0.738748 

 

  S T R E A M S    [kg/h],  [%] 

  Name of stream:  S1 

  No. Name      Type       Inp.value      Rec.value      Abs.error 

  Flowrate   MC         8620.000       8756.334        102.642 

   1  C1         MC           10.500         10.429          0.368 

   2  C2         MC           32.000         32.677          0.413 

   3  C3         MC           43.600         44.048          0.459 

   4  C4         MC            3.000          3.017          0.084 

   5  C5         MC            9.500          9.829          0.196 
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4.6 Component balance of the chlorination of methane  

The following section describes the balance of a single node – reactor – where 
several chemical reactions take place. 

 

Fig. 4.6-1: Balance scheme (demo example MC-7) 

Let us consider the chlorination of methane. From the balancing point of view,  
altogether 7 components occur in the system (the balancing viewpoint means that 
one ignores intermediate reaction products, radicals etc., which may participate in the 
reactions but do not belong to the initial reaction species, nor to the products):  

Component 
No. 

Formula 

1 Cl2 

2 CH4 

3 CH3Cl 

4 CH2Cl2 

5 CHCl3 

6 CCl4 

7 HCl 

The chlorination reactor has one inlet and one outlet stream. For the seven 
components, four independent stoichiometric equations can be written.  

 Cl2 + CH4 - CH3Cl - HCl   = 0 

 Cl2 + CH3Cl - CH2Cl2 - HCl  = 0 

 Cl2 + CH2Cl2 - CHCl3 - HCl  = 0       (4.6-1) 

 Cl2 + CHCl3 - CCl4 - HCl   = 0 

The set of equations  (4.6-1) constitutes so-called maximal set of stoichiometric 
equations  for the given system of species. Any further reaction must be linearly 
dependent on the above equations (it can be formed as a linear combination of the 
latter) . For example the stoichiometric equation 

 2Cl2 + CH4 - CH2Cl2 - 2 HCl  = 0       (4.6-2) 
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is sum of the first two equations in (4.6-1). We'll return later to the problem that would 
arise, if we added this equation to the maximal set and wanted then use it in the 
balancing.  

Let us now go back to the original problem formulation in the RECON program. We 
first give the components occurring in the problem.  

 

 

Fig. 4.6-2: Panel for defining the components 

Further, we have to enter the values of flowrates and concentrations.  

 

M A T E R I A L   S T R E A M S    [mol/s],  [%] 

 

ID          COMPONENT   TYPE         VALUE    MAX.ERROR 

INPUT       Flowrate    M        100.0000      3.0000 % 

             Cl2         M         62.100000   10.000000 % 

             CH4         M         26.900000   10.000000 % 

             CH3Cl       M         10.800000   10.000000 % 

             CH2C2       M          0.780000   10.000000 % 

             CHCl3       M          0.380000   10.000000 % 

             CCl4        F          0.00000E+0 

             Cl2         F          0.00000E+0 

 

  

 

 

OUTPUT      Flowrate    N        100.0000 

             Cl2         F          0.00000E+0 

             CH4         M          1.570000   10.000000 % 

             CH3Cl       M          6.830000   10.000000 % 

             CH2C2       M         24.800000   10.000000 % 

             CHCl3       M          4.820000   10.000000 % 

             CCl4        M          0.390000   10.000000 % 

             Cl2         M         59.300000   10.000000 % 

 

Our reactor is a laboratory one, where only samples of inlet and outlet streams are 
taken and analyzed. The flowrate is measured at the inlet only. One sets up the 
material balance in units of species (matter) variable. After entering the properties of  
streams, one has to enter information on the chemical reactions. This is done in two 
steps. First, one creates so-called reaction bank. 

 



 

 71 

 

Fig. 4.6-3: Panel for creating the reaction bank 

In the second step, with the reaction nodes one associates the reactions defined in 
the bank.  

 

Fig. 4.6-4: Associating reactions with reaction node  

At the panel of node in Fig. 4.6-4, we first mark the window Reaction node on the 
right above. One then can choose a reaction from the list in the reaction bank.  

The data input is thus finished. The results of the data reconciliation are following:  

 

G L O B A L  D A T A 

  Number of nodes                                  1 

  Number of streams                                2 

  Number of components                             7 

  Number of reactions                              4 

  Number of reaction nodes                         1 

  Number of measured variables                    12 

  Number of adjusted variables                    11 

  Degree of redundancy                             4 

  Number of unmeasured variables                   5 

  Number of observable variables                   5 

  Number of unobservable variables                 0 

  Number of free variables                         0 

 

  Number of equations                              9 

  Number of independent equations                  9 

  Number of user defined equations                 0 

  Mean residual of the equations          4.9403E-07 

  Qmin                                    9.4573E-01 

  Qcrit                                   9.5145E+00 

  Status (Qmin/Qcrit)                       0.099400 
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  S T R E A M S    [mol/s],  [%] 

  Name of stream:  INPUT 

  No. Name      Type       Inp.value      Rec.value      Abs.error 

      Flowrate   MN          100.000        100.000          3.000 

   1  Cl2        MC           62.100         60.716          0.463 

   2  CH4        MC           26.900         27.328          0.742 

   3  CH3Cl      MC           10.800         10.797          1.031 

   4  CH2C2      MC            0.780          0.780          0.078 

   5  CHCl3      MC            0.380          0.380          0.038 

   6  CCl4       F           0.00E+0        0.00E+0 

   7  Cl2        F           0.00E+0        0.00E+0 

 

  Name of stream:  OUTPUT 

  No. Name      Type       Inp.value      Rec.value      Abs.error 

      Flowrate   NO          100.000         99.993          3.000 

   1  Cl2        F           0.00E+0        0.00E+0 

   2  CH4        MC            1.570          1.570          0.157 

   3  CH3Cl      MC            6.830          6.862          0.670 

   4  CH2C2      MC           24.800         25.598          0.818 

   5  CHCl3      MC            4.820          4.864          0.466 

   6  CCl4       MC            0.390          0.390          0.039 

   7  Cl2        MC           59.300         60.716          0.463 

 
  R R E A C T I O N   E X T E N T S  

 

  Node     Reaction        Extent 

  N1        R1      25.756 

            R2            29.691 

            R3             4.875 

            R4             0.390 

 

Let us go back once more to the problems concerning the set of stoichiometric 
reactions used in the balancing. To the set of equations (4.6-1), let us add the 
dependent equation (4.6-2). The reaction bank is then of the form  

 
 

If we associate all these 5 reactions with  reactor N1, the computation will run with 
the result that certain reaction extents remain unobservable.  

 
R E A C T I O N   E X T E N T S 

Node      Reaction        Extent 

N1        R1            UNOBSERVABLE 

            R2            UNOBSERVABLE 

            R3             4.875 

            R4             0.390 

            R5            UNOBSERVABLE 

 

All other results remain however the same as before adding the dependent reaction 
(4.6 2). This means only that the extents of the dependent reactions cannot be 
identified by the measured data (although all the reactions can run in the given 
species system). On the other hand, if some of the independent reactions of the set 
(4.6-1) were considered absent, the results would change and probably, the 
presence of a gross error would be detected. 



 

 73 

4.7 Ammonia synthesis reactor – master and dependent streams  

The following section describes the multi-component balance of a reactor for 
synthesis of ammonia. 

 

 

Fig. 4.7-1: Balance flow-sheet (demo example MC-8) 

The synthesis gas (stream S10) consists of four components:  

 

Component No Formula 

1 H2 

2 N2 

3 NH3 

4 CH4Ar 

The pseudocomponent CH4Ar represents inert species in the synthesis gas, mostly 

methane and rare gases (stemming from the technology of its preparation). 

The ammonia reactor has four beds (sections). The reactants from sections are 
quenched by introducing parts of the cold raw synthesis gas (streams S2, S4, S6 and 
S6). There is only one chemical reaction in the system: 

 3H2 + N2 – 2NH3 = 0        (4.7-1) 
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Let us now go back to the original problem formulation in the RECON program. We 
first define the components occurring in the problem.  

This reaction must be put into the reaction bank and associated with reactors R1, R2, 
R3 and R4 in the way described in the preceding example.  

There are 6 streams incident with the SPLITTER node (S1, S2, S4, S6, S8 and S10). 
These streams have the same composition. We can select for example the S1 
stream as the master stream, the 5 remaining streams will be so-called dependent 
streams – see Subsection 2.3.2 (the choice of the master stream is arbitrary and 
does not influence the results). 

Concentrations are entered only for the master stream, the dependent streams are 
only marked as dependent on their panel of parameters. 

 

 

Fig. 4.7-2: Panel for defining a dependent stream 

Further, we have to enter the values of flowrates and concentrations.  

 

M A T E R I A L   S T R E A M S    [MOL/S],  [%] 

 

 ID          COMPONENT   TYPE        VALUE     MAX.ERROR 

 S1          Flowrate    M        655.0000      5.0000 % 

             H2          M         63.800000    2.000000 % 

             N2          M         21.100000    2.000000 % 

             NH3         M          3.000000    2.000000 % 

             CH4AR       M         12.000000    2.000000 % 

 

 S10         Flowrate    M       2300.0000      5.0000 % 

Composition identical with stream 'S1' 

 

 S2          Flowrate    M        655.0000      5.0000 % 

Composition identical with stream 'S1' 

 

 S3          Flowrate    N       1200.0000 

             H2          M         57.200000    2.000000 % 

             N2          M         19.000000    2.000000 % 

             NH3         M         10.900000    2.000000 % 

             CH4AR       M         12.900000    2.000000 % 

 

S4          Flowrate    M         330.0000      5.0000 % 

Composition identical with stream 'S1' 

 

 S5          Flowrate    N       1400.0000 

             H2          M         53.400000    2.000000 % 

             N2          M         17.700000    2.000000 % 

             NH3         M         15.400000    2.000000 % 

             CH4AR       M         13.500000    2.000000 % 

 

S6          Flowrate    M         360.0000      5.0000 % 

Composition identical with stream 'S1' 

 

 S7          Flowrate    N       1800.0000 

             H2          M         51.700000    2.000000 % 

             N2          M         17.100000    2.000000 % 
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             NH3         M         17.500000    2.000000 % 

             CH4AR       M         13.700000    2.000000 % 

 

S8          Flowrate    M         300.0000      5.0000 % 

Composition identical with stream 'S1' 

 

 S9          Flowrate    N       2000.0000 

             H2          M         51.700000    2.000000 % 

             N2          M         16.800000    2.000000 % 

             NH3         M         18.700000    2.000000 % 

             CH4AR       M         13.800000    2.000000 % 

 
The data input is thus finished. The results of the data reconciliation are following 
(abbreviated):  
 

 

G L O B A L   D A T A 

 

  Number of nodes                                  5 

  Number of streams                               10 

  Number of components                             4 

  Number of reactions :                            1 

  Number of react. nodes :                         4 

  Number of measured variables                    26 

  Number of adjusted variables                    26 

  Number of non-measured variables                 8 

  Number of observable variables                   8 

  Number of unobservable variables                 0 

  Number of free variables                         0 

  Number of equations                             22 

  Number of independent equations                 22 

  Number of user equations                         0 

  Degree of redundancy                            14 

 

  Mean residue of equations               5.8649E-12 

  Qmin                                    3.5910E+00 

  Qcrit                                   2.3697E+01 

  Status (Qmin/Qcrit)                       0.151541 

 

  S T R E A M S    [MOL/S],  [%] 

 

  Stream name:  S1 

  From node 'SPLITTER' to node 'R1' 

  No. Name       Type      Inp.value      Rec.value      Abs.error 

      Flowrate   MC          655.000        654.835         31.647 

   1  H2         MC           63.800         63.854          0.175 

   2  N2         MC           21.100         21.149          0.142 

   3  NH3        MC            3.000          3.000          0.060 

   4  CH4AR      MC           12.000         11.996          0.106 

 

Stream name:  S2 

  From node 'SPLITTER' to node 'R1' 

  Composition identical with stream 'S1' 

 

  No. Name       Type      Inp.value      Rec.value      Abs.error 

      Flowrate   MC          655.000        654.835         31.647 

 

  Stream name:  S3 

  From node 'R1' to node 'R2' 

 

  No. Name       Type      Inp.value      Rec.value      Abs.error 

      Flowrate   NO         1200.000       1216.440         40.141 

   1  H2         MC           57.200         57.252          0.254 

   2  N2         MC           19.000         18.938          0.161 

   3  NH3        MC           10.900         10.895          0.212 

   4  CH4AR      MC           12.900         12.916          0.116 

Etc. 

 

E X T E N T S   O F   R E A C T I O N S 

 

  NODE      REACTION      EXTENT 

  R1        R1            46.615 

  R2        R1            41.528 

  R3        R1            35.245 

  R4        R1            27.795 
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4.8 Multicomponent balance of a flotation circuit  

This example from mineral industry describes the multi-component balance of a 
flotation circuit (adapted from H.W.Smith and N.M.Ichiyen: Computer Adjustment of 
Metallurgical Balances. CIM Bulletin for September, 1973, pp. 97-100).  

Copper and zinc are separated from suspensions by flotation in the following 
process: 

 

 

Fig. 4.8-1: Balance flow-sheet (demo example MC-9) 

The composition of all streams is simplified to 3 components: 

 

Component No Formula 

1 Cu 

2 Zn 

3 REST 

The pseudocomponent REST represents the remaining elements in the system, 
including water. The concentration of the REST is always unmeasured and 
completes the composition to 100 %. 

Further are values of flowrates and concentrations.  

 

M A T E R I A L   S T R E A M S    [T/H],  [%] 

 ID          COMPONENT   TYPE        VALUE     MAX.ERROR 

 S1          Flowrate    N          9.0000 

             CU          M          5.210000  2.00000E-2 

             ZN          M          5.410000  2.00000E-2 

             REST        N         95.000000 
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 S2          Flowrate    N          8.0000 

             CU          M          0.450000  5.00000E-2 

             ZN          M          4.920000    0.200000 

             REST        N         95.000000 

 

S3          Flowrate    N          7.0000 

             CU          M          0.130000  2.00000E-2 

             ZN          M          5.120000    0.200000 

             REST        N         95.000000 

 

 S4          Flowrate    N          6.0000 

             CU          M        9.00000E-2  1.00000E-2 

             ZN          M          0.410000  2.00000E-2 

             REST        N         99.000000 

 

 S5          Flowrate    M          2.2100   10.0000 % 

             CU          M         19.860000    2.000000 

             ZN          M          7.090000    1.000000 

             REST        N         75.000000 

 

 S6          Flowrate    M          2.5000   10.0000 % 

             CU          M         21.440000    2.000000 

             ZN          N          4.950000 

             REST        N         75.000000 

 

 S7          Flowrate    M          0.6600   10.0000 % 

             CU          M          0.510000  2.00000E-2 

             ZN          M         52.100000    2.000000 

             REST        N         50.000000 

 

 S8          Flowrate    N          0.3500 

             CU          M         21.600000    1.000000 

             ZN          M          2.100000    2.000000 

             REST        N         96.000000 

 

The data input is thus finished. The results of the data reconciliation are following 
(abbreviated):  
 

G L O B A L   D A T A 

 

  Mean residue of equations               2.4463E-11 

  Qmin                                    3.9550E+00 

  Qcrit                                   1.2584E+01 

  Status (Qmin/Qcrit)                       0.314289 

 

  S T R E A M S    [T/H],  [%] 

  Stream name:  S1 

  From node 'ENVIRON' to node 'CELL' 

 

  No. Name       Type      Inp.value      Rec.value      Abs.error 

      Flowrate   NO            9.000          9.714          0.673 

   1  CU         MC            5.210          5.210          0.020 

   2  ZN         MC            5.410          5.410          0.020 

   3  REST       NO           95.000         89.380          0.028 

 

  Stream name:  S2 

  From node 'CELL' to node 'CUFLOT' 

 

  No. Name       Type      Inp.value      Rec.value      Abs.error 

  ---------------------------------------------------------------- 

      Flowrate   NO            8.000          7.429          0.593 

   1  CU         MC            0.450          0.453          0.050 

   2  ZN         MC            4.920          4.983          0.126 

   3  REST       NO           95.000         94.564          0.134 

 

  Stream name:  S3 

  From node 'CUFLOT' to node 'ZNFLOT' 

 

  No. Name       Type      Inp.value      Rec.value      Abs.error 

  ---------------------------------------------------------------- 

      Flowrate   NO            7.000          7.316          0.583 

   1  CU         MC            0.130          0.128        8.53E-3 

   2  ZN         MC            5.120          5.035          0.128 

   3  REST       NO           95.000         94.837          0.129 
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5 Models of thermal unit operations 

In the previous chapter, we have given several examples of mass and species 
balances. With the energy balances, the situation is more complicated for a number 
of reasons. Besides the unavoidable energy losses into the environment, there is 
another problem. It is the modeling of the mass streams enthalpy dependency on  the 
state variables; indeed, our knowledge about these dependencies is never perfect. 
That's why already the name of the chapter speaks of models. 

Further, we'll describe models of basic heat operations. From such units, one can 
then set up the models of more complex systems.  The present chapter will enable 
the reader to create simple models in the program RECON  and check himself the 
results.   

The structure of all sections is as follows. 

1. BALANCING SCHEME. It is a copy of the scheme created in the graphical editor of 
the RECON program. To individual streams are in addition written identifiers of 
state variables (T for temperature, P for pressure and X for wetness) .If a given 
variable is denoted by these letters, unmeasured variables are given in italics.  
Details can be found in the part INPUT DATA  of the example. 

2. INPUT DATA. This is a somewhat abridged extract of data for the problem created in 
program RECON – menu  Flowsheet – Data review. It comprises all information 
needed for the problem configuration.  

3. PANEL OF THE NODE MODEL PARAMETERS DEFINITION. It is the panel, where the node 
parameters for energy balance are defined. In case of more complex schemes, 
there can be more such panels.  

4. RESULTS. It is an abridged extract from the results for the user's inspection, 
created in program RECON – menu  Calculate – Results. All examples in this 
chapter are without gross errors, so the sum of squares of adjustments thus Qmin.  
values are not given. 

Although this manual is not conceived as a substitute  for  instructions to the RECON 
program, let us still indicate a procedure to be maintained by the reader when 
creating the problems (tasks).  

1. Enter the name of the task, which is simultaneously the name of the file for the 
model  to be created.  

2. Enter the text of the file title (long name).  

3. In the further panel, change physical units (when necessary). The units chosen in 
individual cases are given in part INPUT DATA.  

4. Enter the component name. It is recommended to enter H2O and not to fill in the 
full name. 

5. The graphical editor surface turns up. Before one starts drawing, it is 
recommended to enter the state variables values (temperatures, pressures and 
wetnesses) in the menu Accessories. Names, types and values can be found in 
part INPUT DATA. In the standard manner are given  beforehand the wetnesses 
STEAM (wetness = 0) and WATER (wetness = 100).  



 

 79 

6. The set up of models including energy balance is a little bit more difficult than for 
models with a mass balance only. It is recommended to start with the mass 
balance part of the model, which is usually a basis of energy balancing. After 
checking the mass balance part of the model, energy balance functions can be 
added gradually.  

7. The scheme drawing proper is recommended to be started by drawing all nodes; 
the latter are to be conveniently placed on the screen (at later changes in size 
and placing, one can disturb the streams already drawn). At the nodes, one fills 
in only Name (it is in the scheme) and Description (invent some).  

8. Then draw the streams. Their short names are given in the scheme, a description 
is again invented.  The types of streams, values and possible errors (for 
measured variables) can be found in part INPUT DATA. If one deals with an 
energy stream, this must be marked in the panel  of the stream on the right 
above. Thereby, the definition of the problem concerning the mass balance is 
complete.  

9. In order to create the energy balance equation for the given node, we must 
designate this node on its panel as a heat node (square on the right above). In 
this manner, one makes the center of the panel accessible for the configuration 
of heat functions, temperatures, pressures and wetnesses. At this moment, 
these state variables must naturally be already defined. Let us recall that one 
fills in only those state variables that are relevant for the given heat function. So 
as to  explain this important part, all panels are figured in the text.  

10. Having finished the configuration of all heat nodes, one can carry out the 
computation.  

Let us still explain certain abbreviations used in the RECON program.  

dT mean temperature difference in heat exchanger 
F type of variable  - fixed variable (known as errorless) 
HTC heat transfer coefficient  
M type of variable  - Measured variable 
MC type of variable – Measured variable, adjustable (Corrected by data 

reconciliation)  
MN type of variable – measured variable, nonadjustable 
MPag unit of pressure (final g means pressure difference against atmospheric 

pressure, the same for further pressure units) 
N type of variable – uNmeasured variable 
NO type of variable – uNmeasured variable, Observable 
NN type of variable – uNmeasured variable, uNobservable (non-observable) 
Q heat flow 

Let us note in addition that certain examples have null degree of redundancy and one 
deals then only with solving the set of equations. For simple cases formed by one or 
several nodes, this is typical in practice. Redundancy arises just by connecting 
simple unit operations in larger systems.  

For the majority of examples given in this chapter, the reader will have at hand also 
their model solutions, i.e. files with respective models. Names of the files correspond 
to numbers of sections in this chapter. E.g. to example from Section 5.1 coresponds 
Example E-1, to example from Section 5.2 example E-2, etc.   
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5.1 Mixer of thermal streams 

Mixing two or several streams is a basic unit operation. The model generates two 
balance equations  – the mass and energy balances. From the model, one can 
compute two unmeasured variables at most, e.g. the outlet flowrate and temperature.  

The following example is that of mixing two streams of water with different 
temperatures. Before creating the scheme in the graphical editor, the user must 
define 3 temperatures and 1 pressure (menu Accessories). The pressure in the 
whole system is that of the atmosphere, and with respect to the temperatures, the 
water is below the saturation line. The model is formed by two equations (mass and 
energy balances). Because all  variables are measured, the problem has two 
degrees of redundancy. 

Start by drawing the flowsheet for mass balance only (node M1 and streams S1, S2 
and S3). At this moment the color of the node will be gray. After checking the box 
Heat node on the node’s panel, fill in heat functions and their parameters. After that 
the color of the node will change, showing that the heat balance is active. 

