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SUMMARY

1. The main purpose of this report is to verify the rightfulness of application of Data
Reconciliation and Validation methods (which were developed on the assumption
of models’ linearity) to real industrial models which are mostly nonlinear.

2. Three indicators of the influence of model's nonlinearity of Data Reconciliation
results were used:

e Theoretical mean value of the least squares function (which equals to the
Degree of Redundancy) was compared with the average of Qnn values
calculated in MCM simulations

e Theoretical value of the second central moment (variance) of the least
squares function (which equals 2 times of the Degree of Redundancy) was

compared with the average of Qn, variance in MCM simulations
e Theoretical value of the probability of the Error of I Kind in testing the
presence of a gross errors (which equals 5 %) was compared with the
relative number of false Gross Error Detection in MCM simulations (in per

cents).

3. The main purpose of Chapter 5 was to verify that MCM methods used in RECON
(generation of random variables, etc.) are sound. Calculations revealed that it is
needed to make 10,000 MCM repetitions to get reliable results. The MCM
analysis of a simple linear model has confirmed that the DRV methodology works
and the results’ precision agrees with MCM results (Table 5-2). Also the Gross
Errors Detectability method gives good results (Table 5-3).

4. The core of the report is in Chapter 6. The spectrum of 12 nonlinear models
covers typical DRV tasks we can meet in Chemical and Power Industries. Models’
characteristics are shown in Table 6-13. The typical type of nonlinearity is a
product of two variables (bilinear models, namely multicomponent and heat
balances). The nonlinearity in all cases did not caused significant deviations
caused by models’ linearization during the DRV solution (Table 6-14).

5. In Section 2.5 was proposed the practical and simple measure of models’
nonlinearity by Eq. (2-25). It is the relative improvement of the Least Squares
function Qg calculated by the Successive Linearization and then improved by
the SQP method: Qgier = (Qming, — Qminsqpe) / QMinsgp.

In Chapter 6 was shown that for most of industrial models the SQP method is not
mandatory but in some cases it is required. This decision must be done
experimentally, for example by the MCM method.
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6.

In Chapter 7 were analyzed two bilinear models as concerns the influence of
measurement uncertainties on statistical results of DRV. It was concluded that
there is no evidence of significant influence of measurement uncertainties on
basic statistical characteristics of the data reconciliation process.

In