T-T1, P-atm

T-T2, P-atm

T-T3, P-atm

 

Fig. 5.1-1: Balance scheme (demo Example E-1) 

INPUT  DATA 

 NAME       TYPE            VALUE     MAX.ERROR 

 M A T E R I A L   S T R E A M S    [KG/S] 

 S1          M            60.0000      1.0000 

 S2          M            40.0000      2.0000 

 S3          M           102.0000      2.0000 

 T E M P E R A T U R E S    [C] 

 T1          M            60.0000      1.0000 

 T2          M            40.0000      1.0000 

 T3          M            51.0000      1.0000 

 P R E S S U R E S    [KPA] 

 atm         F           101.3250 
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Fig. 5.1-2: Panel of node model definition  

RESULTS (abbreviated) 

G L O B A L  D A T A 

  Degree of redundancy                             2 

  Number of equations                              2 

  Qmin                                     3.764E+00 

  Qcrit                                    5.974E+00 

V A R I A B L E S 

  Name      Type       Inp.value     Rec.value      Max. error  

  S T R E A M S    [KG/S] 

  S1         MC           60.000         60.148          0.938 

  S2         MC           40.000         41.053          1.472 

  S3         MC          102.000        101.201          1.484 

  T E M P E R A T U R E S    [C] 

  T1         MC           60.000         59.653          0.880 

  T2         MC           40.000         39.769          0.946 

  T3         MC           51.000         51.589          0.600 

  P R E S S U R E S    [KPA] 

  atm        F           101.325        101.325 

 

The mixer is a basic node type. In practice, it can have several inlets, and also more 
outlets.  For a mixer in proper sense, all outlet streams should be in the same 
thermodynamic state.  
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5.2 Simple heat exchanger 

This kind of exchanger is characterized by the fact that it has only two streams, which 
exchange heat. One stream is so-called hot and the other cold stream. This model 
generates just one equation (heat balance). It is worth mentioning that with this 
model, one gives the heat exchange area and number of passes.  From the model 
one then computes, besides the heat flow in the exchanger, also the overall heat 
transfer coefficient. 

In our example, one deals with the heating/cooling of water with temperature below 
the saturation line and under atmospheric pressure. Before creating the scheme in 
graphical editor, one has to enter 4 temperatures and 1 pressure. 

After that draw both streams. You will be warned that these streams are loops going 
from Environment to environment. This is allowed for heat exchangers only. After that 
draw the exchanger E1 on the crossing of streams.  

T-THINP, P-atm

T-TCINP, P-atm

T-THOUT, P-atm

T-TCOUT, P-atm

 

Fig. 5.2-1: Balance scheme (demo Example E-2)  

 

INPUT  DATA 

 NAME       TYPE           VALUE      MAX.ERROR 

 

 M A T E R I A L  S T R E A M S    [t/h] 

 COLD        M            20.0000      2.0000 % 

 HOT         M            10.0000      2.0000 % 

 T E M P E R A T U R E S    [C] 

 TCINP       M            20.0000      1.0000 

 TCOUT       M            39.0000      1.0000 

 THINP       M            90.0000      1.0000 

 THOUT       M            50.0000      1.0000 

 P R E S S U R E S    [KPA] 

 atm         F           100.0000 

 

 

 E X C H A N G E R S    [M^2] 

 NAME      Stream      End    Function  Temperature  Pressure     Wetness      Area 

  

 E1         HOT        Inlet    H2O(T,P)   THINP      atm                        100 

                       Outlet   H2O(T,P)   THOUT      atm                            

            COLD       Inlet    H2O(T,P)   TCINP      atm                            

                       Outlet   H2O(T,P)   TCOUT      atm                               
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Fig. 5.2-2   Panel of the model parameters definition 

RESULTS 

G L O B A L   D A T A 

  Degree of redundancy                             1 

  Number of equations                              1 

  Qmin                                     1.481E+00 

  Qcrit                                    3.841E+00 

V A R I A B L E S 

  Name       Type      Inp.value      Rec.value      Max.error 

  S T R E A M S    [t/h] 

  COLD       MC           20.000         20.056          0.389 

  HOT        MC           10.000          9.970          0.194 

  T E M P E R A T U R E S    [C] 

  TCINP      MC           20.000         19.629          0.802 

  TCOUT      MC           39.000         39.370          0.803 

  THINP      MC           90.000         89.814          0.954 

  THOUT      MC           50.000         50.185          0.955 

  P R E S S U R E S    [KPA] 

  atm        F           100.000        100.000 

 

 

 E X C H A N G E R S    [MJ/h],  [C],  [MJ/h/M^2/C] 

 

  Name           Q(hot)       Q(cold)         Q(rec)         dT        HTC 

  E1            1675.797      1588.655       1655.290     39.672      0.417 

 

Here,  Q(hot) and  Q(cold)  mean transferred heats calculated from hot and cold 
streams separately, while Q(rec) is heat resulting from reconciled values.  
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5.3 General heat exchanger  

A general heat exchanger differs from the simple one mainly by the fact that it can 
comprise  more than two streams. It is formed by two balancing nodes, one of which 
represents the hot side, the other one the cold side of the exchanger. Both nodes are 
connected by an energy stream representing the heat flow from the hot to the cold 
side through the heat exchange surface. This arrangement makes possible  to model 
situations, for the description of which the simple exchanger does not suffice.   

The model generates altogether 4 balance equations – the mass and energy 
balances around both of the nodes. If compared with the simple exchanger, it has 
now three unknowns – the heat flow through the exchanger and two unknown 
flowrates at the outlets from both nodes. One degree of redundancy is available for 
the reconciliation, so long as the other variables are known (thus in the same manner 
as in the case of a simple exchanger).  

Let us start from the preceding example, i.e. the heating/cooling of water with 
temperature below the saturation line at atmospheric pressure. In addition, let us 
consider the heat loss from the cold side, say QLOSS estimated a priori as 20 MJ/h; 
the error of this estimate is assumed to be 4 MJ/h.   

Before drawing the scheme, it is necessary to define 4 temperatures and 1 pressure.  

T-TCINP, P-atm T-TCOUT, P-atm

T-THOUT, P-atmT-THINP, P-atm

 

Fig. 5.3-1: Balance scheme (demo Example E-3)  

 

Comparing with a simple exchanger, we see that both parts of the exchanger have 
now  two incident streams – inlet and outlet. If some of the flowrates is measured 
then only once, e.g. at the inlet. The outlet flowrate is then calculated from the mass 
balance.  

INPUT DATA 

 NAME       TYPE          VALUE      MAX.ERROR 

 M A T E R I A L   S T R E A M S    [t/h] 

 COLDIN      M            20.0000      2.0000 % 

 COLDOUT     N            20.0000 

 HOTIN       M            10.0000      2.0000 % 

 HOTOUT      N            10.0000 

 

F L O W S  O F  E N E R G Y   [MJ/h] 

 Q           N          1000.0000 

 QLOSS       M            20.0000       4.0000 

 T E M P E R A T U R E S    [C] 

 TCINP       M            20.0000      1.0000 
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 TCOUT       M            39.0000      1.0000 

 THINP       M            90.0000      1.0000 

 THOUT       M            50.0000      1.0000 

 P R E S S U R E S    [KPA] 

 atm         F           100.0000 

 

PANELS  OF  THE  MODEL PARAMETERS DEFINITION 

 

 

Fig. 5.3-2: Cold side of exchanger 

 

 

Fig. 5.3-3: Hot side of exchanger 

 

RESULTS 

G L O B A L  D A T A 

  Degree of redundancy                             1 

  Number of equations                              4 

  Qmin                                     8.792E-01 

  Qcrit                                    3.841E+00 

V A R I A B L E S 

  Name       Type         Measured      Reconciled   Max.error of reconciled val. 

   

  S T R E A M S    [t/h] 

  COLDIN     MC           20.000         20.043          0.389 

  COLDOUT    NO           20.000         20.043          0.389 

  HOTIN      MC           10.000          9.977          0.194 

  HOTOUT     NO           10.000          9.977          0.194 

  F L O W S  O F  E N E R G Y    [MJ/h] 

  Q          NO         1000.000       1659.996         59.427 
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  QLOSS      MC           20.000         20.055          3.998 

  T E M P E R A T U R E S    [C] 

  TCINP      MC           20.000         19.714          0.802 

  TCOUT      MC           39.000         39.285          0.803 

  THINP      MC           90.000         89.857          0.954 

  THOUT      MC           50.000         50.143          0.955 

  P R E S S U R E S    [KPA] 

  atm        F           100.000        100.000 

 

The results can be compared with the preceding example of a simple exchanger. The 
only difference is here the energy loss stream. In the case of a general heat 
exchanger, the mean temperature difference is no longer computed, nor the overall 
heat transfer coefficient. If the user needs these values, he must define them himself 
with the aid of user defined equations.   
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5.4 Steam generator 

In practice, steam can be generated in different manners (e.g. by hot combustion 
products, other steam of higher pressure, or a hot heat exchanging medium). The 
thermodynamic state at the boiling proper inside the generator  can be defined by 
temperature or pressure. One here assumes phase equilibrium between liquid and 
vapor phases. 

This unit operation can be, according to its complexity, modeled as a simple or 
general heat exchanger. As the steam generator in a nuclear power plant will be the 
subject of a more extensive case study below,  let us now prepare this model for 
further use.  

Heat is supplied to the steam generator (SG)  by high-pressure hot water circulating 
between the nuclear reactor and the high pressure water part of the SG. Into the 
steam part is supplied feed water; steam and blowdown water form the outlets. The 
steam contains a small amount of liquid phase. Because we here have more than 2 
streams, let us apply the general heat exchanger model.   

In this model, altogether 4 balance equations are generated. If we measure the 
flowrates of all  mass streams connected with the steam space and the hot water 
flowrate at the inlet into the high-pressure water space, we have altogether 2 
unknown streams, viz. hot water outlet and heat flow.  If we further measure all 
temperatures and pressures, two degrees of redundancy are available for 
reconciliation and data validation.   

T-FW, P-FW T-SG, X-STEAM

T-SG, X-WATER

T-HWIN, P-HW

T-HWOUT, P-HW

 

Fig. 5.4-1: Balance scheme (demo Example E-4) 

 

INPUT DATA 

Besides the mass and heat flowrates, the problem involves 4 temperatures (hot water 
temperatures HWIN and HWOUT, temperature in steam generator SG , equal for 
outlet steam and blowdown, and temperature of feed water  FW). Further involved 
are two pressures (FW for feed water and HW for hot water). In addition, we here 
have two wetness values for liquid water (WATER) and (wet) steam (STEAM).   
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NAME        TYPE          VALUE       MAX.ERROR 

 

 M A T E R I A L    S T R E A M S    [KG/S] 

 BLOWDOWN    M             6.1200      5.0000 % 

 FW          M           444.5000      2.0000 % 

 HWIN        M          5650.0000      5.0000 % 

 HWOUT       N          5000.0000 

 STEAM       M           445.0000      2.0000 % 

 E N E R G Y    F L O W S    [KJ/S] 

 QSG         N        800000.0000 

 T E M P E R A T U R E S    [C] 

 HWIN        M           295.2000      1.0000 

 HWOUT       M           265.8000      1.0000 

 SG          M           257.6000      1.0000 

 FW          M           221.6000      1.0000 

 P R E S S U R E S    [KPA] 

 FW          M         10000.0000      0.5000 % 

 HW          M         10000.0000      0.5000 % 

 

 W E T N E S S E S    [%] 

 STEAM       F             0.2500 

 WATER       F           100.0000 

 

PANELS  OF  MODEL  PARAMETERS  DEFINITION 

 

Fig. 5.4-2: Steam space 

 

 

Fig. 5.4-3: Water space 
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RESULTS 

  G L O B A L   D A T A 

  Degree of redundancy                             2 

  Number of equations                              4 

  Qmin                                     4.001E+00 

  Qcrit                                    5.974E+00 

  V A R I A B L E S 

  Name      Type       Inp.value      Rec.value      Max.error  

  S T R E A M S    [KG/S]  

  BLOWDOWN   MC            6.120          6.115          0.306 

  FW         MC          444.500        448.863          6.172 

  HWIN       MC         5650.000       5471.834        200.270 

  HWOUT      NO         5000.000       5471.834        200.270 

  STEAM      MC          445.000        442.748          6.172 

  E N E R G Y  F L O W S    [KJ/S] 

  QSG        NO       800000.000     816004.219      11530.738 

  T E M P E R A T U R E S    [C] 

  FW         MC          221.600        221.570          0.999 

  HWIN       MC          295.200        294.745          0.863 

  HWOUT      MC          265.800        266.161          0.890 

  SG         MC          257.600        257.597          1.000 

  P R E S S U R E S    [KPA] 

  FW         MC        10000.000       9999.995         50.000 

  HW         MC        10000.000      10000.159         50.000 

  W E T N E S S E S    [%] 

  STEAM      F             0.250          0.250 

   WATER      F           100.000        100.000      
 

The steam generator balancing is very important in practice. This example will again 
be scrutinized from other points of view in one of the Case studies below.  
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5.5 Condensation of steam  

During the condensation, steam transfers its condensation heat to the cold stream, 
which is mostly liquid of lower temperature. So long as just this heating is the 
purpose, the whole apparatus is called heater. The steam in the condenser changes 
to condensate, which can be water at the saturation line, possibly also somewhat 
subcooled (in this section, sub-cooling will not be considered for simplicity). The 
difference between the inlet steam and outlet condensate enthalpies determines the 
amount of heat transferred.   

The state at the condensation proper inside the exchanger can be defined either by 
temperature or by pressure. One here assumes phase equilibrium between steam 
and condensate. A heat exchanger with condensation can be, according to its 
complexity, modeled as a simple or general exchanger. Let us further use the general 
form of  exchanger.  

The example describes a high-pressure heater of feed water heated by steam 
withdrawn as side stream from a high-pressure turbine. With this arrangement, only 
feed water flowrate is usually measured. One further measures the withdrawn steam 
(STEAM) pressure (which approximates the pressure in the steam space of the 
heater) and the feed water temperatures before (FW-IN) and after (FW-OUT) the 
heater. Further  known is also the wetness of the steam withdrawn.  

This model generates 4 balance equations, but simultaneously we here have 4 
unknowns (flowrates of steam, condensate and outlet feed water, and the heat flow. 
The degree of redundancy is 0 and no data reconciliation takes place. At this 
measurement constellation, the model is only able to compute all the unmeasured 
variables.    

P-STEAM, X-STEAM P-STEAM, X-WATER

     T-FW-OUT, P-FW
    T-FW-IN, P-FW

     

 

Fig. 5.5-1: Balance scheme (demo Example E-5) 

 

INPUT  DATA 

NAME       TYPE          VALUE       MAX.ERROR 

M A T E R I A L   S T R E A M S    [T/H] 

 COND        N            60.0000 

 FW-IN       M          1320.0000      2.0000 % 

 FW-OUT      N          1300.0000 

 STEAM       N            60.0000 

 E N E R G Y   F L O W S    [GJ/H] 

 Q           N            60.0000 
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 T E M P E R A T U R E S    [C] 

 FW-IN       M           191.0000      1.0000 

 FW-OUT      M           223.0000      1.0000 

 P R E S S U R E S    [MPAG] 

 FW          M             6.5000      0.1000 

 STEAM       M             2.8400    2.000E-2 

 W E T N E S S E S    [%] 

 steam       F             4.6000 

 water       F           100.0000 

 

PANEL OF MODEL PARAMETERS DEFINITION 

 

Fig. 5.5-2: Steam side 

 

 

Fig. 5.5-3: Feed water side 

 

RESULTS 

 
G L O B A L   D A T A 

  Degree of redundancy                             0 

  Number of equations                              4 

  Qmin                                     0.000E+00 

  Qcrit                                    0.000E+00 
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V A R I A B L E S 

  Name      Type       Inp.value      Rec.value      Max.error 

  S T R E A M S    [T/H] 

  COND       NO           60.000        110.800          5.383 

  FW-IN      MN         1320.000       1320.000         26.400 

  FW-OUT     NO         1300.000       1320.000         26.400 

  STEAM      NO           60.000        110.800          5.383 

  F L O W S  O F  E N E R G Y    [GJ/H] 

  Q          NO           60.000        190.266          9.243 

  T E M P E R A T U R E S    [C] 

  FW-IN      MN          191.000        191.000          1.000 

  FW-OUT     MN          223.000        223.000          1.000 

  P R E S S U R E S    [MPAG] 

  FW         MN            6.500          6.500          0.100 

  STEAM      MN            2.840          2.840          0.020 

  W E T N E S S E S    [%] 

  steam      F             4.600          4.600 

  water      F           100.000        100.000 

 

In this case, one has not dealt with data reconciliation, but only with direct 
computation (the degree of redundancy was 0). It is obvious that the values of all 
measured variables before and after the procedure must remain the same. However, 
this does not hold for the unmeasured ones. Quite often, at the problem configuration 
the values of unmeasured variables are not known even approximately. There then 
arises  the question, what the software will do with bad initial guesses of the 
unmeasured variables.  

Special attention is required in cases where the enthalpy function does not uniquely 
determine the temperature or pressure (the enthalpy of steam as dependent on 
temperature or pressure passes through the maximum and two values of 
temperature or pressure can correspond to one enthalpy value).   
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5.6 Expander 

Expanders serve for reducing the pressure of hot water to a lower value  (frequently 
as part of a cascade of condensate from the steam system). Some part of the heat 
energy then gives rise to steam phase by evaporation. Then from one liquid stream, 
two streams are formed – water and steam. We here assume that the two streams 
are in the state of thermodynamic equilibrium. In addition the situation is complicated 
by the fact that the steam phase can contain some portion of liquid  as a 
consequence of imperfect water droplet separation (this depends on the construction 
of the expander).   

The following example will be simple –  condensate on the saturation line expands 
from higher to lower pressure. The condensate is defined by the temperature, in the 
expander proper is maintained constant pressure. The arising steam contains 0.2 % 
liquid phase. From the flowrates, only inlet into the expander is measured.   

The model generates two balance equations and we here have  two unmeasured 
outlet flowrates. The degree of redundancy is thus 0. The model only serves for 
computing the phase distribution in the expander.   

         T-W-IN, X-WATER

     P-EXP, X-WATER

   P-EXP, X-STEAM

 

Fig. 5.6-1: Balance scheme (demo Example E-6) 

 

INPUT DATA 

 
NAME        TYPE          VALUE       MAX.ERROR 

 M A T E R I A L  S T R E A M S    [T/H] 

 STEAM-OUT   N             2.0000 

 WATER-IN    M            26.0000      5.0000 % 

 WATER-OUT   N            20.0000 

 T E M P E R A T U R E S    [C] 

 W-IN        M           258.0000      1.0000 

 P R E S S U R E S    [MPAG] 

 EXP         M             0.6600    5.000E-3 

 W E T N E S S E S    [%] 

 steam       F           0.200E+0 

 water       F           100.0000 
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Fig. 5.6-2: Panel of the model parameters definition 

RESULTS 

 
G L O B A L  D A T A 

  Degree of redundancy                             0 

  Number of equations                              2 

  Qmin                                     0.000E+00 

  Qcrit                                    0.000E+00 

 

V A R I A B L E S 

  Name       Type         Measured    Reconciled    Max.error of reconciled val. 

  S T R E A M S    [T/H] 

  STEAM-OUT  NO            2.000          5.236          0.269 

  WATER-IN   MN           26.000         26.000          1.300 

  WATER-OUT  NO           20.000         20.764          1.041 

  T E M P E R A T U R E S    [C] 

  W-IN       MN          258.000        258.000          1.000 

  P R E S S U R E S    [MPAG] 

  EXP        MN            0.660          0.660        5.00E-3 

  W E T N E S S E S    [%] 

  steam      F           0.00E+0        0.20E+0 

  water      F           100.000        100.000 
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5.7 Throttling of steam 

Throttling of steam is an adiabatic process, where the steam pressure is reduced by 
an obstacle in the flow. The throttling organ can have a  fixed cross section area (e.g. 
an orifice), or a variable one (control valve). If heat loss into the environment is 
neglected, one can model in this way also pressure drop in flow of fluids in a pipeline.  

The model generates 2 balance equations (mass and energy balances). In the 
following example, we'll have 2 unknown variables – flowrate and wetness of the 
steam at the throttling organ outlet. One will thus again deal with mere solution  of the 
model equations without data reconciliation.   

Concerning the stream energies, also their kinetic components may play a role (due 
to the pressure drop, also the stream velocity is changed). In case of wet steam, also 
wetness is changed. Although the operation is simple, the results of computation 
need not be trivial as the following examples will show.   

  

   P-IN, X-STEAM-IN P-OUT, X-STEAM-OUT

 

Fig. 5.7-1: Balance scheme (demo Example E-7) 

 

INPUT DATA 

 
NAME        TYPE          VALUE      MAX.ERROR 

 M A T E R I A L  S T R E A M S    [T/H] 

 STEAM-IN    M           440.0000      4.0000 % 

 STEAM-OUT   N           400.0000 

 P R E S S U R E S    [MPAG] 

 IN          M             2.6500    5.000E-2 

 OUT         M             2.3500    5.000E-2 

 W E T N E S S E S     [%] 

 STEAM-IN    F             0.2500 

 STEAM-OUT   N             0.2500 
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Fig. 5.7-2: Panel of model parameters definition 

RESULTS 

G L O B A L   D A T A 

 

  Degree of redundancy                             0 

  Number of equations                              2 

  Qmin                                     0.000E+00 

  Qcrit                                    0.000E+00 

 

V A R I A B L E S 

  Name      Type       Inp.value      Rec.value      Max.error 

  S T R E A M S    [T/H] 

  STEAM-IN   MN          440.000        440.000         17.600 

  STEAM-OUT  NO          400.000        440.000         17.600 

  P R E S S U R E S    [MPAG] 

  IN         MN            2.650          2.650          0.050 

  OUT        MN            2.350          2.350          0.050 

  W E T N E S S E S    [%] 

  STEAM-IN   F             0.250          0.250 

  STEAM-OUT  NO            0.250          0.187          0.016 

One can see that due to throttling, the steam wetness has been lowered.  

We have done still one computation with higher pressures of the steam; the values of 
other variables have remained the same.  

 

P R E S S U R E S    [MPAG] 

 IN          M             4.6500    5.000E-2 

 OUT         M             4.3500    5.000E-2 

The resulting wetnesses now are 

 

W E T N E S S E S    [%] 

  STEAM-IN   F             0.250          0.250 

  STEAM-OUT  NO            0.250          0.373          0.029 

In this case, the wetness of the outlet steam has  increased from the value 0.187 %  
obtained in the preceding example, to the value 0.373 %. The, as it seems to be 
contradiction of the two results follows from the saturated steam enthalpy 
dependency on pressure.  While in the first case enthalpy increased with pressure,  
with higher pressures in the second example we have already got into the region 
where with increasing pressure, saturated steam enthalpy decreases (see the  p-i 
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diagram for water vapor). The dividing point is ca. 235 deg C, resp. 3.06 MPa.  In the 
neighborhood of this point (of the respective values on the saturation line), the 
temperature resp. pressure dependency of the saturated steam enthalpy is very flat 
and passes through the maximum. This fact is quite relevant for the precision of 
balancing calculations and will be documented with more details in one of the case 
studies.  
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5.8 Wetness separator 

The separator of wetness (small water droplets) serves for separating the liquid 
phase from the wet steam. Since the steam wetness is difficult to measure, one 
usually starts from the assumptions of given (fixed) inlet wetness and separation 
efficiency expressed e.g. by the steam wetness at the outlet from the  separator. The 
model generates 2 equations.  Input variables can then be for example inlet steam 
flowrate and steam wetnesses at the inlet and outlet.  It is then possible to compute 
for example the flowrate of the liquid phase separated and that of steam at the outlet 
from the separator.  In the following example, we'll assume that the whole separator 
works under one pressure.  

P-SEP, X-STEAM-IN

P-SEP, X-STEAM-OUT

P-SEP, X-WATER

 

Fig. 5.8-1: Balance scheme (demo Example E-8) 

INPUT  DATA 
 
NAME       TYPE           VALUE       MAX.ERROR 

  

 M A T E R I A L    S T R E A M S    [T/H] 

 CONDENS     N            10.0000 

 STEAM-IN    M            64.2000      4.0000 % 

 STEAM-OUT   N            40.0000 

 P R E S S U R E S   [KPAG] 

 SEP         M             0.6600    5.000E-3 

 W E T N E S S E S    [%] 

 STEAM-IN    F             6.2000 

 STEAM-OUT   F             0.3000 

 water       F           100.0000 

 

 

Fig. 5.8-2: Panel of the model parameters definition 
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RESULTS 

 
G L O B A l  D A T A 

 

  Degree of redundancy                             0 

  Number of equations                              2 

  Qmin                                     0.000E+00 

  Qcrit                                    0.000E+00 

 

V A R I A B L E S 

 

  Name      Type      Inp.values     Rec.values      Max.error 

  S T R E A M S    [T/H] 

  CONDENS    NO           10.000          3.799          0.152 

  STEAM-IN   MN           64.200         64.200          2.568 

  STEAM-OUT  NO           40.000         60.401          2.416 

  P R E S S U R E S    [KPAG] 

  SEP        MN            0.660          0.660        5.00E-3 

  W E T N E S S E S    [%] 

  STEAM-IN   F             6.200          6.200 

  STEAM-OUT  F             0.300          0.300 

  water      F           100.000        100.000 
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5.9 Input / output of energy  (pump) 

One frequently meets with the need to supply / withdraw energy into / from the 
system. An example can be  e.g. withdrawing heat into the environment or work 
performed on the shaft of a turbine. Such kind of problems will be illustrated by the 
energy balance of a pump.   

The pump serves for enhancing the pressure of the fluid stream. The necessary 
energy is usually supplied by an electrical motor. The whole input power  is 
transferred to the pump with  certain efficiency  (e.g. 95 %). The remaining part of 
electric energy is transformed to heat withdrawn into the environment by the cooling 
of the motor. The part that enters the pump energy balance is only energy transferred 
by the shaft connecting the motor and the pump.   

Mechanic energy is transformed in the pump proper to enthalpy thus pressure and 
heat energies (heating of the fluid). The ratio of the two energies depends on the 
construction of the pump, its mechanical state and the working régime.  

We'll further describe the energy balance of the pump proper. The input mechanic 
energy (power) is measured by the electric energy input  multiplied by its efficiency.  

T-IN, P-IN T-OUT, P-OUT

 

Fig. 5.9-1: Balance scheme (demo Example E-9) 

 

INPUT  DATA 

 
NAME       TYPE           VALUE      MAX.ERROR 

  

 M A T E R I A L   S T R E A M S    [T/H] 

 IN          M           836.0000      3.0000 % 

 OUT         N           800.0000 

 F L O W S  O F  E N E R G Y    [MWH/H] 

 POWER       M             0.5500      10.0000 % 

 T E M P E R A T U R E S    [C] 

 IN          M            38.8000      1.0000 

 OUT         N            38.0000 

 P R E S S U R E S    [MPAG] 

 IN          M             1.0800    1.000E-2 

 OUT         M             1.9800    1.000E-2 
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Fig. 5.9-2: Panel of the model parameters definition 

RESULTS 

 
G L O B A L  D A T A 

 

  Degree of redundancy                             0 

  Number of equations                              2 

  Qmin                                     0.000E+00 

  Qcrit                                    0.000E+00 

 

V A R I A B L E S 

  

  Name      Type          Inp.value     Rec.value    Max.error 

   

  S T R E A M S    [T/H] 

  IN         MN          836.000        836.000         25.080 

  OUT        NO          800.000        836.000         25.080 

  F L O W S  O F  E N E R G Y    [MWH/H] 

  POWER      MN            0.550          0.550          0.055 

  T E M P E R A T U R E S    [C] 

  IN         MN           38.800         38.800          1.000 

  OUT        NO           38.000         39.176          1.002 

  P R E S S U R E S    [MPAG] 

  IN         MN            1.080          1.080          0.010 

  OUT        MN            1.980          1.980          0.010 

 

This simple example has shown a simple interconnection of the energy system with 
the 'ambient world'. At the mechanic energy, one dealt only with a rough estimate 
(the 10 % uncertainty can even be too optimistic).  On the other hand we have 
obtained the temperature increase after the pump by less than 0.4 deg C, which is 
certainly inside the limits of uncertainty at temperature measurement. Fortunately, the 
heat equivalent of mechanic work is  small.  
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5.10 Turbine segment 

For the needs of balancing,  the turbine segment  (TS) is defined as  part of the 
turbine, endowed with just one side steam withdrawal (bleeding). The thus defined 
TS can comprise one or several circulating wheels, which is however irrelevant for 
the balancing. The main goal of the TS balance is to find the work (power) exerted on 
the turbine shaft, which is otherwise a practically unmeasurable variable.  

Let us further suppose that we know the  pressure and temperature or (in the case of 
wet steam) wetness of steam at the inlet to some TS. In the TS, steam exerts work 
and gets on into the following segment (or out of  the turbine), while some part of it is 
withdrawn as a side stream (extracted). For the outlet streams, we also suppose the 
knowledge of pressure and temperature (or again wetness for wet steam). If some of 
these variables were not known, observability problems could arise with the 
unmeasured variables. Because the turbine is part of a larger system, the 
observability can be improved by the integration of the TS model into the whole 
model.  

In the following example, we put together the models of  TS and feed water 
preheating. The steam extracted from the turbine condenses in the exchanger and 
preheats thereby the feed water. From this preheating, the balance enables us to 
compute the unmeasured amount of extracted steam.   

T-STEAM-IN, X-STEAM-IN

P-STEAM-OUT,

X-STEAM-OUT

T-FW-OUT,

P-FW

P-STEAM-OUT,

X-WATER

T-FW-IN,

P-FW
 

 

Fig 5.10-1: Balance scheme (demo Example E-10) 

 

The following symbols are to be interpreted: 

T  turbine segment 

FWS  feed water preheating –  steam side of exchanger 

FWW  feed water preheating – water side of exchanger 
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STEAM-IN  saturated steam going into TS, defined by temperature (X = 0). 

STEAM-OUT  steam leaving TS and going into further TS, with wetness  3.6 % 

STEAM-FW extracted steam heating the feed water heater. Its state is the same as 
in stream  STEAM-OUT 

SW work (power) on the turbine shaft (Shaft Work) 

COND condensate from STEAM-FW 

Q heat transferred in feed water heater 

FW-IN inlet feed water 

FW-OUT outlet feed water 

INPUT DATA 

 
NAME        TYPE          VALUE      MAX.ERROR 

  

 M A T E R I A L   S T R E A M S    [T/H] 

 COND        N           100.0000 

 FW-IN       M          1350.0000      2.0000 % 

 FW-OUT      N          1300.0000 

 STEAM-FW    N           100.0000 

 STEAM-IN    M          1320.0000      3.0000 % 

 STEAM-OUT   N          1250.0000 

 F L O W S  O F  E N E R G Y    [MWH/H] 

 Q           N            50.0000 

 SW          N            30.0000 

 T E M P E R A T U R E S    [C] 

 FW-IN       M           191.0000      1.0000 

 FW-OUT      M           223.0000      1.0000 

 STEAM-IN    M           256.0000      1.0000 

 P R E S S U R E S    [MPAG] 

 FW          M             6.6000    5.000E-2 

 STEAM-OUT   M             2.8400    2.000E-2 

 W E T N E S S E S    [%] 

 STEAM-IN    F           0.000E+0 

 STEAM-OUT   F             3.6000 

 water       F           100.0000 
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PANELS  OF MODEL  PARAMETERS  DEFINITION 

 

Fig. 5.10-2: Turbine segment 

 

 

Fig. 5.10-3: Preheater – steam side 

 

 

Fig. 5.10-4: Preheater – water side 

 

RESULTS 

G L O B A L   D A T A 

 

  Degree of redundancy                             0 

  Number of equations                              6 

  Qmin                                     0.000E+00 

  Qcrit                                    0.000E+00 
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V A R I A B L E S 

  Name      Type       Inp.value      Rec.value      Max.error 

   

  S T R E A M S    [T/H] 

  COND       NO          100.000        112.127          5.448 

  FW-IN      MN         1350.000       1350.000         27.000 

  FW-OUT     NO         1300.000       1350.000         27.000 

  STEAM-FW   NO          100.000        112.127          5.448 

  STEAM-IN   MN         1320.000       1320.000         39.600 

  STEAM-OUT  NO         1250.000       1207.873         39.973 

  F L O W S  O F  E N E R G Y    [MWH/H] 

  Q          NO           50.000         54.046          2.625 

  SW         NO           30.000         22.097          0.685 

  T E M P E R A T U R E S    [C] 

  FW-IN      MN          191.000        191.000          1.000 

  FW-OUT     MN          223.000        223.000          1.000 

  STEAM-IN   MN          256.000        256.000          1.000 

  P R E S S U R E S    [MPAG] 

  FW         MN            6.600          6.600          0.050 

  STEAM-OUT  MN            2.840          2.840          0.020 

  W E T N E S S E S    [%] 

  STEAM-IN   F           0.00E+0        0.00E+0 

  STEAM-OUT  F             3.600          3.600 

  water      F           100.000        100.000 
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5.11 Phase equilibrium water – water vapor 

Data reconciliation with the aid of phase equilibrium will be illustrated by the model of 
a steam generator (SG), which has been already given with details in Section 5.4. 
The model created in the graphical editor remains unchanged and the reader is 
referred to  the section mentioned above. Further described will be the enlarging of 
the model by the phase equilibrium equation.  

Let us now suppose that besides the temperature, also pressure has been measured 
in the SG.  The relation between temperature and pressure is not given in the 
graphical editor, but in the editor of user defined equations. There are now two 
possibilities –  either express temperature as function of pressure, or pressure as 
function of temperature. The result should, however, be practically independent of 
this choice.  

In the original model, altogether 4 balance equations are generated, the phase 
equilibrium assumption generates the fifth. There are  two unmeasured variables in 
the problem, so three degrees of redundancy are at hand for data reconciliation and 
validation.   

 

 

Fig. 5.11-1: Editor of user defined equations (demo Example E-11) 

Equation EQUIL represents here the relation between measured temperature T and 
equilibrium temperature T*, which  is function of pressure. 

T*  =  T(P)          (5.11-1) 



 

 107 

In the editor, the equation is of the form 

 

[ST<PSG>-[T<TSG>]  ,      (5.11-2) 

 

which is Eq. (5.11-1) rewritten with zero right-hand side. Function ST (Saturated 
Temperature) called by button  „Saturated steam – temp.“  has the argument of 
measured pressure PSG.  The second term in the equation is measured temperature 
TSG.   

INPUT DATA 

In addition to the flowrates of streams, we here have  4 temperatures (those of hot 
water HWIN and HWOUT, the temperature in steam generator TSG valid for outlet 
steam and blowdown, and temperature of feed water  FW). Further, we here have 
three pressures (pressure in steam generator PSG, for feed water FW and for hot 
water HW).  New are two wetnesses for liquid water (WATER) and steam (STEAM). 

 

NAME        TYPE          VALUE      MAX.ERROR 

 M A T E R I A L    S T R E A M S    [KG/S] 

 BLOWDOWN    M             6.1200      5.0000 % 

 FW          M           444.5000      2.0000 % 

 HWIN        M          5650.0000      5.0000 % 

 HWOUT       N          5000.0000 

 STEAM       M           445.0000      2.0000 % 

 F L O W S  O F   E N E R G Y    [KJ/S] 

 QSG         N        800000.0000 

 T E M P E R A T U R E S    [C] 

 HWIN        M           295.2000      1.0000 

 HWOUT       M           265.8000      1.0000 

 SG          M           257.6000      1.0000 

 FW          M           221.6000      1.0000 

 P R E S S U R E S    [KPA] 

 FW          M            10.0000      0.5000 % 

 HW          M            10.0000      0.5000 % 

 PSG         M             4.5400      1.0000 % 

 W E T N E S S E S    [%] 

 STEAM       F             0.2500 

 WATER       F           100.0000 

 

PA N E LS  OF  MODEL  PARAMETERS  DEFINITION 

Both panels are the same as in Section 5.4. 

 
 
RESULTS 

G L O B A L   D A T A 

  Degree of redundancy                             3 

  Number of equations                              5 

  Number of user defined equations                 1 

  Qmin                                     4.409E+00 

  Qcrit                                    7.842E+00 
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V A R I A B L E S 

  Name      Type          Inp.values      Rec.values   Max.error 

   

  S T R E A M S    [KG/S] 

  BLOWDOWN   MC            6.120          6.115          0.306 

  FW         MC          444.500        448.864          6.172 

  HWIN       MC         5650.000       5471.657        200.269 

  HWOUT      NO         5000.000       5471.657        200.269 

  STEAM      MC          445.000        442.749          6.172 

  F L O W S  O F  E N E R G Y    [KJ/S] 

  QSG        NO       800000.000     815954.273      11528.935 

  T E M P E R A T U R E S    [C] 

  FW         MC          221.600        221.570          0.999 

  HWIN       MC          295.200        294.744          0.863 

  HWOUT      MC          265.800        266.162          0.890 

  TSG        MC          257.600        257.876          0.522 

  P R E S S U R E S    [MPA] 

  FW         MC           10.000         10.000          0.050 

  HW         MC           10.000         10.000          0.050 

  PSG        MC            4.540          4.532          0.039 

  W E T N E S S E S    [%] 

  STEAM      F             0.250          0.250 

  WATER      F           100.000        100.000 

 

Note: If we created a user defined equation for phase equilibrium and temperature or 
pressure were unmeasured, this would only serve for computing the unmeasured variable 
without changing the degree of redundancy. In this case, RECON would only serve as a 
calculator for equilibrium temperature or pressure. Let us note in addition that in the panel  
„Node balance“, the unmeasured temperatures resp. pressures under phase equilibrium 
conditions are available for the user automatically, even without defining any user defined 
equation. ♦      
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5.12 User defined variables and equations 

This example was taken over from a more extensive problem. It will thus not be 
completely solved here. Our aim is only to show how the user defined variables and 
equations are integrated in the whole model.  

We have a system with six steam generators, whose thermal powers (flows of 
energy) have identifiers QSG1, QSG2 to QSG6 [MW]. For the sum of the powers, we 
have introduced the auxiliary variable QNR [MW] defined by the equation 

 

QNR  =  QSG1 + QSG2 + QSG3+ QSG4+ QSG5+ QSG6    (5.12-1) 

 

One must further write the user defined equation. It is important to know that if the 
equation involves standard variables (flowrates, pressures and the like), the program 
enters them in units of the SI system.  

For  better understanding, notice that although the program works, from the viewpoint of the 
user, with the system of units he has chosen,  for the computation proper all values are 
transformed into the system SI.  Only after finishing all calculations, the data are presented to 
the user in his system of units again. This holds, however, not for the auxiliary variables. It is 

the user's task to care for the physical dimensions of the latter. 

If we thus want, in our case, to have the variable QNR in MW, we must take account 
of it when writing the user defined equation. The equation then must be of the 
following form [ recall that the equations in the RECON program are written with zero 
r.h. side – Eq. (5.12-2) is rewritten Eq.  (5.12-1)] 

 

QNR * 1000000 - QPG1 - QPG2 - QPG3 - QPG4 - QPG5 - QPG6  =  0  (5.12-2) 

 

The constant 1000000 represents here transformation of variable QNR (which is in 
MW) into the expression in system SI with corresponding unit W. 

The realization in RECON program is shown in the following figure 

 

 

Fig. 5.12-1: Panel for definition of user defined equations 
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Recall here that the syntax of variables entry is 

 

[kind of the variable<identificator of the variable>]. 

 

 For example [V<QNR>] means that variable QNR is auxiliary (Various). In contrast 
to it  [S<QPG1>] - variable QPG1 – is the stream flowrate (Stream). Naturally, the 
user need not worry with this syntax, it is created by the program itself. 
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5.13 Splitter of streams  

Let us finally mention one very frequent thermal unit operation, for which one almost 
never sets up any energy balance in practice.  By Splitter of streams  is meant 
dividing  one stream into two or more further streams, while the thermodynamic state 
of all the streams is identical. 

 

Let us further consider a simple splitter with two outlet streams. 

 

 

Fig. 5.13-1: Splitter of stream 

 

For this node, we can write the mass balance equation 

 

m1  =  m2  +  m3        (5.13-1) 

 

where the mi  are flowrates, 

further the energy balance 

 

m1h1  =  m2h2  +  m3h3         (5.13-2) 

 

where the hi are specific enthalpies of the streams.  

However, as the specific enthalpies of all streams are equal according to the 
definition of a splitter (the same thermodynamic state), one can divide Eq. (5.13-2) by 
the common enthalpy value and we have Eq. (5.13-1). The energy balance  thus 
brings no new information, being linearly dependent on the former. In practice, one 
thus creates just one, viz. the mass balance equation around any splitter.  If setting 
up also the energy balance, RECON will discard it as dependent.  

Note: One can imagine the situation where one measures simultaneously the inlet and outlet 
state values around a splitter. In this case, it could make sense to set up the energy balance 

as well. However this variant is not met with in practice 
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5.14 Preheat of a crude oil 

Crude oil distillation consumes a lot of energy and systems for energy regeneration 
used in practice are very elaborated. The system described in this example is not 
very complex, its task is only to show typical techniques used in setting up the mass 
and heat balance of such system (a real industrial system is presented in one of case 
studies). The flowsheet is shown in the next figure. 

 

Fig. 5.14-1: Pre-heating crude oil (demo Example E-12) 

Crude oil is preheated by contact with several hot product streams. In the first 
exchanger E1 (stream CRUDE1) it meets with kerosene (stream KERO). After that 
the crude stream splits in two streams (CRUDE2 and CRUDE3). Stream CRUDE2 is 
heated by contact with light gas oil (stream LGO) and heavy gas oil (HGO). Stream 
CRUDE3 meets only with LGO. After that both streams of crude are mixed to form 
stream CRUDE4. It is worth noting that the heat balance is not set up around the 
SPLITTER node (see the previous Section). All flows are measured, except of stream 
CRUDE4. 

The input data are as follows: 

INPUT  DATA 

M A T E R I A L   S T R E A M S    [KG/S] 

ID          TYPE           VALUE    MAX.ERROR 

 CRUDE1      M            99.0000      1.0000 % 

 CRUDE2      M            60.0000      5.0000 % 

 CRUDE3      M            40.0000      5.0000 % 

 CRUDE4      N           100.0000 

 HGO         M             5.0000      2.0000 % 

 KERO        M            15.0000      2.0000 % 

 LGO         M            20.0000      2.0000 % 
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 H E A T   F U N C T I O N S    [kJ, kg, C] 

ID          TYPE           A          B          C     Plus H 

 FnCRUDE     2         0.8600    11.9500   0.000E+0   0.000E+0 

 FnKERO      2         0.8100    11.7000   0.000E+0   0.000E+0 

 FnLGO       2         0.8600    11.7700   0.000E+0   0.000E+0 

 FnHGO       2         0.8900    11.8300   0.000E+0   0.000E+0 

 

T E M P E R A T U R E S    [C] 

 ID          TYPE           VALUE   MAX.ERROR 

 T1          M            25.0000      1.0000 

 T2          M            45.0000      1.0000 

 T3          M            70.0000      1.0000 

 T4          M            90.0000      1.0000 

 T5          M           110.0000      1.0000 

 T51         M           200.0000      2.0000 % 

 T52         M           100.0000      2.0000 % 

 T6          M           100.0000      2.0000 % 

 T61         N           280.0000 

 T62         M           180.0000      2.0000 % 

 T63         M           110.0000      2.0000 % 

 T71         M           335.0000      2.0000 % 

 T72         M           150.0000      2.0000 % 

 

 E X C H A N G E R S 

 ID         Stream     End      Function   TemperaturePressure   Wetness        Area 

 E1         KERO       Inlet    FnKERO     T51                                   200 

                       Outlet   FnKERO     T52                                       

            CRUDE1     Inlet    FnCRUDE    T1                                        

                       Outlet   FnCRUDE    T2                                           

 E2         LGO        Inlet    FnLGO      T62                                   100 

                       Outlet   FnLGO      T63                                       

            CRUDE2     Inlet    FnCRUDE    T2                                        

                       Outlet   FnCRUDE    T3                                           

 E3         HGO        Inlet    FnHGO      T71                                   100 

                       Outlet   FnHGO      T72                                       

            CRUDE2     Inlet    FnCRUDE    T3                                        

                       Outlet   FnCRUDE    T4                                           

 E4         LGO        Inlet    FnLGO      T61                                    50 

                       Outlet   FnLGO      T62                                       

            CRUDE3     Inlet    FnCRUDE    T2                                        

                       Outlet   FnCRUDE    T5                                           

 

For modeling of enthalpies of crude oil and its fractions we have used Type 2 
enthalpy function – so called Berghoff's correlation 

Berghoff's correlation is convenient for hydrocarbon mixtures (crude oil fractions). In 
the SI system of units it reads 

 

 Cp = 4.1868 (0.403 + 0.00045*t)*(0.054*KW + 0.35)/d^(1/2) 

 

where 

 Cp specific heat capacity in kJ/(kg.C) 

 t temperature in centigrade 

 d relative density at 15.6 C (related to the density of the water at the 
same temperature) 
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 KW "Watson's characteristic factor" defined by KW = ((1.8*Tb)^(1/3))/d, 
where Tb is the mean boiling point of the mixture in the absolute scale (Kelvin) 

 

Here, the constant a stands for d in the Berghoff's correlation and the constant b 
stands for KW. 

Parameters of Berghoff’s correlation are entered in a special RECON panel (menu 
Accessories – Functions).  

 

 

Fig. 5.14-2: Panel for definition of enthalpy functions  

For illustration here is also example of configuration of one of heat exchangers: 

 

Fig. 5.14-3: Panel for configuration of exchanger E1  

Results are as follows: 

 

 

 

 

 

 

 



 

 115 

G L O B A L   D A T A 

  Number of nodes                                  2 

  Number of heat nodes                             1 

  Number of exchangers                             4 

  Number of streams                                7 

  Number of components                             1 

  Number of heat functions                         4 

  Number of temperatures                          13 

  Number of measured variables                    18 

  Number of adjusted variables                    18 

  Number of non-measured variables                 2 

  Number of observed variables                     2 

  Number of non-observed variables                 0 

  Number of free variables                         0 

  Number of equations                              7 

  Number of independent equations                  7 

  Number of user equations                         0 

 

  Degree of redundancy                             5 

  Mean residue of equations               1.0154E-09 

  Qmin                                    7.8246E+00 

  Qcrit                                   1.1081E+01 

  Status (Qmin/Qcrit)                       0.706148 

 

  S T R E A M S    [KG/S] 

 

  Name       Type      Inp.value      Rec.value      Abs.error 

  CRUDE1     MC           99.000         99.126          0.929 

  CRUDE2     MC           60.000         59.615          1.508 

  CRUDE3     MC           40.000         39.510          1.501 

  CRUDE4     NO          100.000         99.126          0.929 

  HGO        MC            5.000          5.000          0.097 

  KERO       MC           15.000         15.021          0.292 

  LGO        MC           20.000         19.912          0.390 

 

T E M P E R A T U R E S    [C] 

 

  Name       Type      Inp.value      Rec.value      Abs.error 

  T1         MC           25.000         25.183          0.813 

  T2         MC           45.000         44.412          0.756 

  T3         MC           70.000         70.428          0.747 

  T4         MC           90.000         90.243          0.792 

  T5         MC          110.000        110.176          0.982 

  T51        MC          200.000        200.618          3.483 

  T52        MC          100.000         99.869          1.956 

  T6         MC          100.000         98.275          0.707 

  T61        NO          280.000        280.088          5.020 

  T62        MC          180.000        177.838          2.768 

  T63        MC          110.000        110.717          2.062 

  T71        MC          335.000        335.059          5.959 

  T72        MC          150.000        149.991          2.963 

 

 

  E X C H A N G E R S    [KJ/S],  [C],  [KJ/S/M^2/C] 

 

  Name            Q(hot)       Q(cold)         Q(rec)         dT        HTC 

  E1            3716.585      3898.313       3751.282    110.478      0.170 

  E2            3351.218      3090.906       3195.294     85.212      0.375 

  E3            2542.931      2582.835       2544.183    147.028      0.173 

  E4            5473.941      5569.634       5563.876    150.934      0.737 
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6 Special problems 

This chapter contains several sections solving special problems. They either don’t 
belong to mass or energy balancing or they solve some special problems related to 
industrial use of data validation. 

  

6.1  Dynamic mass balance of a tank 

This section describes a dynamic balance of very simple system – one tank with one 
input and one output stream. Even if this problem seems to be a trivial one, it can be 
used for demonstration of several remarkable features of this type of balancing. 

Moreover, this is a good example to show how RECON can be connected to external 
data sources, in this case it will be connected to data saved in a MS Excel sheet (MS 
Excel database). One should realize that a dynamic balancing can’t be based on one 
data set. To make it functional, there must be some data source to provide a 
continuous flow of information. 

Let’s focus on the following balancing flowsheet. 

 

Fig. 6.1-1: A single tank balance flowsheet (Demo Example MC-21) 

 

Imagine a tank which is a buffer between 2 producing units with a little bit different 
throughput causing some accumulation in the tank. There are 2 real streams 
connected with the tank – input stream S1 and the output stream S2. There is also 
one fictitious stream STOCK representing the inventory in the tank. Before we can 
create this task, a data source should be available. The most simple solution of this 
problem is a small database stored in a MS Excel file. Such file is usually located in 
…\RECON\DATA-EXCEL directory. For this demo example the file name is 
TANKS21.XLS.  
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Fig. 6.1-2: A part of Excel database 

 

This is a part of the TANK21.XLS file, the sheet name is DATA. There are 2 
mandatory objects in the database: 

1. the first column named TIME keeping information about the time of reading data 
2. the first row with tag names of process variables serving for connecting of Recon 

to process data. 

In the first column there is a date/time information about measured values. The tag-
names correspond to physical variables of our flowsheet in Recon. 

Process stream Tag name 

S1 FLOW1 

S2 FLOW2 

STOCK STOCK 

Tab. 6.1-1: Linking of process streams to tag names 

 

Now we can create a flowsheet and link variables to data sources. Parameters of 
streams are as follows 

 

M A T E R I A L   S T R E A M S    [T/H] 

ID          TYPE           VALUE   MAX.ERROR 
 S1          M              100.1000      3.0000 % 
 S2          M                86.1000      3.0000 % 
 STOCK  M            1095.6000      5.0000 

 

The values of parameters are not really important because they will be imported from 
the data source. After creating the flowsheet we should link streams to the data 
source. This is done in 2 steps. Please note that this can by done by the 
Administrator only – use the registration button on the main Recon screen. 

In the first step the TANKS21.XLS file must be defined as the data source for this (or 
other) task. This is done in the menu item Task – Import/export – Import resources.  
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Fig. 6.1-3: Definition of import resources 

 

In this panel the following items should be selected: 

1. The type of the data resource – item 4-MS Excel on the top bar 
2. Time basis – Hourly data 
3. ID of the resource – TANKS21 
4. The path to the Excel file  
5. Excel sheet name – DATA 
6. Name of the Date column – TIME. 

After that this configuration can be saved as New (upper right button).  

The next step is linking stream parameters to the data source in menu Task – 
Import/export – Import configuration. 

 

 

Fig. 6.1-4: Import configuration 

 

In this panel the user should: 
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1. Select Data Source – TANKS21 

2. Link individual streams with Tag name in the right part of the panel by selecting 
the tag and clicking on the Tag name cell. 

Here it is worth mentioning the last 2 columns in the “Import definitions” on the panel: 

 Min.v. meaning the minimum value which will be accepted as valid, the lesser 
values will be taken as fixed zero. This possibility is useful when importing values 
of flow as some types of flowmeters measure some small values (even negative) 
when the flow is fully stopped. 

 {L} saying that the value should not be an average but the Last value. This is 
used in the case of stock (inventory) measurement. 

Now it is possible to change the type of the STOCK stream from a standard material 
stream to the Stock stream. This is done in the panel of stream STOCK parameters 
(right click on the node and select  Parameters). 

 

 

Fig. 6.1-5: Changing the Sort of STOCK stream 

 

Now the configuration is completed. We can run the one day dynamic balancing of 
the tank. This is done in the menu item Task – Import/export – Import and export.  
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Fig. 6.1-6: Definition of a calculation cycle 

 

In this panel at least the following items should be defined: 

1. Beginning and the End of the calculation cycle 

2. Our wish to store data to the Native historical database (MS Access database). 

After that the calculation can start. After the calculation cycle is completed, some 
messages can appear. Probably you will be warned that Recon did not find the 
opening reconciled stock of the time interval beginning. In this case Recon accepts 
the measured value (the opening inventory). 

Before showing results of the whole calculation cycle, let’s look at results of balance 
of one time interval (abridged). 

 

Data:   10.04.2006 04:00 

S T R E A M S    [T/H] 

 

  Name       Type      Inp.value      Rec.value      Abs.error 

  S1         MC           89.400         89.494          2.595 

  S2         MC           81.100         81.023          2.368 

 

  C L O S I N G   S T O C K S    [T] 

  10.04.2006 04:00 

Name       Type      Inp.value      Rec.value      Abs.error 

  TANK       MC          895.600        894.300          3.405 

 

  O P E N I N G   S T O C K S    [T] 

  10.04.2006 03:00 

  Name       Type      Inp.value      Rec.value      Abs.error 

  TANK       F           885.829        885.829 
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The input data of streams are imported from the source file (see Fig. 6.1.2) as well as 
Closing stock. The opening stock is imported from the native database of results. It is 
the reconciled value of the closing stock  from the previous time interval and is 
treated a Fixed variable (Must not be reconciled). 

We can now look at results – menu item Task – View trends. 

 

 

Fig. 6.1-7: Panel for visualizing trends of variables 

 

There is already prepared a group of variables named All. We can see for example 
graphs of the measured and reconciled values.  
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Fig. 6.1-8: Measured (full lines) and reconciled (dotted lines) flows and stock 

 

The STOCK is reconciled only moderately due to its relatively high precision of 
measurement. Further is shown the graph of Status characterizing the data quality 

 

Fig. 6.1.9: Status of data quality 

During dynamic balancing which are repeated many times play important roles 
systematic errors. Let’s now study the influence of a systematic error on the course of 
calculation.  

The data for the original example in Fig. 6.1.1 (demo example MC-21) were modified 
to demonstrate the behavior of the system in the presence of a systematic error. A 
systematic error +5 t/h was added to all values of stream S2 (demo example MC-21A 
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and the source file TANKS21A.XLS). It is important to note that such value is below 
the threshold value of gross error for this variable (which is ca 10 t/h). It means that 
such an error could probably not be detected in one data set. Results of data 
reconciliation with this systematic error are shown on the next 2 figures. 

 

Fig. 6.1-10: Status of data quality for data with systematic errors 

 

It can be seen that for the first 2 data sets a gross error is not detected. This happens 
after some time. It looks like the systematic error “accumulates” in the system for 
some time and after that manifests itself. It can be better explained with the aid of the 
next figure. 

 

Fig. 6.1-11: Measured and reconciled values of STOCK (inventory) 

We can see that in the presence of a systematic error the reconciled value of stock 
starts to systematically deviate from measured values which causes after some short 
time systematic imbalance. It similarly holds for both streams connected with the 
tank. 
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Fig. 6.1-12: Measured and reconciled values of flows 

We can see that repeated dynamic balancing can reveal systematic errors which are 
below their threshold values as gross errors for one data set (one time interval). The 
information is passed from one balancing interval to the next ones via reconciled 
stocks (the closing stock of one interval is the opening stock to the next interval), 
which functions as some kind of “memory”. 

Let’s close this section by showing danger resulting from using unmeasured 
(calculated) stock in dynamic balances. There is demo example MC-21B which 
differs from the previous one by taking the STOCK stream as unmeasured. In this 
case there is no redundancy. 

 

 

Fig. 6.1-13: Real and calculated values of unmeasured Stock stream 

As  was pointed out earlier, due to systematic errors, calculated stock sooner or later 
exceeds physical limits (values are negative or exceed capacity of a tank). 
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6.2 Dynamic multicomponent balance – a batch reactor 

In the previous example of a dynamic mass balance of a tank the problem was very 
simple, only one node with 2 real streams (plus 2 fictitious stock streams) which 
generates only one balance equation. In practice we can meet with one important 
unit operation which is even more simple – a batch reactor. A batch reactor is a 
typical unit operation which requires a dynamic balancing. From the point of view of 
flowsheeting it has no input or output streams, just the opening and closing 
inventories of its components. In Recon we can describe a batch reactor by the 
following simple flowsheet: 

 

 

Fig. 6.2-1: A batch reactor 

 

If we have information about the initial and final composition in a reactor only, the 
problem of balancing and data reconciliation is a trivial one. We can simply re-
formulate the balancing problem into a classical balance of a reactor with one input 
stream (opening inventory) and one output stream (closing inventory). 

More complicated is the case of sampling and analyses of a batch reactor during the 
course of reaction (imagine some laboratory or pilot plant research). In this case we 
must treat the balance as a dynamic one. Let us suppose the following reactor 
facility: 

1. At the beginning the reactor is filled up by reactants and closed. The composition 
of the reaction mixture is known at the beginning 

2. Samples are withdrawn during the course of reactions in equidistant time intervals 
and analyzed 

3. Samples are negligible in comparison with the overall holdup in the reactor 

The reaction system is the propane oxidation in liquid phase (adapted from M. Fillon 
et al: Data reconciliation based on elemental balances applied to batch experiments, 
Computers Chem.Engng. Vol.19, pp. S293-298, 1995). 

There are 5 components in the system 

No. Formula Name 

1 C3H8 propane 

2 O2 oxygen 

3 (CH3)2CO dimethyl-ketone 

4 C3H7OH propanol 

5 H2O water 

Tab. 6.2.1: Chemical components 

among which 2 reactions take place: 
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C3H8  + O2  -  (CH3)2CO  - H2O  =  0     (6.2-1) 

 

C3H8  + 1/2 O2  -  C3H7OH         =  0     (6.2-2) 

 

The balance will be set up in kmol. Data are stored in the Excel database: 

 

Tab. 6.2-2: Measured concentrations stored in an MS Excel database (mol.%) 

The starting amount of all components in the reactor was 114.1 kmol.  

The input data for the balance of the first hour are as follows: 

C H E M I C A L   R E A C T I O N S 

 

                STOICH. COEFF. 

 ID               1      2      3      4      5 Description 

 R1            1.00   1.00  -1.00   0.00  -1.00 DMK 

 R2            1.00   0.50   0.00  -1.00   0.00 propanol 

 

 

 M A T E R I A L   S T R E A M S    [KMOL],  [%] 

 

 ID          COMPONENT   TYPE        VALUE     MAX.ERROR 

 HOLDUP      Flowrate    N        114.1000 

             C3H8        M         34.22        0.50 

             O2          M         55.39        0.50 

             (CH3)2CO    M          4.02        0.50 

             C3H7OH      M          2.78        0.50 

             H2O         M          4.02        0.50 

 

The material stream represents the inventory at the end of the first hour. All 
concentrations are measured, the holdup is unmeasured. The closing inventory must 
be supplemented by data about the opening inventory from Tab. 6.2-2, i.e. 40.00 % 
for propane and 60.00 % for oxygen. The overall opening inventory was 114.1 kmol. 
All data about the opening inventory were taken as fixed (errorless). Results of 
calculation for the first hour follow (abridged): 
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Data:   10.04.2006 02:00 

 

  G L O B A L   D A T A 

 

  Number of nodes                                  1 

  Number of streams                                1 

  Number of stock streams                          1 

  Number of components                             5 

  Number of reactions                              2 

  Number of react. nodes                           1 

  Number of measured variables                     5 

  Number of adjusted variables                     5 

  Number of non-measured variables                 3 

  Number of observed variables                     3 

  Number of non-observed variables                 0 

  Number of free variables                         0 

  Number of equations                              6 

  Number of independent equations                  6 

  Number of user equations                         0 

 

  Degree of redundancy                             3 

 

  Mean residue of equations               4.5673E-16 

  Qmin                                    1.9066E+00 

  Qcrit                                   7.8418E+00 

  Status (Qmin/Qcrit)                       0.243132 

 

 

  C L O S I N G   S T O C K S    [KMOL],  [%] 

  10.04.2006 02:00 

 

  Stream name:  HOLDUP 

  Node name:  REACTOR 

 

  No. Name       Type      Inp.value      Rec.value      Abs.error 

      Stock      NO          114.100        112.637          0.232 

   1  C3H8       MC           34.220         33.962          0.340 

   2  O2         MC           55.387         55.520          0.251 

   3  (CH3)2CO   MC            4.023          3.961          0.271 

   4  C3H7OH     MC            2.777          2.597          0.418 

   5  H2O        MC            4.023          3.961          0.271 

 

  O P E N I N G   S T O C K S    [KMOL],  [%] 

  10.04.2006 01:00 

 

  No. Name       Type      Inp.value      Rec.value      Abs.error 

      Stock      F           114.100        114.100 

   1  C3H8       F            40.000         40.000 

   2  O2         F            60.000         60.000 

   3  (CH3)2CO   F           0.00E+0        0.00E+0 

   4  C3H7OH     F           0.00E+0        0.00E+0 

   5  H2O        F           0.00E+0        0.00E+0 

 

  E X T E N T S   O F   R E A C T I O N S    [KMOL] 

 

  NODE      REACTION      EXTENT 

  ------------------------------ 

  REACTOR   R1             4.461 

            R2             2.926 

  



 

 128 

The calculation can now be repeated for next hours. Reconciled values from the 
previous hour are taken as opening data for the next hour. All opening data must be 
taken as fixed, as was discussed earlier (not to modify the already closed balances). 

Some trends of variables are shown in the next pictures: 

 

 

Fig. 6.2-2: Trend of propanol concentration 

Data are of a good quality and adjustments of measured concentrations are not 
large. 

The next picture shows trend of the overall holdup decrease caused by reaction (6.2-
2).  

 

Fig. 6.2-3: Trend of the overall holdup in the reactor  

Holdup is an unmeasured variable calculated from the balance model. Its first guess 
to start calculations was the constant value of the holdup from the beginning. 

For a detailed analysis of the reactor can be useful trends of extents of reactions. In 
this example with equidistant sampling in interval of 1 hour, the extents of reactions 
are numerically the same as the average reaction rates during the time interval. 
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Fig. 6.2-4: Trends of extents of reaction 

We can see that the reactions extents graphs are not so smooth as graphs of 
concentrations. Really, extents of reaction in the individual time intervals are 
calculated from differences of concentrations. The smaller is the difference, the 
bigger is its relative error. We can await problems either with shortening the time 
interval or at the end of the batch process when reaction rates limits zero.  

6.3 Examples of detection and identification of gross errors 

This important topic was analyzed in Sections 3.6 and 3.7. A detailed analysis of 
effectiveness of gross errors detection was presented in Appendix 4. The purpose of 
this section is to show several problems which are typical for practical implementation 
of gross errors detection and identification. 

6.3.1 Detection of one gross error – threshold values 

Let us return to Section 4.5 dealing with a multicomponent balance of LPG 
separation train. 
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The technology of this process was already described in Section 4.5. For our deeper 
analysis of this system let’s stress that the main function of this system is to separate 
the commercial products which are stream S7 (component C2 – propane) and S8 
(components C3 – i-butane and C4 – n - butane) from component C1 (ethane) and 
C5 (pentanes and higher hydrocarbons). C1 leaves the system mostly in stream S2 
and higher hydrocarbons leave the system mostly in stream S5 (see detailed data in 
Section 4.5).      

In this original example there was no gross error detected, Qmin was 21.4 and the 
Status was 0.739. Let’s now introduce gross errors to flows of streams S2 and S4. 
The size of gross errors will be +15 % of measured values.  

 

Case Stream Orig.value 
(kg/h) 

Error  

(%) 

Error  

(kg/h) 

Value 

(kg/h) 

1 S2 1040 15 156 1196 

2 S4 6860 15 1029 7889 

 

Both sets of data were processed with the following results (in both cases there were 
18 degrees of redundancy and the Qcrit was 28.919): 

 

Case Stream Qmin Status  

 

Adjusta-
bility  

Threshold 
value (kg/h) 

1 S2 26.814 0.927 0.307 221 

2 S4 56.512 1.954 0.686 739 

 

We see that while in the Case1 the introduced gross error was not detected, in the 
Case 2 the gross error was clearly detected with the Status approaching 2. The 
explanation is in the next table with results of Classification of redundant 
measurements (available by RECON in menu Calculate – Clasification).  
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R E D U N D A N T   M E A S U R E M E N T S 

 Type Variable        Adjustability     Threshold value  Unit 

  MF  S1                      0.702             924.063  kg/h 

  MF  S2                      0.307             221.324  kg/h 

  MF  S3                      0.487            2121.933  kg/h 

  MF  S4                      0.686             739.374  kg/h 

  MF  S5                      0.046             137.944  kg/h 

  MF  S6                      0.135            2121.933  kg/h 

  MF  S7                      0.173             259.231  kg/h 

  MF  S8                      0.195             350.230  kg/h 

 

where MF means mass flow 

 

We can see that the gross error added to S2 (156 kg/h) is smaller than its threshold 
value (221 kg/h) while the gross error of S4 (1029 kg/h) is greater than the threshold 
value (739 kg/h). This is explained by their different adjustabilities (see Appendix 4, 
Fig. A4-1). 

6.3.2 Identification of one gross error 

Let’s now try to identify the source of a gross error. The RECON program supports 
so-called semi-automatic identification and elimination of gross errors. This 
procedure will be now demonstrated by our example with a gross error in stream S4. 

After detecting a gross errors, the menu Calculate – Gross errors starts to be active. 
After selecting this choice the following panel appears: 

 

Fig. 6.3-1: Selection of a minimum ratio of reconciled and measured data 
 
This selection has relation to possible numerical problems connected with calculation 
of the normalized adjustment defined by Eq. (3.7-3). For almost non-adjustable 
variables this is a ratio of 2 very small numbers and due to numerical inaccuracies it 
is of a dubious value. See also Appendix 4, Fig. A4-2, where for adjustability 
approaching zero the dimensionless threshold value approaches infinity. Therefore it 
is recommended to accept the default value of this ratio 0.01. This means that all 
redundant variables with this ratio less than 0.01 will be excluded from the search. 

After accepting the default value, the following report appears: 

 

Task: MC-6-2 (Component balance of system of 3 dist. columns, error in S4) 

 REPORT ON GROSS ERRORS 
 S U S P E C T   M E A S U R E M E N T S 
 
 Type Variable           Norm.adjust.    G.e.(abs)    G.e.(rel) 
    MF  S4                       -5.939           1040           15 % 
 
Legend: 
  Norm.adjust.= normalized adjustment 
                         (big value => suspect as gross error) 
  G.e.(abs)    = estimated gross error (absolute value) 
  G.e.(rel)      = estimated gross error (in % of measured value) 
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In this case only one suspect variable was found – the measured flow S4. Let’s note, 
that program also estimated the value of a gross error – 1040 kg/h which is quite 
close to the real value 1029 kg/h. 

After leaving this message box, the next panel appears 

 

 

   
Let’s stop the calculation now as we have found the source of a gross error. But we 
were very lucky in this case, as we will see later. 

6.3.3 Presence of 2 gross errors 

Let’s now introduce gross errors to both S2 and S4, according to the following table: 

 

Case Stream Orig. value 
(kg/h) 

Error 

(%) 

Error 

(kg/h) 

Value 

(kg/h) 

1 S2 1040 30 312 1352 

2 S4 6860 15 1029 7889 

 

Also now a gross error is detected (Qmin = 81.6 and the Status = 2.82). Let’s now try 
to identify gross error sources. We will use the method of so-called successive 
elimination of suspect variables. Its philosophy is simple. From all suspect variables 
we choose several ones (with high values of normalized adjustment) and set them, 
one by one, as unmeasured and execute the data reconciliation process. After that 
select the variable with the lowest value of the Status and set is as unmeasured. 
After that the whole cycle of data reconciliation and gross error identification is 
repeated until the Status falls below 1.  

After using menu Calculate – Gross errors we get the following report: 

 
Task: MC-6-3 (Component balance of LPG separation, error in S2 and S4) 

 

 REPORT ON GROSS ERRORS 

 S U S P E C T   M E A S U R E M E N T S 

 

 Type Variable           Norm.adjust.    G.e.(abs)    G.e.(rel) 

  MF  S4                       -5.753         1336           19 % 

  MF  S2                       -5.228          417           35 % 

  C   C1<S1>                    4.451            3           29 % 

  MF  S8                        2.312          571           14 % 

  MF  S1                        2.198         1477           16 % 

  MF  S7                        2.090          421           15 % 
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Again, the flows with gross errors are on the first 2 places of a suspect list, but 
surprisingly the concentration of the component C1 in stream S1 has its normalized 
adjustment quite close to them. Let’s now continue in the search for gross errors.  
In the next step RECON offers the following screen: 
 

 
 
Fig. 6.3-2: Selection of suspect variables for further data processing 
 
There are not too much suspects, let’s select all of them for the successive 
elimination (click on the double-arrow buttton). 
After that all variables, one by one, are set as unmeasured and data reconciliation is 
done. The result is as follows. 
 

Fig. 6.3-3: Results of elimination of individual suspect variables 
 
These results deserve a deeper analysis. Let’s go through them systematically: 

1. There is no variable responsible fully for the gross error. Status is still greater than 
1 so that our problem is still not solved 

2. The most important are the first 3 suspects, the remaining 3 can be left out as 
they are close to the original Status value (insignificant improvement of the 
original status value which is 2.820) 

3. There is a good survey of results on the bottom lines:  

 degree of redundancy is smaller by 1 due to including one variable among 
unmeasured ones 

 the best status (1.761) was achieved by putting S4 among unmeasured 
variables  

In the next step it is reasonable to eliminate the S4 stream which looks very suspect. 
Recon really recommends it – by selecting the line of S4. So, let’s press the button 
Accept.  
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After pressing the Yes button, the S4 stream is put among unmeasured. Now we can 
repeat the data reconciliation and look what will happen. 

After the elimination of S4 stream flow the Status of data quality is still high – 1.761 
(see Fig. 6.3-3). We can now repeat the search for the remaining error. The next 
report is as follows: 

 

 Task: MC-6-3 (Component balance of LPG separation, error in S2 and S4) 

 

 REPORT ON GROSS ERRORS 

 S U S P E C T   M E A S U R E M E N T S 

 

 Type Variable           Norm.adjust.    G.e.(abs)    G.e.(rel) 

  MF  S2                       -5.404          293           25 % 

  C   C1<S1>                    4.714            2           21 % 

 

We have now only 2 suspects and the difference among them is not very significant. 
Let’s repeat the elimination step. The result follows 

 

Fig. 6.3-4: Results of elimination in the second step 
 
We can see that putting any of 2 suspect variables among unmeasured ones 
removes the problem and the Status is now lower than one. Even if the stream S2 is 
still the first candidate, also the concentration of the component  C1 in the stream 1 is 
still in play. In practice, without knowing how data were constructed, we can be in 
doubts.  

One can ask a question why the C1 concentration in S2 is so suspect. The answer is 
not difficult. The gross error in S2 flow is not very important for the mass balance of 
the node N1 as this stream is relatively small. The 30 % error in this flow (312 kg/h) is 
smaller than uncertainties of other larger streams incident with this node (this value is 
smaller than 4 % of the stream S1, which is its uncertainty). 
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On the other hand side, more than 98 % of component C1 leaves the system in the 
stream S2. This means that 30 % gross error in this stream flow causes significant 
imbalance in the component balance of component C1 around the N1 node. 

6.3.4 Error in the model 

In all examples of gross errors so far the gross error(s) were on existing variables of 
the model. So it was natural that it was possible to pin-point where the problem is (in 
this flowrate, in this concentration). In practice, we can meet quite frequently with 
situations where the problem is not in measured data but in the model. In such cases 
the recommended gross error identification procedures can lead to misleading 
results. Frequent causes of improper modeling can be mistakes in process 
flowsheets, improper reaction stoichiometry or unknown components in streams. 
Such problems can happen mostly during early stages of building the model.  

To illustrate this problem let’s introduce a flowsheet error to the previous example of 
the LPG separation system. Let’s suppose that the stream S5 is not present in the 
flowsheet. 

 

       

 

Fig. 6.3-5: Wrong process flowsheet – stream S5 missing 

 

The stream S5 is the smallest one, its purpose is to withdraw component C5 from the 
system. Its amount is less than 10 % of the feed and its absence in the mass balance 
can be easily masked by random errors in measurement of other streams. 

Results of data processing with this erroneous flowsheet show clear detection of a 
gross error. The Status is 40.85 which shows a serious problem. If we try the gross 
error detection procedure, in RECON we get then following report: 

 

Task: MC-6-4 (Comp.bal.of system of 3 dist. columns - S5 missing) 

REPORT ON GROSS ERRORS 

  Type Variable           Norm.adjust.    G.e.(abs)    G.e.(rel) 

  C   C5<S1>                  -30.888            8          363 % 

  C   C5<S2>                   11.556           27          254 % 

  C   C5<S8>                   10.811            8          454 % 

  C   C2<S1>                    8.333           18           52 % 
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  C   C3<S1>                    7.070           24           50 % 

  MF  S7                       -6.019         1704           62 % 

  C   C1<S1>                    5.837           13          112 % 

  MF  S1                       -5.205         6141           79 % 

  MF  S8                       -4.782         2314           59 % 

  C   C5<S4>                    3.713            5          492 % 

  C   C1<S2>                   -2.551           31           38 % 

  C   C2<S2>                   -2.430           30         1478 % 

  C   C4<S1>                   -2.134            8          309 % 

 According to this report the most suspect is the concentration of component C5 in 
stream S1. Also the other suspects in the queue are concentrations of C5 
components in other streams. We can go on in elimination of suspect variables. Here 
are results: 

 

 

 

We can see that no single variable can be fully responsible for our problem. We can 
also observe that calculated values of individual variables are very different from the 
measured ones (we can see even one negative concentration). We know the reason, 
there is the significant surplus of C5 in the system. So there is a tendency to 
decrease its concentration in the input stream S1 and to increase its concentration in 
outgoing streams. Anyway, if we blindly continue in putting other variables among  
unmeasured, there is no problem to bring Status below 1 and no gross error will be 
detected (this holds generally, at the end we must get the case with zero 
redundancy).   

To conclude this subsection we can say that the application of gross errors 
elimination procedures without a common sense, a good knowledge of the balanced 
system and a sound chemical engineering judgement can end by completely 
misleading results. Very important is also independent proving that some flowmeter is 
wrong, some analytical method is biased, etc.  

6.3.5 Selectivity in gross error identification 

Let’ start with a simple example of mass balance solved already in Example 3.7-1. 
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There was a gross error 10 kg/h added to stream S1. This gross error was clearly 
detected (Status = 10.8).  Here is the result of gross error identification and 
elimination procedure: 

 

Task: MC-3 (one-component balance with gross error) 

 

 REPORT ON GROSS ERRORS 

 S U S P E C T   M E A S U R E M E N T S 

 

 Type Variable           Norm.adjust.    G.e.(abs)    G.e.(rel) 

  MF  S6                        8.021           11           54 % 

  MF  S1                       -8.021           11           11 % 

  MF  S3                        6.811           11           13 % 

 

 

 

We can see that there are 2 suspects with the same absolute value of Normalized 
adjustments and also with the same Status after their elimination (streams S1 and 
S6). These 2 variables are completely undistinguishable by methods described so 
far. These situations are typical for mass (single-component) balances, namely for 
situations with parallel streams. But also in nonlinear models (multi-component 
balances, heat balances, and others) we can meet frequently with variables which 
have the same or very close Normalized adjustments. In such situations we say, that 
the gross error identification and elimination methods are not selective enough. 
Frequently it happens that due to specific values of random errors of other variables 
the variable corrupted by a gross error does not have the maximum Normalized 
adjustment. All this is a reason why variables with gross errors can’t be eliminated 
automatically, without man’s supervision. 

6.3.6 Complexity of models 

Let’s now briefly touch the question how the complexity of a model influences 
chances of data validation. There are 2 dimensions of complexity. The first is the 
spatial one - the size of a flowsheet. The second one is the complexity of phenomena 



 

 138 

modeled. The base of most of models is a mass balance which can be 
complemented by component balances, energy balance and other relations. 

The spatial complexity in general increases chances for data validation. Let’s imagine 
the case of a mass balance of one node. Even if all flows incident with this node are 
measured, there is some chance to detect the presence of a gross error but there is 
almost no chance to identify which measurement is in error. Only by connecting 
nodes by streams to form some net we are able to use the possible higher 
redundancy for detailed analysis of quality of our data. Of course, benefits originating 
from creating large systems are not automatic – the increase of complexity must be 
accompanied by increase of the degree of redundancy. 

The second source of the model complexity deserves some discussion. Usually we 
start by setting up a mass balance. In component balances (if they are properly set 
up), also mass is conserved. But the measurement of composition is usually more 
difficult than measuring of flows. Sometimes the adding of component balances need 
not increase the overall redundancy as many concentrations are unmeasured. The 
next step can be adding energy balances. Energy balances are frequently applied 
only to some parts of a flowsheet. Again, the degree of redundancy of the whole 
system may or need not increase depending on measurability of temperatures, 
pressures, etc.  

It is very good if we have a chance to separate the influence of the individual “levels” 
of our model. Before starting the data processing in RECON, the following panel 
appears: 

 

 

 

A user can decide here which stages of his/her model should apply in data 
processing: 

 component balancing versus a simple mass balance 

 enthalpy balancing with the possibility to include/exclude kinetic energy 

 momentum balancing (hydraulic calculations) 

 user defined equations like phase equilibria, etc. 

In the case of any problems with our complex model we can try to exclude some 
features of the model to enhance deeper understanding of the problem.  

Let’s illustrate this possibility on our LPG separation system treated in the previous 
subsections. In this case we have 2 choices: 
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1. mass balance only 
2. full multicomponent balance. 

In the next table there are several variants of gross errors introduced to our system in 
the preceding subsections and the Status of data quality: 

 

Case 
No. 

Error in variable Magnitude of 
the error 

Status for mass 
balance only 

Status for 
component balance 

1 S2 +15 % 0.386 0.927 

2 S4 +15 % 4.59 1.95 

3 S2,S4 +30 %, +15 % 5.45 2.82 

4 Error in model. 
Stream S5 missing 

_ 1.86 40.85 

 

Let’s discuss how successful were mass balance and component balance in 
detecting gross errors: 

Case 1: The gross error was not detected on any model level. The reason is in the 
threshold value – see discussion in Subsection 6.3.1. But the Status for the 
component balance was quite close to the critical value 1 which does not hold for the 
mass balance.  

Case 2: The gross error was detected on both model levels. Interesting is that the 
Status of the mass balance is significantly higher than that of the component 
balance. We can imagine situations where in the case of the mass balance only a 
gross error is detected but for the component balance a gross error remains 
undetected. This is caused by different degrees of redundancy in both models. For 
the mass balance (degree of redundancy = 3) the Qcrit = 7.84 while for the 
component balance (degree of redundancy = 18) the Qcrit = 28.92. 

Case 3: The gross error was again detected on both model levels. The mass balance 
was also in this case more sensitive. The reason was explained in the preceding 
Case 

Case 4: The gross error was detected on both model levels, but the component 
balance in this case is much more sensitive to this type of error (error in the model). 
The reason for superiority of the component balance in this case is clear. While the 
missing stream S5 is the smallest one and its absence does not influence the mass 
balance fatally, it contains more than 89 % of C5 component entering the plant. So 
the balance of this component is seriously distorted. 

6.3.7 Further considerations 

Aside of statistical methods, there is also another sort of information which can be 
used in gross error detection and identification. Let’s recall the screen of RECON 
after the elimination of the individual candidates of a gross error: 
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There are 2 useful columns in this report: 

Calculated – values of eliminated variables after data reconciliation 

Difference – difference of measured values and values after putting the measured 
variable among unmeasured ones. 

This information can be exploited mostly in 2 ways: 

1. Calculated values can be checked whether they are feasible: values should be 
usually in some limits, which can by physical, technological or other (we can 
exclude suspects with negative flows and concentrations, too high or low 
temperatures or pressures, etc.). 

2. Differences are in the essence the estimates of (possible) gross errors. If we have 
information about credibility of the measuring methods and instruments, then  we 
can in some situations exclude the possibility of gross errors of certain size. 

Both of this reasoning can be used in screening of suspects in situations when we 
are in doubts. 
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Case study 1: Identification of steam generator thermal power  

In the following case study, we'll describe in more detail the complex  processing of 
data  measured on one steam generator of  a  nuclear power station. Besides the 
balance proper and data reconciliation, we'll also give further information that can be 
deduced from the measured data.   

Let  us consider the steam generator (SG) in the following figure.  

 

Fig. CS1-1: Steam generator 

Hot water (HW) circulates between the nuclear reactor and tube space denoted  as 
SGW. Steam (containing 0.25 % wetness) is generated in the shell space SGS. From 
the shell space of SG,  blowdown is continuously withdrawn in addition. The heat 
stream QSG represents the heat flow (thermal power) in SG. The following table 
gives measured values and their uncertainties.  

Table CS1-1: Measured variables 

Variable Stream Meas.unit Value Max.error 

(uncertainty) 

Flow FW kg/s 444.5 2% 

Flow STEAM kg/s 445.0 2% 

Flow BLOWDOWN kg/s 6.12 5% 

Flow HWIN kg/s 5650 5% 

Temperature FW deg C 221.6 1 

Temperature STEAM deg C 257.6 1 

Temperature BLOWDOWN deg C 257.6 1 

Temperature HWIN deg C 295.2 1 

Temperature HWOUT deg C 265.8 1 

Pressure SGS kPa 4500 0.5% 

Pressure FW kPa 10000 0.5% 
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This basic variant of SG was already solved in the frame of the models for individual 
operations, where the reader can find the results of reconciliation (see Section 5.4). 
We'll give below further results and analyses.  

Propagation of errors in data processing 

Information in this respect is provided by the vector of shares introduced in Section 
3.9  Propagation of errors at data processing and.... . Let us recall that this vector 
contains percentual shares of individual measured variables on the dispersion of the 
result. The program RECON offers the vector of shares in menu calculations – 
Propagation of errors.  

Let us further concentrate on the thermal power of SG – variable QSG. 

 
MESSAGE ON ERROR PROPAGATION 

Heat flow  QSG  

 

  THE VARIANCE OF GIVEN VARIABLE IS CAUSED MAINLY BY: 

  

 Type Variable                Share 

  MF  FW                        47 % 

  MF  HWIN                       2 % 

  MF  STEAM                     47 % 

  T   FW                         3 % 

 

  Total                         98 % 

 

One can see that the dominant effect on the thermal power precision is due to  the 
flowrates, and in particular those of feed water and steam constituting 94 % from the 
dispersion of the result. If we wanted to make the result still more precise, this would 
make sense just with these two variables. The others are of rather negligible impact.  

Let us further put the question, why further variables make themselves less valid in 
the vector of shares. For instance at the blowdown measurement, this measurement 
itself is very precise. While in the feed water measurement, absolute uncertainty is  
8.9 kg/s (2 % from 444.5 kg/s), it is only 0.3 kg/s for the blowdown. At the hot water 
flowrate measurement, the reason is more complicated and will be explained in the 
next section of this case study.  

Somewhat surprising is the small importance of measured temperatures. Why for 
example , in the list  of relevant variables doesn't occur the temperature in SG, which 
determines the steam enthalpy, thus the main carrier of energy? One of the reasons 
is certainly the fact that the assumed uncertainty 1 deg C is relatively small and 
possible impact on the energy balance is not great in these limits. More essential is 
however the fact that in the temperature domain typical of SG, the temperature 
dependency of saturated steam enthalpy is quite flat. For example at 257 deg C, it is 
ca. 0.4 kJ/(kg deg C), which is only 0.02 % of the evaporation heat at this 
temperature. For instance an error in steam temperature 10 deg C (hence ten times 
the assumed uncertainty) results  only in a several tenths per cent error in the stream 
enthalpy, thus substantially smaller than the flowrate measurement error. Somewhat 
different is the situation at feed water. The specific heat at water pressure 10 MPa 
and 220 deg C is ca. 4.49 kJ/(kg deg C), which is ca. 10 times more than it was at the 
steam. Therefore, the feed water temperature occurs in the vector of shares (though 
as an item of smaller importance). 
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For the same reason, in the vector of shares absent is the feed or hot water pressure. 
The pressure dependency of liquid water enthalpy is even less pronounced than in 
the preceding case of saturated steam, so that even large errors at the water 
pressure measurement do not cause large errors in the balance. On the other side 
however, the chances for the detection of these errors are also bad.. Based on the 
balance models, the detection of these errors is hardly possible (see threshold value 
for the gross errors detection, already described earlier).  

Strategy of measurement 

One of the important measurement results is heat flow QSG, which plays the main 
role in the nuclear reactor thermal power identification. One speaks then of a key 
variable of the whole measurement. Usually, there are several different ways for its 
identification, based on the choice of measured variables and the measured values 
processing  – it is  so-called strategy of measurement and measured data 
processing.  

Let us further review several variants, in order to show the importance of the strategy 
for measured data analysis. We here make use of the RECON program, with the aid 
of which we can give simple form to the complete solution described in the previous 
section.  

The individual variants of heat flow identification are  following.  

1. From the mass and heat balances of hot water (balance around node SGW): One 
deals with direct calculation without data reconciliation on the nuclear reactor 
side.  

2. From the mass and heat balances for the steam part of SG: One deals with direct 
calculation without data reconciliation on the steam generator proper side. Steam 
flowrate is considered unmeasured and it is calculated from the feed water and 
blowdown flowrates.  

3. From reconciled mass and heat balances for the steam part of SG: Hot water 
balance is not taken into account.  

4. From the reconciled balance of the whole system (model applied in previous 
section).  

5. Strategy No. 4 is made still more perfect on applying new pressure measurement 
in (the steam part of) SG, and this pressure is reconciled with the temperature in 
SG according to the phase equilibrium condition.  

The results are in the following table. 

Tab. CS1-2: Identification of flowrate QSG in different ways 

Strategy No 

 

QSG 

[MW] 

Tolerance 

[MW] 

Tolerance 

[%] 

Degree of 
redundancy 

1 866.9 60.4 7.0 0 

2 807.9 16.5 2.0 0 

3 813.9 11.7 1.4 1 

4 816.0 11.5 1.4 2 

5 816.0 11.5 1.4 3 
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The results are in good agreement with simple rules familiar to those which deal 
systematically with process measurement. 

 The choice of the whole measurement strategy is of  fundamental importance. 
Even if strategy No.1 looks very good as for the simplicity of the balance 
calculation, the result is very bad. The hot water balance suffers  from the fact that 
it is based on the evaluation of temperature difference, which is a difference of 
two large numbers. In addition, there is a relatively great uncertainty in the hot 
water flowrate measurement.  

 Considerably better is the result of strategy No.2 based on the SG steam side 
balance. The balance works with a relatively precise knowledge of the feed water 
flowrate. The measurement of temperatures has only marginal importance for 
setting up the heat balance, as we have shown above. This strategy based on 
simple mass balance is often used in practice.  

 Strategy No.3 is supported by the reconciliation of mass balance around the SG 
steam side. Further, the result uncertainty is substantially reduced. In addition, we 
here have the effect of data validation consisting in the possibility of gross errors 
detection.  

 Strategy No. 4 does not bring any relevant diminishing of the result uncertainty. 
Two models (No.1 and 3) have been integrated and the degree of redundancy 
increased by 1. The model according to strategy No.1 brings itself, from the 
standpoint of thermal power identification, substantially less than model No.3. We 
here have an asset in enhancing the precision of flowrate measurement on the 
hot water circuit.  More detailed analysis shows that the hot water flowrate 
uncertainty  is lowered by ca. 30 % due to the reconciliation.  

 Strategy No. 5  further increases the degree of redundancy, however without any 
sensible effect on the thermal power uncertainty. One deals with reconciliation 
and temperature precision enhancement, and as shown above, the temperature 
of steam in SG is of minor importance for setting-up the energy balance. Still, the 
chance for the validation of temperature and pressure data in SG is then generally 
better.  

While at strategy No.4, the adjustability of steam temperature in SG was lower than 0.001, 
after including the phase equilibrium model by strategy No.5 the adjustability has increased 
to 0.478 (the uncertainty in temperature has decreased almost to one half after the 
reconciliation). In an analogous way, also the conditions for the detection of a gross error in 
this temperature have been improved. In the case of strategy No.4, there was practically no 
chance to detect a  gross error in this temperature, even if the error were of the order of 
magnitude several tens deg C. In contrast to it, at strategy No.5  the threshold value for gross 
error detection equals 2.3 deg C. This kind of information could be useful in situations where 
the temperature monitoring is important, for example for the sake of process safety. 
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Case study 2: Identification of nuclear reactor thermal power  

Let us consider the scheme given in Fig. CS2-1; it represents a system of steam 
generators withdrawing heat from a nuclear reactor. We have here 3 measured 
streams of condensate (COND1-3), supplied to condensate collector CONDHEAD. 
From here, the condensate is pumped via two measured streams (FWA and FWB) 
into feed collector FWHEAD. It is then distributed into 4 steam generators SG1-4. We 
here further have 4 measured streams of blowdown (PURGE1-4). In each SG,   
measured stream of steam STEAM1-4 is generated. Steam is led into steam collector 
STHEAD , from where it goes by measured stream STEAMSUM to the turbine.  

Temperatures are measured for all streams of feed water and steam. The blowdown 
temperatures are assumed to be the same as the steam temperatures in the 
respective SG. The condensate temperatures are not measured. For this reason, no 
energy balance around node CONDHEAD is created in the model. 

The subsystem of hot water from the nuclear reactor is not included. The heat supply 
to  individual SG is modeled by four heat flows  QSG1-4 that come from node NR 
representing the nuclear reactor. Stream QNR then represents the whole thermal 
power of the reactor. QNR is the key variable to be identified.  

 

Fig. CS2-1: System of four steam generators 

Flowrates and temperatures are measured with the following uncertainties: 

 
Table CS2-1: Measurement tolerances 

Type Stream Tolerance 

Temperature All 1 oC 

Flow STEAM 4 % 

Flow PURGE 5 % 

Flow Remaining streams 2% 
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The steam is wet (0.25% liquid phase). The pressure of condensate and feed water 
is assumed fixed (8 MPag).  

For the majority of nodes, the model creates 2 equations – mass and energy 
balances. The following nodes make an exception: 

 CONDHEAD – here, inlet temperatures are not available and only mass balance 
equation is created 

 NR – mass flowrates are absent and only energy balance is created. 

Altogether, one creates 14 equations. There are 5 unmeasured variables (flowrates) 
in the problem. The degree of redundancy is  14 – 5 = 9. 

Main results 

The main results read 

G L O B A L   D A T A 

  Degree of redundancy                             9 

  Number of unmeasured variables                   5 

  Number of observable variables                   5 

  Number of equations                             14 

  Qmin                                     7.426E+00 

  Qcrit                                    1.689E+01 
 

Q U A N T I T I E S 
 

  Name      Type       Inp.value      Rec.value       Max.error 

  S T R E A M S    [KG/S] 

  COND1      MC          780.300        780.076         11.995 

  COND2      F           0.00E+0        0.00E+0 

  COND3      MC          763.350        763.135         11.908 

  FW1        MC          383.900        384.774          6.430 

  FW2        MC          387.900        388.206          6.478 

  FW3        MC          389.500        386.816          6.462 

  FW4        MC          387.400        383.415          6.409 

  FWA        MC          773.800        775.213         11.950 

  FWB        MC          766.700        767.997         11.913 

  PURGE1     MC            3.520          3.519          0.176 

  PURGE2     MC            3.890          3.890          0.194 

  PURGE3     MC            2.810          2.811          0.140 

  PURGE4     MC            4.120          4.123          0.206 

  STEAM1     MC          385.100        381.255          6.432 

  STEAM2     MC          385.800        384.316          6.480 

  STEAM3     MC          374.400        384.005          6.462 

  STEAM4     MC          365.400        379.292          6.411 

  STEAMSUM   MC         1532.200       1528.868          9.747 

  F L O W S  O F  E N E R G Y    [MJ/S] 

  QNR        NO        10000.000       2820.435         18.195 

  QSG1       NO         2500.000        703.493         11.976 

  QSG2       NO         2500.000        707.889         12.047 

  QSG3       NO         2500.000        709.531         12.051 

  QSG4       NO         2500.000        699.523         11.931 

  T E M P E R A T U R E S    [C] 

  FWA        MC          220.500        220.302          0.815 

  FWB        MC          222.000        221.804          0.818 

  FWSG1      MC          220.800        220.898          0.958 

  FWSG2      MC          221.600        221.699          0.957 

  FWSG3      MC          220.400        220.500          0.957 

  FWSG4      MC          221.000        221.099          0.958 

  SG1        MC          259.200        259.185          0.973 

  SG2        MC          258.600        258.585          0.975 

  SG3        MC          257.000        256.987          0.978 

  SG4        MC          259.800        259.785          0.972 

  steamsum   MC          258.600        258.658          0.447 

  P R E S S U R E S    [MPAG] 

  NVPG       F             8.000          8.000 

  W E T N E S S E S    [%] 

  PGsteam    F             0.250          0.250 
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The sum of squares of adjustments Qmin = 7.426, critical value of chi-square 

distribution with 9 degrees of freedom at the significance level 0.05  [2
0.95 (9)]  =  

16.91. Since 

 

7.426  <  16.91 , 

 

no gross error presence has been detected.  

We have found the value of the reactor thermal power  QNR = 2820.4 MW with 
tolerance 18.2 MW (which represents 0.65 % from the computed value).  

It can look strange that the result precision is very good. The uncertainty value for the 
thermal power 0.65 % is substantially smaller than for any of the measured streams. 
Moreover, also errors at  setting-up the heat balance must  play a role.   

There are several reasons. First, it is the improvement due to reconciliation of the 
steam generators mass balance (see  results of the previous case study). Further, 
there is  considerable redundancy in the measurement of condensate and feed water 
flowrates (altogether at three levels). The last reason is the fact that the whole 
thermal power is given as sum of 4 single thermal powers of individual SG, which has 
generally a positive impact on improving the relative precision of the result.  

Further information 

By its extent, this case study already approaches real problems met with in practice.  
It will thus be useful to give further interesting results that can be considered typical 
of this kind of problems.  

For the sake of brevity, let us give the results in abridged form. We'll use the fact that 
our scheme is symmetric around the vertical axis. The values of parallel variables 
(e.g. parallel stream flowrates) are nearly equal and the same holds for their further 
properties). So not single results, but only those for the groups of analogous 
variables will be given. The results for adjustabilities, threshold values and parametric 
sensibilities are given in the following table. 

Table CS2-2: Further results of data reconciliation 

Type Stream Adjusta- 

bility 

Threshold 
value TV 

Parametric 
sensitivity of  

QNR 

TV  
(the critical 

value = 26.8) 

Flow COND 0.23 55.4 0.367 20.3 

Flow FW1-4 0.17 31.7 0.729 23.1 

Flow FWA,B 0.23 55.3 0.368 20.4 

Flow PURGE 0.00 34.6 -1.29 44.6 

Flow STEAM 0.57 38.0 0.192 7.3 

Flow STEAMSUM 0.68 73.4 0.186 13.7 

Temper. FWA,B 0.18 3.9 -0.176 0.7 

Temper. FW1-4 0.04 7.9 -0.176 1.4 

Temper. STEAM 0.03 10.2 0.014 0.1 

Temper. STEAMSUM 0.55 2.5 0.014 0.0 
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Let us further discuss the individual results.  

Adjustability gives the decrease of  result uncertainty due to the reconciliation. For 
example at stream COND, this decrease (precision enhancement) is by 23 %. The 
average value of adjustability is 0.27. This roughly corresponds to the experience 
from practice, where one gives the result precision enhancement  some 30 % on the 
average. However, one can see here even substantially better adjustability values 
around  60 %, and also practically nonadjustable variables. The latter are those 
which are measured with high absolute precision (with respect to the other variables); 
this is the case of the blowdowns (see also the discussion in the previous case 
study). Further case is represented by temperatures that are also of relatively high 
precision and in addition  are , as steam temperatures, of minor importance in the 
heat balance (also already discussed in the previous case study).  

Threshold value gives minimum value of gross error that will be detected with 
probability 90 %. Thus for example the value TV = 55.4 for stream COND means that 
the gross error must be at least 55.4 t/h so as to be detected with probability 90 % 
(for information, the flowrates of this stream are ca. 770 t/h, so the threshold value 
represents some 7 % of the nominal stream value). 

It follows from the theory that the threshold value is closely connected with the 
adjustability of the variable. The  smaller the adjustability, the higher is the threshold 
value (hence also the chance for gross error detection is smaller). Thus for example  
for almost nonadjustable blowdowns (stream PURGE), the threshold value is many 
times greater than the nominal one.  

Parametric sensitivity in the last column of the table gives the sensitivity of the 
thermal power to the changes of individual variables values. Thus, e.g., the value  
0.367 for stream COND means that if the measured value of condensate stream 
increases by 1 t/h , the thermal power value increases by 0.367 MW.  

The product of threshold values and of parametric sensitivities in the last column will 
be discussed in the last section of this case study. 

Detection and identification of gross errors 

Let us now give two examples from the domain of gross errors detection and 
identification. We introduce artificially a gross error  into our data and our aim is to 
find it.  

Let us begin with an error in the feed water flowrate FW1. According to Tab. CS2-2, 
the threshold value for this variable is  31.7 t/h. The gross error will be chosen 
somewhat greater, say 50 t/h. The measured value 383.9 t/h will be increased  to  
433.9 t/h and new reconciliation carried out. We have the new result 

 

Qmin  =  47.07   , 

 

which exceeds the critical value Qcrit = 16.89. So the gross error has been correctly 
detected. We further apply  program RECON menu Results – Gross errors. As a 
result, we have the following message. 
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REPORT ON GROSS MEASUREMENT ERRORS  

 

 S U S P E C T E D  M E A S U R E M E N T S  

 

 Type Variable               Norm.adjust.   

  MF  FW1                      -6.309  

  MF  PURGE1                    4.219  

  MF  STEAM1                    4.097  

  MF  FW4                      -3.874  

  MF  FW3                      -3.328  

  MF  FWA                       2.158  

  MF  FWB                       2.139  

  MF  FW2                      -2.027  

 

 Key: 

  Norm.adj. = normalized adjustment (large value => suspicion of gross error) 

  MF  Mass flow 

 

We see that the program has found suspected variables and shown correctly the 
greatest suspect (placed as first, having greatest absolute value of normalized 
adjustment). There is also a great distance between the first and second variables.  

Now, however, a less favorable situation will be shown. We introduce a gross error 
into the flowrate FWA (feed water into feed water collector), of value +70 t/h (the 
threshold value is here 55.3 t/h, see Tab. CS2-2). The measured value 773.8 t/h has 
thus been increased to 843.8 t/h. After reconciliation, one has found the value Qmin = 
33.95 , with critical value 16.89. A gross error has thus been again detected.. We 
have further applied again the method for suspected values identification giving the 
following result.  

 

MESSAGE ON GROSS MEASUREMENT ERRORS 

 

 S U S P E C T E D  M E A S U R E M E N T S 

 

 Type Variable               Norm.adjust.  

  MF  FWB                      -5.174 

  MF  FWA                      -5.158 

  MF  PURGE4                    2.644 

  MF  STEAM4                    2.555 

  MF  PURGE3                    2.008 

 

 Key: 

  Norm.adj. = normalised adjustment (large value => suspicion of gross error) 

  MF  Mass flow 

 

In this case, we already have not been that successful as in the preceding case. We 
have two suspects – both streams of feed water with mutually close values of 
normalized adjustment. These two suspects cannot be further distinguished by the 
given method. In practice, only another independent method could  be applied 
(judging whether the increase in flow over the current limit is possible at all, or 
scrutinize the measurement system for the two streams).  

The impossibility of distinguishing the two streams follows from the fact that in the 
scheme, the streams are parallel and in the balance of the two nodes CONDHEAD 
and FWHEAD, they make themselves equally valid. In practice, more cases of similar 
(although not this obvious) situations can occur. One then often doesn't deal  with 
one error only. As a consequence, the results of gross errors identification are not 
always unambiguous.  
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Protection of the key (target) variable against gross errors   

The key (target) variable of the whole problem is the thermal power of the reactor 
QNR. In the rest of this case study we will concentrate on its protection against gross 
errors. This topic is a little bit more advanced than other problems solved so far. The 
full understanding requires detailed reading of Appendix 4, especially of its second 
Section. 

The problem statement is as follows: 

The determination of QNR should be protected against gross errors in measured 
variables from which QNR is calculated. It is required that the undetected gross 
errors should not cause greater error than 1.5 % of the nominal value of QNR which 
is 3000 MW. This means that the acceptable error should be less than 3000x0.015 = 
45 MW.  

Tolerance of QNR belonging to random errors equals 18.19 MW (0.65% of the 
estimated value). 

As the maximum allowed tolerance is 45 MW, the undetected gross error should not 
cause greater error in QNR than 45 – 18.2 = 26.8 MW (according to Eq. (A4.2-2).  

Results of the analysis were already presented in the Table CS2-2. 

The values in the last column of the table are now compared with the limiting value, 
which is 26.8 MW according to the inequality (A4.2-9) in the Appendix 4. From the 
Table CS2-2 follows that the target variable QNR is quite well protected against gross 
errors for most of measured variables as they pass the Inequality (A4.2-9). The only 
exceptions are the PURGE streams. 

Really, any of the purge streams has relatively high threshold value and at the same 
time also high parametric sensitivity. The value from the last column of the Table 
CS2-2 is 44.6 MW which is almost twice the allowed tolerance for QNR (26.8 MW).  

There exist several ways how to tackle this problem. Let’s try to raise the redundancy 
of the instrumentation system. The redundancy of the purge streams is very low (they 
are checked only by the balance of steam generators, while feed waters and steam 
has its own redundant balancing sub-flowsheets). Perhaps adding the measurement 
of the sum of all purge streams (tolerance 5 % of the measured value) could help to 
solve our problem.  

The modified flowsheet is in the next Figure. 
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Fig. CS2-2: The new flowsheet with measured sum of purges 

We can see here the new node MPURGE (mixer of purge streams) which is 
measured. Results of data processing after this change are presented in the next 
table. 

Table CS2-3: Results of data reconciliation after installing the new flowmeter 

Type Stream Adjusta- 

bility 

Threshold 
value TV 

Parametric 
sensitivity of  

QNR 

TV  
(the critical 

value = 26.8) 

Flow COND 0.23 56.4 0.367 20.7 

Flow FW1-4 0.17 32.3 0.729 23.5 

Flow FWA,B 0.23 56.3 0.368 20.7 

Flow PURGE 0.03 1.82 -1.02 1.9 

Flow STEAM 0.57 38.6 0.192 7.4 

Flow STEAMSUM 0.68 74.7 0.186 13.9 

Temper. FWA,B 0.18 4.0 -0.176 0.7 

Temper. FW1-4 0.04 8.0 -0.176 1.4 

Temper. STEAM 0.03 10.4 0.014 0.1 

Temper. STEAMSUM 0.55 2.6 0.014 0.0 

Flow. PURGESUM 0.54 1.8 0.271 0.5 

 

After this step the threshold values of all purge streams fell from 34.6 to 1.8 kg/s. The 
other results are presented in the last row of Tab. CS2-3. We can see here that all 
values in the last column are below the critical value which is 26.8. 

Interpretation of results 

Results of this study can be interpreted in the following way: For the whole system 
we can conclude that it is (after installing the new measurement of the sum of 
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purges) well self-protected against gross errors as concerns the target variable QNR 

and its required tolerance. Especially 

The probability that any undetected gross error will impair the required tolerance of 
QNR (45 MW) is less than 10 %. 

Similar, but sharper assertions can be stated about individual measured variables. 
For example for the measurement of steam flows from the individual steam 
generators holds (see Table CS2-3), that 

The probability that any undetected gross error in a steam flow will increase the error 

of QNR more than 7.4 MW is less than 10 %. 

Such interpretation can help in deciding which measured variables are self-protected 
by DR and which need independent checking, calibration or additional redundancy. 

Let’s briefly discuss some limitations of the proposed method. We will not touch 
general problems of DR like model inaccuracies, estimation of measurement 
tolerances, etc. 

The solution is based on linearization of the model, which is nonlinear. This is a 
general problem of the DR technology. It depends on how far from the point of the 
solution the linearization is applied. In our problem we should look how big the 
threshold values are, as applied in Eq. (A4.2-9). If the threshold values are up to 10 
% of the flow or up to 10 centigrade in the case of temperatures, the errors 
introduced by linearization are small and comparable with other errors (model errors, 
estimation of measurement precision, etc.). If the threshold values are bigger, it is 
possible to use the Monte Carlo simulation to check whether the linear model works 
well. 

Conclusions drawn from the method proposed should be applied in the statistical 
sense. This means that they are valid for a large number of data sets, for example in 
the case of almost continuous monitoring of an industrial process. Benefits of DR are 
of a statistical nature. 

The proposed method of the Monitoring System Self Protection (MSSP) analysis is 
based on the idea that at one moment only one gross error starts to affect. This 
should be the case of a well maintained monitoring system. In the case of 
simultaneous gross errors the problem starts to be more complex (not only for gross 
error detection but also for their localization).  

The method proposed is quite simple and can be useful in the process of analysis of 
existing monitoring systems. It makes possible to find which couples of target 
variables and measured variables are automatically protected against gross error and 
which primary measurement needs independent checking or frequent calibration. The 
method can be also used in the optimization of measurement placement or in the 
design of new monitoring systems.  
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Appendix 1: Distribution of random variables 

We shall limit ourselves to two distributions of random variables, which are important 
from the viewpoint of measurement results processing.  

A1.1 Normal (Gaussian) distribution 

The normal distribution is the most important distribution of a continuous random 
variable by which, under certain conditions, also other distributions can be 
approximated. The probability density of the normal distribution is given by the 
function  
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This function has two parameters,    and  ,  from which   equals the mean and   
the standard deviation of the random variable. The normal distribution is written, in 

abridged form,  N( , 2). Examples of probability densities are in Fig.  A1-1. 

 

Fig. A1-1: Probability densities of normal distribution   

 

If   = 0 and   = 1, one speaks of so-called standard (normalized) distribution N(0,1) 
and the random variable is denoted by U. The quantiles of the standardized normal 
distribution denoted by  uP  are given in Tab. A1-1 (see also Fig.  A1-1).  
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Tab. A1-1: Quantiles of standardized normal distribution 

P (U < uP ) = P 

 

P 0,500 0,900 0,950 0,975 0,990 0,995 0,999 

uP 0,000 1,282 1,645 1,960 2,326 2,576 3,090 

 

The importance of the standardized normal distribution consists in the universality of 
its application. We arrive at it from the random variable X , normally distributed  

N( , 2), if performing the transformation U = (X -  )/ . Random variable U  then 
has the distribution N(0,1). 

If we need to know the quantile of the distribution N( , 2), we proceed in the 
manner that from Tab. A1-1, we take the corresponding quantile of standardized 
normal distribution uP   and the required quantile xP  is obtained from the relation                  

xP =   +  uP . 

The normal distribution is symmetric, from where follow the relations for probability 
density, distribution function and quantiles (due to the symmetry and also zero mean 
of the distribution)  

f (u) = f (-u)       (A1-2) 

F (u) = 1 - F(-u)      (A1-3) 

uP = -u1-P       (A1-4) 

Notice in particular that for the values   < 0.5 we have 

P{|U| < u1- /2} = 1 -      (A1-5) 

 

A1.2 Distribution 2 

Let us have v random variables U1, U2, …, Uv, mutually uncorrelated and having 

each the distribution N(0,1). The random variable  2  defined as sum of squares of 
these random variables 

 

    
2  = U1

2 + U2
2 + … + Uv

2     (A1-6)  

 

has the chi-square distribution with  degrees of freedom,  denoted as 2().  

Diagrams of probability densities of the 2-distribution are given, for certain degrees 
of freedom,  in Fig. A1-2. The quantiles are given in Tab. A1-2. 
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Tab. A1-2: Quantiles of the 2-distribution for  degrees of freedom 

P [2 < P 
2()] = P 

 P  P 

0,900 0,950 0,990 0,999 0,900 0,950 0,990 0,999 

1 2,706 3,841 6,635 10,827 16 23,542 26,296 32,000 39,252 

2 4,605 5,991 9,210 13,815 17 24,769 27,587 33,409 40,790 

3 6,251 7,815 11,345 16,268 18 25,989 28,869 34,805 42,312 

4 7,779 9,488 13,277 18,465 19 27,204 30,144 36,191 43,820 

5 9,236 11,070 15,086 20,517 20 28,412 31,410 37,566 45,315 

6 10,645 12,592 16,812 22,457 21 29,615 32,671 38,932 46,797 

7 12,017 14,067 18,475 24,322 22 30,813 33,924 40,289 48,268 

8 13,362 15,507 20,090 26,125 23 32,007 35,172 41,638 49,728 

9 14,684 16,919 21,666 27,877 24 33,196 36,145 42,980 51,179 

10 15,987 18,307 23,209 29,588 25 34,382 37,652 44,314 52,620 

11 17,275 19,575 24,725 31,264 26 35,563 38,885 45,642 54,052 

12 18,548 21,026 26,217 32,909 27 36,741 40,113 46,963 55,476 

13 19,812 22,362 27,688 34,528 28 37,916 41,337 48,278 56,893 

14 21,064 23,685 29,141 36,123 29 39,087 42,557 49,588 58,302 

15 22,307 24,996 30,578 37,697 30 40,256 43,773 50,892 59,703 

 

 

 

Fig. A1-2: Probability densities of the 2-distribution 

 

For the mean and dispersion we have 

E[2 (v)] =          (A1-7) 

D[2 (v)] = 2         (A1-8) 
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Noncentral ’2 distribution  

Let us have v random variables U1, U2, …, Uv, mutually uncorrelated and having 

each the distribution N(i,1). The random variable  2  defined as sum of squares of 
these random variables 

 

  ’2  = U1
2 + U2

2 + … + Uv
2       (A1-9)  

 

has the noncentral chi-square distribution with v degrees of freedom and with 

noncentrality parameter ; it is denoted ’2(v, ). The noncentrality parameter  is 
defined by the relation 

 

   =            A1-10) 

 

The terminology is not unique, sometimes as the noncentrality parameter is 

designated the quantity   = 2. If the noncentrality parameter equals zero, one 

obtains the common (central) 2 distribution defined by Eqn. (A1-6). If a 2 

distribution is given without more precise denotation, the central 2 distribution is 
meant. For the mean and variance we have 

 

E[’2 (v, )] =  + 2.       (A1-11) 

D[’2 (v, )] = 2 + 42.      (A1-12) 
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Appendix 2: Measurement errors 

Practically every variable obtained by measurement is charged with some error. At 
the processing of the measurement results and their interpretation, the problems due 
to measurement errors are thus of considerable importance. They are dealt with in 
the theory of errors that can be divided into general and special.  General theory of 
errors deals with general laws governing their origin and propagation during the 
measured data processing , and with the methods of acquiring information on the 
errors based on the measurement proper. Special theory of errors concerns errors of 
individual measuring methods, instruments etc.  

This chapter gives results of the theory necessary for applying the methods of 
measured data processing analyzed in the preceding chapters. 

A2.1 Basic concepts and classification of errors 

Absolute error of measurement (further only measurement error) e is defined by the 
relation 

x+ = x + e       (A2-1) 

where x+ is  measured and  x actual value. Symbol + will be further used for 
distinguishing the measured and actual values. For judging the correctness of the 
results, it is convenient to introduce so-called  relative error erel: 

x

e
e 

rel
       (A2-2)  

expressed often in per cents 

100
x

e
e 

rel
       (A2-3)  

In the majority of cases in practice, one does not deal with one measured variable, 
but generally  with the measurement of I variables (temperatures, flowrates and the 
like), so that one speaks of a measured vector x. The measurement of individual 
variables can be of continuous (temperatures, pressures) or discrete character 
(identifying concentrations in samples taken periodically). For the needs of the 
following,  computerized processing, continuous measurements are discretized, 
mostly  by reading the continuous signal at a priori determined moments of time. 

Let us assume that vector x was measured at times  tk, k = 1, 2, …, K. As the result 
of measurement , one has thus obtained IK values xik

+, where index ik means 
measurement of i-th variable at time tk. The measured values form a field of two  
dimensions. One of the dimensions is time-like, represented by index k, the other, so-
called space-like, is represented by index i. In practice, there exist most frequently 
more complicated data systems. For our purposes, this simple scheme will suffice 
and we shall further refer to it. For measured values xik

+ , we have the relation 
analogous to Eq. (A2-1): 
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xik
+ = xik + eik       (A2-4) 

According to their character, one usually divides the errors into random, systematic 
and gross. The importance of error classification consists in the fact that the 
measured data processing differs mainly according to how the individual kinds of 
errors participate in the whole error of the measurement result. 

Purely random errors 

Purely random are such errors that under the same measurement conditions, can 
attain different magnitudes and have different signs. Their possible values oscillate 
around zero and their mean is zero. As single ones, they are subject to no laws and  
independent of one another. Single values are unforeseeable and not substantiated 
by any reason. They are a typical example of random variables.  

These properties of purely random errors can be expressed mathematically in terms 
of the concepts introduced for random variables : 

 zero mean                           e = E(e) = 0     (A2-5) 

 uncorrelatedness of errors        cov (e1, e2) = E (e1e2) = 0  (A2-6) 

The statistical independence of errors and their uncorrelatedness are equivalent only 
for errors obeying the normal distribution law (see Appendix 1 for more details). In 
practice however, the conditions (A2-5)  and (A2-6) are currently accepted as the 
properties of purely random errors, without bothering about the precise interpretation 
of statistical independence.  

Due to the zero mean value of the errors, the mean of the directly measured variable 
equals the actual value.  

x = E(x + e) = x       (A2-7) 

Random errors can be characterized similarly as random variables. Their mean is 
zero by hypothesis and their most relevant characteristic  is the dispersion defined   
(considering the zero mean value) by the relation  

  D(e) = E(e2) = e 
2       (A2-8) 

The dispersion of a measured variable is here clearly equal to that of its random error 
and the two concepts are frequently confused. However, this can be done only if the 
actual value is constant in time. So it is necessary to make a distinction between the 
dispersion of a measured variable  ( e.g. with fluctuating actual value) and that of the 
measurement error, and identify also further possible sources of the measured value 
variability. 

More complete information about random errors is provided by the probability 
distribution  of the random error , expressed e.g. as the probability density. Of key 
importance is here the well- known normal distribution law (see Appendix 1). The 
importance of normal distribution is due to several reasons:  
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- as found by a number of authors, it approximates generally well the behavior of 
measurement in different branches of natural sciences, in particular in the domain  

    3 ; after all, the results lying outside this interval are usually regarded as 
unsuitable for the model applied and  excluded as outliers, 

- the error is often given by the sum of a greater number of single, so-called 
primary errors. Under fairly acceptable conditions, according to the central limit 
theorem the distribution of this sum approaches the normal distribution,  

- if the distribution of errors is unknown (which is a frequent case), the normal 
distribution hypothesis introduces  minimum of (possibly incorrect) information into 
the problem, 

- the normal model based theory of  errors is well elaborated and well treatable 
mathematically. The probability density and standard normal distribution function 
values are currently tabulated , which makes the solution of practical problems 
more easy. 

Errors obeying the normal distribution are fully characterized by the parameter of this 
distribution – standard deviation, which simultaneously determines the precision of 
the measurement. The smaller the standard deviation, the more precise is the 
measurement. In the theory of errors, certain other measures of precision have been 
established; under the normal distribution hypothesis, they can be expressed as 
unambiguous functions of the standard deviation.  

In older literature (and not quite appropriately), standard deviation is denoted as 
mean quadratic error. Its doubled value determines so-called width of the Gauss 
curve, i.e. the distance between its inflexion points. 

A2.2 Correlated random errors 

We can arrive at this concept by the following consideration. Let us suppose that the 
measurement errors of two variables are formed by  sums of a number of 
uncorrelated random errors. If no elementary error participates simultaneously in 
giving rise to both of the summary measurement errors, then also the summary 
errors are uncorrelated. In the opposite case however, the errors present 
simultaneously in both of the sums make the resulting errors correlated.  

Let for example the measurement errors of variables  A and B  be given as sums of 

elementary uncorrelated errors  e1, e2 and e3 with zero means  and dispersions 1
2, 

2
2 and 3

2. 

eA = e1+ e2   eB = e1+ e3         (A2-9)  

The covariance of errors eA and eB then is 

  cov(eA,eB) = E(eA eB) = E[(e1+ e2)( e1+ e3)]   (A2-10) 

After multiplication and rearrangement we have 

cov(eA,eB) = E(e1
2) + E(e1e3) + E(e2e1)+ E(e2e3) = 1

2  (A2-11) 
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because the elementary errors are uncorrelated and the last three mean values in 
Eq. (A2-11)  are therefore null. So in this case, the covariance of errors eA and eB 
equals  the dispersion of error e1 present in both summary errors.   

Let us now  occupy ourselves first with the  space correlatedness of errors. For 
directly measured variables, this kind of error correlatedness is relatively rare. The 
space correlatedness is usually caused by the fact that individual measuring circuits 
are not independent. Thus for example in temperature measurements by 
thermocouples, the reference connections of the thermocouples are usually 
tempered in one thermostat.  If the thermostat temperature is not well stabilized, an 
elementary error thus arisen manifests itself  at all measured temperatures 
simultaneously. In an analogous way, space correlated errors can arise as a 
consequence of air pressure fluctuations in the net for feeding the control devices. In 
analytical determinations, correlated errors may arise as a consequence of taking a 
sample that does not correspond to the bulk stream composition. If for instance  
some component condenses on the path of taking the sample, the concentrations 
found for the other components will all be higher than their actual bulk values.  

Most frequently however,  the space correlatedness of errors is met with at the 
calculation of secondary variables from the directly measured (primary) ones. 

Let us suppose that we have to measure the flowrates of species A and B in a certain 
liquid stream. One measures the flowrate of the liquid phase, takes the sample  and 
determines the species A and B concentrations therein. The individual species 
flowrates are then obtained as products of flowrate and individual concentrations.  
Even if the primary values measurement errors are uncorrelated, the flowrate 
measurement error occurs simultaneously in calculating both individual species 
flowrates, so that the resulting errors are already correlated.  

The space correlatedness of errors can be quantitatively expressed with the aid of  
the covariance matrix of errors. Having  vector x of I measured variables, to which 
corresponds vector e of errors, the covariance matrix F of type I x I  is, assuming zero 
mean of errors, of elements 

Fij =  cov(ei,ej) = E(ei ej)     for    i  j          (A2-12)  

Fii  =  D(ei) = E(ei
2)       (A2-13) 

Let us now consider the time correlatedness of errors. Any error has its objective 
cause that is, in the end, of physical character. Due to inertia, one has to assume that 
this cause will last for a certain time. It depends only on the length of the time interval 
between two measurements, if the measurement errors  in two following time instants  
will be dependent, or almost independent. The time correlatedness of errors is a very 
frequent phenomenon, in particular in the context of ever increasing application of 
automatic measurement systems. It can be time-variable errors of measuring 
instruments, errors due to fluctuations of technological variables, and the like. The 
time correlatedness can be quantitatively expressed using the autocorrelation 
function. 

 

Example A2-1: Autocorrelation function of errors in a time series 
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Suppose we are measuring one variable x in times  tk, k = 1, …, K, where tk - tk-1 = t. We 
thus obtain time series of K measured values xk

+, charged with errors ek. The errors are 

assumed to be purely random errors with the same dispersion x
2. For the needs of control 

we carry out the filtration of data, with the end to decrease the influence of errors on the 
control actions. We calculate the variables 

2
1xx

z
ii

i







 
   i = 2, 3, …, I       (A2-14) 

and obtain thus a new time series with (I – 1) terms. For the errors in variables zi
+  it holds 

obviously  

2
1

ee
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-ii

i


          (A2-15) 

The error covariances of the neighboring variables zi and zi –1 then equal 
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Fig. A2-1: Autocorrelation function of errors from Eq.(A2-1)  

After multiplication and considering the uncorrelatedness of errors we obtain the final 
expression  
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In an analogous manner we could find that the errors in variables zi and zi –2 are already 
uncorrelated. The autocorrelation function of  time series  zi

+, defined only for integer 

multiples of time interval  t, is given in Fig. A2-1 

Concluding the section about dependent, resp. correlated  errors let us note in 
addition that one has dealt with  a stochastic dependence,. i.e. with a dependence 
valid between large ensembles of errors. The single errors were still random  and 
unforeseeable. One seldom meets with deterministic dependence of errors in the 
sense of the vector dependence introduced in linear algebra. In such cases,  one or 
several errors can be expressed exactly as function of the remaining ones. The 
accompanying phenomenon is the fact  that the covariance matrix of deterministically 
dependent errors is singular. This example represents the transition from random to 
systematic errors. 

A2.3 Systematic errors 

So far, we have treated the errors as random variables. These errors then either 
changed quite randomly, or were stochastically bound together. The notion 
systematic error means an error whose value is constant in time, or has a 
deterministic course. It can be for instance an error caused by imperfectly adjusted  
measuring device (constant error), an error linearly time dependent due to the shift of 
the instrument's zero in time, an error with periodic course due to the daily course of 
ambient temperature, and the like. 

Let us examine the relation between systematic and time-correlated errors. In the 
context of time-correlated errors, it has been  stated that it depends only on the 
length  of the time interval between two measurements and on the time variability of 
the error-causing influence, whether the errors will be time correlated. By this 
consideration, one can arrive even at the situation where the factors causing an error 
will, relative to the time of measurement, change only insignificantly. From this point 
of view, a constant systematic error can be regarded as a limit case of time-
correlated error. In reality, the boundary between both kinds of errors is diffuse and 
often cannot be stated at all.  

Similar conclusions hold also for certain space correlated errors. For example in the 
earlier given example concerning  space correlated errors of  temperature 
measurement by thermocouples, the summary errors in measuring individual 
temperatures were random because one assumed that besides imperfect 
temperation, also other elementary (random) factors were in action. If these other 
influences were negligible, knowing the measurement error for one temperature we 
could exactly determine also the errors for the other ones. The resulting error could 
then be regarded as systematic. 

Let us further mention the random character of systematic errors. For example, let us 
consider a set of measuring instruments of the same type and produced in a certain 
period. If these instruments were used for measuring certain constant variable, one 
probably would find that the instruments don't measure quite equally. The set of 
individual instruments' errors forms a sampling space. If selecting randomly one 
instrument (e.g. on buying it) and use it for the measurement, we put a constant 
systematic error into the measurement. However, the value of this error can be 
regarded as a sample of range 1 from the given sampling space. In other cases, the 
sampling space can be hypothetical – it can be for instance the set of all admissible 
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ways of flowrate measurement by an orifice, where the individual ways are given 
mainly by the pipeline and orifice opening diameters. By selecting certain variant, we 
have taken a random sample from the hypothetical sampling space.  

The actual value of a constant systematic error is, in the given cases, unknown and 
can be regarded as realization of a random variable. Understanding the mutual 
relations between random and systematic errors is important in the statistical 
measured data processing. As will be shown later, the solution of practical problems 
requires to take into account simultaneously and in unified manner all available 
information about random and systematic errors.  

Concerning the systematic error problems, let us finally stress their importance at the 
process measurements. In the literature about the theory of measurement,  these 
problems are usually solved by the remark that it is necessary to avoid systematic 
errors. One recommends a careful calibration of the instruments, using standards 
and the like. This approach, which is legitimate in a physical or chemical laboratory, 
doesn't however solve the problem of systematic errors at industrial measurements. 
Even if we take all feasible measures, the systematic errors will essentially influence 
the final results of measurement. It is thus necessary  to take into account their 
existence and employ the information about them in the mathematical measured data 
processing, as is common at purely random and correlated errors.  

A2.4 Gross errors 

As a gross error is regarded a single large error arisen as a consequence of 
inattention, measurement system failure, erroneous calculation, unforeseen event 
and the like. By its magnitude, it exceeds the frame of the other errors. Its origin, if 
regarded as realization of a random error, would be quite unlikely. If its cause  is not 
removed in due time, it occurs repeatedly and we have a gross systematic error.  

While random and systematic errors are inseparable part of measured values and 
measurements charged with them are used in the formulation of measurement 
results, the measurement charged with a gross error must be eliminated from further 
treatment. It is thus an important task of acquiring correct results, to analyze the 
measured data from the viewpoint of finding measurements subject to gross errors 
and their elimination.  

A2.5 Measurement precision and accuracy 

Concerning the occurrence of random and systematic errors, two important concepts 
are introduced – measurement accuracy and measurement precision.  

The accuracy of measurement means  the agreement between the measured and 
true values. The precision of measurement  then represents the agreement among a 
series of repeated measurements of the same value. The difference between the two 
concepts consists in the fact that unlike the accuracy, the precision of measurement 
takes no account of systematic measurement errors.  The precision and accuracy are 
depicted graphically in Fig. A2-2. 
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Fig. A2-2:  Accuracy and precision of measurement 
a) precise and accurate measurement b) precise and inaccurate measurement 
(incorrect mean value) c) imprecise measurement with correct (accurate) mean       
d) imprecise and incorrect measurement 

Suppose we repeatedly measure one variable x, with true (correct) value  x. If each 
measurement result is marked by drawing a circle at the respective value on the 
horizontal axis, we can obtain the following characteristic cases.  

In Fig. A2-2 a), we have a well reproducible measurement and the meanx  is close 
to the true value (precise and correct measurement is sometimes called reliable 
measurement) . In Fig. A2-2 b), the measurement is again well reproducible, but the 
measured values deviate systematically from the true value. We have to do with a 
precise, but inaccurate measurement (the mean is incorrect). In Fig. A2-2 c) is 
depicted the case where the measurement is badly reproducible, but with a great 
number of measurements, the mean is close to the correct (true) value. One then 
speaks of an imprecise measurement with correct mean (for a sufficiently great 
number of repeated measurements). The last, least desirable variant is an imprecise 
and incorrect measurement, where the measurement is badly reproducible and 
deviates systematically from the true value. It is of course obvious that the 
boundaries of the given classification depend , to a great extent, on convention.  

A good insight into the problems of measurement precision and accuracy is important 
for measurement planning. The best thing is naturally a precise and correct (thus in 
the mean accurate) measurement; however sometimes, it is difficult to attain this 
goal. Sometimes, we can put up with a precise, but less correct measurement (e.g. 
when comparing the values measured under different technological conditions, 
where a constant systematic error need not make a serious trouble). In other cases, 
we require correct measurement, while small precision of the method applied can be 
eliminated by calculating the average from a greater number of repeated 
measurements.  
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Appendix 3: Testing of statistical hypotheses  

We are sometimes interested in whether certain assertion on data properties holds 
true (e.g. the assertion that a gross error is present in the data). Such assertions are 
called statistical hypotheses.  

The procedure, by which we decide on the truthfulness of the postulated hypothesis, 
is so-called testing of statistical hypothesis. The hypothesis to be verified is called the 
null hypothesis, the opposite one alternative hypothesis. The test of the null 
hypothesis H0 against the alternative one H1 leads, on the basis of examining a 
random selection (sampling), either to the rejection of H0, or to non-rejection.(i.e 
rejection of  H1). Here, the non-rejection of hypothesis H0 must not be identified with 
its acceptance, although the practical consequences of the two concepts use to be 
the same. The non-rejection of a hypothesis simply means that on the basis of  
available information, one has no reason to doubt of it.  

The testing procedure: We have postulated certain hypothesis about the basic 
ensemble. We carry out a selection (sampling) of range n and have vector  
x = (X1, …, Xn). We choose an appropriate statistic T = T (X1, …, Xn ), called in this 
case testing criterion. One finds the distribution of random variable T under the 
assumption that the null hypothesis (to be tested) holds true. The interval where the 

statistic can lie      [e.g.   (-, +)], is divided into two intervals , interval  R and its 
complement R+. R is chosen in the manner that under the validity of H0, the statistic T 

takes values from this interval with probability (1 - ). Most frequently, the choice of 

this interval is such that given  , its length is minimal (near to zero). The value of  is 
chosen sufficiently small (e.g. 0.05); it is called the level of significance. The region 
R+ is called critical region. Now, from the random selection (sample), one calculates 
the statistic T. If T assumes a value from the critical region  R+, hypothesis H0 is 
rejected.  

When testing the hypotheses, one can commit basically two kinds of errors.  

Error of the first kind consists in rejecting the hypothesis on the basis of the random 
selection while in reality, it holds true. The probability of this kind of error equals the 

level of significance  . 

If hypothesis  H0  does not hold, but is not rejected on the basis of our random  
selection, we speak of an error of the second kind. The probability of a second kind 

error is denoted as   and the value of (1-  ) is called the power of the test. While the 
probability of a first kind error was, for a given test, one single number (equal to the 
significance level), the power of the test depends on how much the null hypothesis  
deviates from the reality. If we are able to measure somehow this deviation, the 

dependence of variable   on the deviation is called operating characteristic of the 
test. The corresponding power of the test  thus also depends on the deviation of the 
hypothesis from reality; the latter dependence is called power characteristic of the 
test.    

Let us now illustrate this important topic by a simple example. 
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Example A3-1: Testing a statistical hypothesis 

A liquid flows through a pipe with volume flowrate QV . On the pipe, two flowmeters are 
installed: a common flowmeter  A and control flowmeter B. For the values measured by the 
respective flowmeters  QV,A and QV,B we have  

QV,A  = QV  +  eA ; QV,B  = QV +  eB       (A3-1) 

where eA  and eB  are random errors of measurement for the respective flowmeters. 

The errors are assumed to behave as normally distributed random variables with zero mean 

and dispersions A
2 and   B

2. Flowmeter  A is prone to give a systematic error; our aim is to 
judge, on the basis of the measured values, whether such an error actually arises in 
flowmeter A.  

Let us formalize the problem mathematically. 

The above equations are rewritten as 

QV,A  = QV + es+ eA        ; QV,B  = QV  +  eB      (A3-2) 

where es  is systematic error of flowmeter A. The hypothesis that the flowmeter is not charged 
with a systematic error will be written in the form  es = 0 (hypothesis H0), the alternative 

hypothesis H1  will be written as es  0. 

Let us now carry out the sampling, represented in our case by measuring the values of QV,A   

and QV,B. As a statistic, we take the measured values difference 

T = QV,A  - QV,B  = es + eA - eB        (A3-3) 

Assuming the validity of H0 (i.e. es  = 0),  T equals the sum of two random variables with zero 

means and normal distribution, and has itself also normal distribution N(0, A
2 +  B

2). It can 

thus take the values from the interval  (-, +). 

Let us further choose the significance level   and the corresponding interval R. In Fig.      
A3-1 a), we have the probability density of statistic T. Since T has normal distribution with 
zero mean, the interval  R will be chosen symmetric around 0 

R = -Tu1-/2  ; Tu1-/2>        (A3-4) 

where T  = (A
2 +  B

2)1/2  and  u1-/2  is the quantile of distribution N(0,1). 

Let us now assume the validity of H0 thus es  = 0. In 100  per cent of cases the value of T 
falls into the interval  R+  and the hypothesis will be unduly rejected. The probability of this 
error of the first kind is depicted by the hatched area in Fig. A3-1 a). 
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Fig. A3-1: Magnitude of errors of Ist kind ( ) and IInd kind (  ) 

a) es  = 0   b) es  0 

Let us conversely assume that  es  0. The statistic T  has, in this case, the mean value es 

and the distribution illustrated in Fig.  A3-1 b). The hatched area here represents the 
probability of an error of the second kind  (T falls into the interval R and the hypothesis H0 is 
not rejected). Clearly, the probability of a IInd kind error decreases rapidly with increasing 

value of es 
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Appendix 4: Effectiveness of gross error detection  

The gross error detection effectiveness cannot be judged generally, but only for 
individual concrete measured variables. It is thus not a property of the whole model. 

A4.1  Gross error detection (threshold values)  

Let’s recall the Eq. (3.1-1) defining a random error and let’s modify it to the form 

x+  =  x  +  e  +  d ,       (A4.1-1) 

where  d  is a gross error (which is a constant).  
One has to begin with testing  the gross error presence hypothesis (see the 
preceding Appendix 3).  

As any statistical test, also the 2  test has its power characteristic  depicted in Fig.  
A4.1-1. 

Fig. A4.1-1: The power characteristic of the 2  test 

On the  x - axis, we have the magnitude of the gross error d, on the  y - axis the 
probability  P of the gross error detection. The value given by the power characteristic 

for an adjustable measured variable equals the significance level  of the test 
assuming the absence of gross error (d=0), and it approaches 1 for high values of the 

gross error  (d).  

The power characteristic represents though complete, still  too complicated 
information for the application in practice (imagine hundreds of such lines in a real 
size problem). More simple is the characteristic of measured variables by means of a 
single number, so-called threshold value (TV) for the gross error detection. 

TV is the value of gross error that will be detected with probability  (we'll further 

assume  = 0.9). TV is a characteristic value for any measured adjustable variable. 

The smaller TV , the better. TV is called the threshold value. 

The threshold value is computed from the equation 
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qi  =  (,)/[ai(2-ai)]
1/2       (A4.1-2) 

where qi  is physically dimensionless threshold value  TV/ 

qi  = TVi/i         (A4.1-3) 

and  (,)  is a constant, characteristic of the significance level  of the chi-square 

test, degree of redundancy  and probability of the gross error detection . For more 
details, see the literature [2]. 

Values of (,) for   = 0.05 ,  = 1,2,…,500 and   = 0.90, 0.95 and 0.99 are 
presented in Table A4-1. Values in Tab. A4-1 can be approximated by functions 

 

 (,0.05) = a  +  b ln()+  c ln()2  + d ln()2        (A4.1-4) 

 

This equation approximates values in Tab. A4-1 with difference less than 0.01 for 
degrees of freedom up to 400. The values of coefficients are presented in Table A4-
2. 

Let us notice that for a measured variable, the threshold value is a simple function of 
its adjustability defined by Eq. (3.5-2); see also the following figure.  

 

Fig. A4.1-2: Dimensionless threshold value q as function of the degree of 

redundancy  and adjustability  a (for =0.05 and =0.9) 

From this diagram, one can derive certain simple conclusions: 

 The greater  the adjustability is, the greater is also the probability that the gross 
error will be detected (low value of threshold error)  

 For adjustability smaller than 0.01, the probability of gross error detection is very 
small and decreases further rapidly 

 The minimum threshold value equals 3.24 times the standard deviation of the 

measurement (this in the case of  = 1 and adjustability = 1 , where q equals the 
minimum value  3.24). Considering that the maximum measurement error is taken 
as 1.96 times the standard deviation, the minimum threshold value results as 1.65 
times the maximum measurement error. From here follows that the method for 
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gross error detection is not omnipotent even under optimal conditions, and is 
effective only for larger gross errors.   

 

Table A4-1: Values of 0.90(,0.05), 0.95(,0.05) and 0.99(,0.05) 

 0.90 0.95 0.99  0.90 0.95 0.99 

1 3.24 3.60 4.29 55 6.21 6.69 7.56 

2 3.56 3.93 4.63 60 6.32 6.80 7.68 

3 3.76 4.14 4.85 65 6.42 6.91 7.80 

4 3.93 4.31 5.02 70 6.52 7.01 7.91 

5 4.06 4.45 5.17 75 6.61 7.11 8.01 

6 4.17 4.57 5.30 80 6.70 7.20 8.11 

7 4.28 4.67 5.41 85 6.79 7.29 8.21 

8 4.37 4.77 5.51 90 6.87 7.38 8.30 

9 4.45 4.86 5.60 95 6.95 7.46 8.39 

10 4.53 4.94 5.69 100 7.02 7.54 8.48 

11 4.60 5.01 5.77 110 7.16 7.68 8.63 

12 4.67 5.09 5.85 120 7.30 7.83 8.79 

13 4.74 5.15 5.92 130 7.42 7.96 8.93 

14 4.80 5.22 5.98 140 7.54 8.09 9.07 

15 4.86 5.28 6.05 150 7.66 8.21 9.20 

16 4.91 5.34 6.11 160 7.77 8.32 9.32 

17 4.96 5.39 6.17 170 7.87 8.43 9.44 

18 5.02 5.44 6.23 180 7.97 8.53 9.55 

19 5.06 5.49 6.28 190 8.06 8.64 9.66 

20 5.11 5.54 6.33 200 8.16 8.73 9.76 

22 5.20 5.64 6.43 210 8.24 8.82 9.86 

24 5.29 5.72 6.53 220 8.33 8.91 9.96 

26 5.37 5.81 6.61 230 8.41 9.00 10.06 

28 5.44 5.89 6.70 240 8.49 9.09 10.15 

30 5.51 5.96 6.78 250 8.57 9.17 10.24 

32 5.58 6.03 6.85 260 8.65 9.25 10.32 

34 5.65 6.10 6.93 270 8.72 9.32 10.41 

36 5.71 6.16 7.00 280 8.79 9.40 10.49 

38 5.77 6.23 7.06 290 8.86 9.47 10.57 

40 5.83 6.29 7.13 300 8.93 9.54 10.64 

42 5.88 6.35 7.19 350 9.24 9.88 11.01 

44 5.94 6.40 7.25 400 9.53 10.18 11.33 

46 5.99 6.46 7.31 450 9.79 10.45 11.63 

48 6.04 6.51 7.37 500 10.03 10.71 11.90 

50 6.09 6.56 7.42     
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Table A4-2: Values of coefficients of Eq. (A4.1-4) 

 a b c d 

0.90 3.23176 0.456899 0.014449 0.014124 

0.95 3.59399 0.471951 0.014197 0.015074 

0.99 4.27375 0.495598 0.013573 0.016721 

 

A4.2  Protection of results against gross errors  

In practice, there always exist one or several variables, which are of a key 
importance. They are the main reason why hundreds of other variables are 
measured, collected and processed. The measurement target can be for example a 
nuclear reactor heat output while errors can be hidden in measured flows and state 
variables of steam and water. The basic question is: “How are these target variables 
protected against gross errors of the measurement?” 

The success of our efforts can be stated as the statement A: “A gross error was 
identified and eliminated while the target was still not influenced significantly”. The 
opposite statement B: “A gross error was present and not identified while the target 
was influenced significantly” means our failure. In analogy with statistics (power of 
statistical tests) we can define the probability of an event A as a power of the 
Monitoring System Self Protection (MSSP). 

Further it is supposed (without loss of generality) that a target variable h belongs to 
the set of unmeasured observable variables y in Eq. (3.4-1). Let’s further suppose 
that for a target variable h is defined the maximum acceptable error ehmax. This 
tolerance can be consumed by  
1. a random error ehr caused by random errors of all measured variables (further we 

suppose Gaussian errors with Normal distribution). As the random errors are 
not known, we will substitute ehr by ehrmax which represents the tolerance of h 
caused by random errors (the information provided by the DR Engine). 

2. a constant gross error ehg caused by a gross error of one measured variable d in 
the sense of Eq. (A4.1-1) 

We require that 

ehmax >  ehrmax + ehg       (A4.2-1) 

Inequality (A4.2-1) sets the upper limit on the error ehg caused by the gross error, 
further denoted as ehgmax  

ehgmax   =  ehmax - ehrmax      (A4.2-2) 

This means that both errors’ tolerances add to form the overall tolerance. The 
situation is illustrated in the next Fig. A4.2-1 where h’ stands for the true (unknown) 
value of a target variable. 
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h
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ehgehrmax
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ehmax

ehgmax

h
 

Fig. A4.2-1. The overall tolerance ehmax consumed by random and systematic errors 

It is clear that the reserve should be non-negative to satisfy our MSSP requirement 
(A4.2-1). 

The MSSP analysis will be based on a combination of two methods: 
1. gross error detection described in the previous paragraph 
2. a parametric sensitivity of target variable in respect to the individual measured 

variables. 

Let’s suppose that a target variable h is a function of measured variables in the 
sense of Eq. (3.4-7). 

 h  =  h(x+)         (A4.2-3) 

In this case the function h() represents the whole DR process starting by collection of 
measured values and ending by calculations of target values. 

A parametric sensitivity   i of h()   in respect to a measured variable  xi  is defined as 
the partial derivative 

i  =   h(x+)/xi
+        (A4.2-4) 

The process consists of two steps, which are applied to all measured adjustable 
variables: 
3. determination of the threshold value for the i-th measured variable 
4. evaluation of the parametric sensitivity of the target variable in respect to the i-th 

measured variable. 

The process is illustrated in the next Fig. A4.2-2, which is a continuation of Fig. A4.1-
1. On the right hand side y axis there is the error of the target variable caused by a 
gross error of the i-th adjustable measured variable. It should be stressed here that 
the non-adjustable measured variables are not covered by the proposed method.  
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TV  

Fig A4.2-2: Power characteristics (full curve) and the parametric sensitivity (dashed 
straight line) for the i-th measured variable (the index i is omitted here for brevity) 

It is supposed that the function  (A4.2-3) can be linearised and that a gross error of 
the i-th measured variable transforms to the error of the target variable according to 
Eq. (A4.2-5) 

ehg  =  i di         (A4.2-5) 

This equation is represented by the dashed straight line in Fig. A4.2-2.There are two 
important points on the x axis: 
1. threshold value TV  which informs that gross error was detected (with probability 

) 
2. critical value of the gross error dcrit . At this point ehg reaches the maximum value 

ehgmax and exhausts all tolerance available (point A in the Fig. A4.2-2). 

ehgmax  =  i dcrit,i        (A4.2-6) 

 or 

dcrit,i  =  ehgmax/i        (A4.2-7) 

Now it is time to compare the power characteristic curve with the parametric 
sensitivity straight line. The most important is the relation between dcrit  and TV,i . If 
there holds the inequality 

dcrit  > TV,i ,        (A4.2-8) 

the gross error will be detected before causing unacceptable error in the target 
variable and the system is well protected against a gross error of the respective 
measured variable (this case is depicted in Fig. A4.2-2). In the opposite case an 
undetected gross error can devalue the target value significantly before it is detected. 
The inequality (A4.2-8) can be expressed also in the alternative way by substitution 
of dcrit from (A4.2-7) to (A4.2-8): 
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ehgmax   >   i TV,i    =  ehgTV      (A4.2-9)  

saying that  

the product of the parametric sensitivity and the threshold value should be less 
than the tolerance belonging to the gross error set a priori for the target 
variable. 

The inequality (A4.2-9) thus represents the only criterion for assessing whether the 
target variable is self protected by DR (and the following data analysis steps) against 
gross error(s) in the i-th measured variable. The inequality (A4.2-9) must be checked 
for all adjustable measured variables. 

This topic is illustrated by an example in the Case study 2.  
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Appendix 5: Momentum balance in a pipeline 

In mathematical physics of continuous media, the basic equations are those which 
formulate instantaneous local mass, energy and momentum balances. So as to give 
the reader an idea, let us illustrate it by the examples of 

 

 single-component mass balance    / t   +   div(  v)  =  0 

 

where    is mass density  (kg  -3m ),  t is time and v is velocity vector, further 

 

 energy balance    tE  /  +  div( vE + T.v + j)  =  q 

 

where E is energy density (J/m 3 ), T is friction tensor and j heat flux vector. The two 
equations represent physical  laws of conservation for mass and energy. The third 
equation will be treated more in detail below. 

 

Any mathematical model in practice has to be simplified, according to the 
circumstances occurring in making use of it, in order to make it mathematically 
solvable. (Such an observation  was pronounced by the famous physicist A. 
Sommerfeld some hundred years ago.)  In the case considered below, we are 
admitting the following  simplifications.  

  

i)  We will not consider transient situations. We thus regard the process as stationary. 

 

ii) We will limit ourselves to situations not far from the so-called single phase flow (we 
will allow for example a steam which is a little bit wet (contains small amount of 
tiny water droplets) or a crude oil containing small amount of water and solid 
particles (say up to 1 %)   

 

iii) Even then, the momentum balance needs at least temperature as variable in 
calculating the liquid water/steam properties. The simplest hypothesis is assessing 
a priori the temperature as some average value.  

 

See also Section 2-5 for further hypotheses. In fact the now following text  is a little 
more general, on introducing curved pipeline according to Fig. D5-1. 

 

The detailed balance is quite complicated. It will be given only in simplified form 
obtained by integrating the  general differential balances for the conservation of mass 
and momentum (product of density and flow velocity vector at a given point); the 
integration is over the points of a given region in three-dimensional space. 
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We consider stationary streaming in a segment of  circular tube with diameter D  (m),  
cross section   

 

S  =  
4

2D
  (m2)  and length L  (m) .      (D5-1) 

 

The pipeline need not be horizontal; it generally comprises ascending (or 
descending) parts according to the scheme 

 

    

Fig. D5-1:   Pipeline segment 

 

Here,  x is general coordinate on the tube axis and  h  the (variable) height above the 
chosen zero level. The gravitational acceleration will be denoted by  g  (m/s2). Further 

 

   m  (kg/s) is constant value of the flowrate.                 (D5-2) 

 

The pressure P  (Pa)  changes along the coordinate  x. The fluid density   (kg/m3) is 

in our case function of temperature and pressure. Temperature T  will be for 
simplicity considered constant (independent of  x). The course of pressure along  x  is 
then described by the differential equation  

 

   
x

P

d

d
  +  

2

1
2DS


m2



1
 +   g

x

h

d

d
  +  

2

2

S

m

xd

)/1(d 
   =   0     (x  =  0   to   x  =  L)   (D5-3) 

 

where we have in addition the parameter   (friction factor of the pipeline) . The latter 

is given in engineering literature as function of the Reynolds number and tube wall 
roughness.  Here, the Reynolds number equals 

 

      Re  =  
S

mD
                                         (D5-4) 

 

h1 

h2 

x 

h 

x 

D 

or in a detail 
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where    is dynamic viscosity (kg/(ms)). The viscosity is generally function of 

pressure and temperature and can be calculated, as well as density  , using 

available methods (see below). Then, assuming that also the roughness is known, 
the coefficient   becomes also function of temperature and pressure; after all in the 

expression for the Reynolds number, we can estimate the viscosity by a certain mean 
value and take coefficient   as a constant calculated (given m) from well-known 

relations. 

 

Under all the simplifying hypotheses introduced, in Eq. (D5-3) we then have 
independent variable  x,  and dependent variable  P as itself and implicitly via 
function   (given T); the slope dh/dx is also considered known. Eq. (D5-3) can be 

generally solved by numeric  methods. 

  

An approximate formula is obtained, if we a priori estimate the corresponding region 
of pressures and for the variable value of  , substitute its mean value  . The last (by 

the way frequently quite small) term on the left hand side sum in Eq. (D5-3) can be 
neglected and we have the pressure difference (pressure drop) 

 

   P1 –  P2    
2

1
2DS





2m
L  +   g(h2 –  h1).        (D5-5)  

 

Density   and viscosity   for liquids gases can be computed by different 

approaches (for example the IAPWS – IF 97 for water and steam) or API methods for 
hydrocarbons. 
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Appendix 6: Classification of variables 

The starting point for the following solution is the solvability analysis of a set of linear 
equations in variables representing measured and unmeasured variables. The so-
called General linear model is of the form  

 

Ax  + By  + a  =  0 

 

where  

x        is  vector of measured variables 

y       vector of unmeasured variables 

a       vector of constants 

A and B  matrices of constants 

 

Let us set up so-called macro-matrix C formed by matrices B and A. 

 

   C  =  (B, A)                (A6-1) 

 

For the sake of simplicity, let us suppose that all the rows of matrix C are linearly 
independent (which should be the case of correctly set- up balance equations).    

In the first step, we carry out the Gauss-Jordan elimination (transformation) of matrix 
C   (see  Fig. A6-1, where the void fields represent zeros and the hatched ones 
certain general elements). In the left upper part of transformed matrix C, we thus 
have unit matrix, in the lower part of (transformed) submatrix B , there can arise a 
band of zero rows. This operation may require interchanging rows of matrix C and 
also columns of submatrix B.  

 

Fig. A6-1: Matrix C after elimination rearrangements of submatrix  B 

  1 

1 

1 

1 

1 

2 

unmeasured     measured 
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If the horizontal band 2 in submatrix B does not arise, the system is not redundant 
and there is no need of data reconciliation.  

Let us now assume that after the elimination, the latter band has arisen, and continue 
in further elimination in band 2 of the (pre-transformed) submatrix  A. We thus obtain 
the matrix schematically depicted in the following figure.  

 

Fig. A6-2: Matrix C after elimination rearrangements of submatrix A 

 

We further regroup the rows of horizontal band 1 (contingently also the columns of 
submatrix B). Our aim is here to form a zero submatrix  – intersection of horizontal 
band 1a and vertical band 2. We further aim at creating a further zero submatrix  – 
the intersection of horizontal band 2 and vertical band 4b. After all these 
rearrangements, the resulting form of matrix  C is called canonical.   

 

Fig. A6-3: Canonical form of matrix  C  
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The canonical form of matrix C provides all necessary information about the 
solvability of the system. One only needs to realize that the horizontal bands of the 
matrix represent groups of equations, and the vertical bands represent groups of 
variables. The conclusions are following:  

 The unmeasured variables in vertical band 1a are uniquely determined by the 
values of measured variables in vertical bands 3 and 4  – they are thus 
observable.  

 The unmeasured variables in vertical bands 1b and 2 are not uniquely 
determined and are thus unobservable. 

 the reconciliation of measured values concerns only the measured values in 
vertical bands 3 and 4a. These bands comprise redundant variables to be 
reconciled.   

 If the canonic form of matrix  C contains vertical band 4b, this band represents 
nonredundant (just determined) measured variables.  

Having transformed the system to the canonical form, one can see that the 
reconciliation proper does not concern the whole set of the (transformed) equations, 
but most frequently only a small part of it, i.e. horizontal band 2. In the first step, one 
carries out the reconciliation and the reconciled (adjusted) values are substituted for 
the measured ones into the equations in horizontal band 1. In the second step, the 
remaining observable unmeasured variables are computed using the equations in 
horizontal band 1a.  

The so far described procedure of solution can be directly applied to linear models. In 
the nonlinear case, the procedure can be applied to models linearized in a region 
sufficiently close to the solution point.  

In this Appendix, we have committed certain  simplifications (for example we have 
assumed linear independence of the rows of matrix C). A complete solution can be 
found in literature [2].The above conclusions hold for the case where the covariance 
matrix of measurement errors is diagonal (uncorrelated errors). If the errors are 
correlated, it can happen that also nonredundant data are reconciled. This 
interesting, though not very frequent case is described, e.g., in literature  [5]. 
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Appendix 7: Reaction invariant balances 

The following approach to balancing of chemically reacting system can be useful 
when the exact stoichiometry of chemical reactions described is Section 2.3.3 is not 
known.  

Let the individual components Sk (k=1,2,…,K) are composed of elements Eh 
(h=1,2,…,H). The composition of components can be expressed with the aid of so-
called atom matrix E whose element Ekh equals the number of h-th atom in a 
molecule of the k-th component:  

 

  E11 ……….. E1H  

E   =  …….. Ekh  ……..       (A7-1) 

  EK1 ……….. EKH 

 

The molecular weight of the k-th component Mk is given by the following expression: 

 

Mk  =   
h

 Ekh Wh              , k = 1,2,…,K     (A7-2) 

 

where Wh is atom weight of the h-th element.  

The mass fraction of the h-th element in the k-th component xik equals   

 

xik =  Ekh Wh /Mk  .         (A7-3) 

 

The law of conservation of element in a node which is an analogy of a conservation 
of components in non-reacting systems in equations (2.3-2) and (2.3-3), can be then 
written as  

 


i

imi  
k

xik Ekh Wh /Mk      0        ,  h = 1,2,…,H .   (A7-4) 

 

So far we have supposed that all components participated in a chemical conversion. 
In the presence of inert components the approach described above can be applied 
just to chemically reacting components. The inert components, which are conserved 
during chemical reactions, can be then balanced separately.  

Note: In practice, the conservation law can be applied not only to chemical elements but also 
to some stable functional groups, ions or other parts of molecules which are not modified 
during chemical reactions under given conditions (temperature, pressure, absence of a 
catalyst, and the like). In such cases the approach described above can be modified by an 
introduction of some pseudo-elements representing parts of molecules which are conserved 

during a chemical conversion  
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Example A7-1: Reaction invariant balance of a methane chlorination  

Let’s return to Example 3.2-1where a chlorination of methane is described by the following  
equations: 

CH4 + Cl2  =  CH3Cl + HCl        (A7-5) 

CH3Cl + Cl2  =  CH2Cl2 + HCl 

But, there is possible also the next set of equations: 

CH4 + Cl2  =  CH3Cl + HCl        (A7-6) 

CH4 + 2Cl2  =  CH2Cl2 + 2 HCl 

Let’s forget, that in this elementary example both reaction sets are equivalent as concerns 
the final result of balancing and set up the reaction invariant balancing model. 

There are 5 species in the system: CH4(1), Cl2(2), CH3Cl(3), CH2Cl2(4) and HCl(5) and 3 
chemical elements C(1), H(2) and Cl(3). The atom matrix  (A7-1) then reads  

Element  C H Cl Component 

             
     1 4 0  CH4 

  0 0 2  Cl2   
E = 1 3 1  CH3Cl 
  1 2 2  CH2Cl2(4) 

  0 1 1  HCl  

 

Sometimes complex components can be characterized by an empirical composition 
only and pseudo-elements must be introduced. 

 

Example A7-2: Reaction invariant balance of a fermentation process  

Let’s consider the process for the manufacture of biomass (yeast) from ethanol described in 
[2]. Starting materials are 

1. Ethanol (elemental formula C2H6O) 

2. Oxygen (O2) 

3. Ammonia (NH3) 

4. Mineral nutrients represented by a fictitious element  Ah with relative atomic mass 1 

 

Products are 

5. Biomass, empirical formula C3.83H7.00O1.94N0.64Ah7.00 , where Ah stands for mineral part of 
the biomass (determined by analysis as ash) 
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6. Acetic acid, an undesirable by-product (C2H4O2) 

7. Carbon dioxide (CO2) 

8. Water (H2O) 

 

The above eight substances consist of 5 elements, C(1), H(2), O(3), N(4) and Ah(5). The 
atom matrix is then 

 

Element  C H O N Ah Component 

            
     2 6 0 0 0  ethanol 

  0 0 2 0 0  oxygen   
  0 3 0 1 0  ammonia 
E = 0 0 0 0 1  mineral nutrients 
  3.83 7.00 1.94 0.64 7.00  biomass 
  2 4 2 0 0  acetic acid 
  1 0 2 0 0  carbon dioxide 

  0 2 1 0 0  water   

 

The above two examples showed that creation of atom matrices is very simple and 
requires minimum information. This knowledge enables one to replace classical 
balance models described in Section 2.3.3 by reaction invariant balances described 
in this Appendix. Anyway, it is reasonable to ask a question, whether there is a 
difference between results of these two approaches.  

In general, classical balancing based on chemical reactions can contain more 
information than reaction invariant balancing. So, it should be preferred in cases 
when stoichiometry (or perhaps mechanism) of reactions is know well. In the case of 
data reconciliation the classical models can have higher degree of redundancy than 
the reaction invariant models. Both methods give the same degree of redundancy 
when the system of independent reactions is a maximum one – this means that no 
other independent reaction among components exists. This holds for systems without 
isomers. It is not possible to go to further details in this book. The problem is solved 
in specialized books about balancing, like [1]. 
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Appendix 8: About program RECON 

                           

 

 

 

Mass, heat and momentum balancing software with 
data reconciliation 

 

Description 

RECON in version 7 is a comprehensive 

interactive software for mass, heat and momentum 

balancing of complex chemical plants on the basis 

of measured or otherwise fixed data. 

It is designed primarily for the validation of data, 

which has been obtained from operating 

processes. RECON can also be used for classical 

balancing in the stage of the process design. 

What is data reconciliation? 

Reconciliation is a method for extracting all 

information present in plant data. Reconciliation is 

based on statistical adjustment of redundant 

process data to obey laws of nature (mass and 

energy conservation laws). As a result, new 

consistent set of data is obtained. Moreover, data 

reconciliation serves as a basis for other important 

activities: 

 Finding confidence intervals for results (error  

propagation analysis) 

 Detection and elimination of gross 

measurement errors 

 Measurement planning and optimization. 

 

RECON can be used to treat measured data before  

its further usage for other purposes (simulation, 

optimization, control, ...) 

Graphical User Interface of RECON 

 

FEATURES 

RECON is PC oriented software with user friendly 

facilities. Problems (tasks) are defined 

interactively in the graphical user interface. User 

manual contains brief survey of reconciliation 

theory. 

RECON is aimed at single or multi-component 

material and heat balancing of complex systems. It 

is also capable to perform momentum balancing 

based on hydraulic calculations.  RECON 

reconciles measured flow rates, concentrations, 

temperatures and other process variables and 

calculates unmeasured variables.  

 

 RECON 
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Problem (task) is commonly defined by creating 

process flowsheet and defining process variables 

like flow rates, temperatures, pressures, etc. The 

flowsheet comprises nodes, mass and energy 

streams, and heat exchangers. Users are also 

allowed to complete (or even replace) balancing 

model with their own equations. 

 

 

 

 

 

 

 

 

 

Monitoring of a heat transfer coefficient in RECON 

 

VARIABLES 

The following  information on task variables must 

be specified: 

 Classification of variables (measured, 

unmeasured, fixed) 

 Values of measured and fixed variables 

 Estimates (guesses)  of unmeasured       

variables (for  nonlinear problems only) 

 Maximum errors or standard deviations of 

measured variables 
 

CAPABILITIES 

 Calculation of unmeasured variables 

 Reconciliation of redundant measured 

variables 

 Analysis of input data as concerns its 

consistency 

 Confidence intervals of results 

 Statistical analysis focused on detection and 

identification of gross measurement errors 

 Detailed classification of variables (redundant 

/ non-redundant, observable / non-observable). 

 Measurement placement optimization 

 Parametric sensitivity 

 Database of historical data useful for 

monitoring of operating plants 

RECON’s connectivity 

RECON can be connected to process data 

information systems based on the Oracle, MS 

SQL, PI System, Industrial SQL server and MS 

Access databases as well as to MS Excel, .DBF or 

.TXT files. 

RECON’s physical property database 

RECON contains three databases of physical 

properties:  

 The IAPWS IF 97 database of properties of 

steam ad water 

 Parameters of BWR equation for density 

calculations  

 Critical parameters of components for 

viscosity calculations of gaseous mixtures 

Running RECON 

RECON can be run in the following modes 

 Interactive solving of one task 

 On-line monitoring of industrial processes 

 Automatic processing of historical data 

 As ActiveX DLL from other applications 

HARDWARE REQUIREMENT 

RECON is the 32 bit MS Windows application 

which can be installed on any PC or server 

operating under MS Windows 95 or higher (98, 

NT, 2000, XP). The minimum recommended 

processor is Pentium with RAM 128 MB. 

Other software provided by ChemPlant 

IBIS - A comprehensive reconciliation plant 

balancing system (yield accounting in large plants 

and companies) 

PDIS – Process Data Information System. A 

process database of data like flow rates, 

temperatures, laboratory data, etc. on the Oracle 

platform. 

ChemPlant Technology, s.r.o. 

Hrnčířská 4 

400 01 Ústí nad Labem 

Czech Republic 

Tel:  +420 475 220 465 

Fax:  +420 475 220 662 

E-mail: support@chemplant.cz 

WebSite: www.chemplant.cz 

mailto:support@chemplant.cz

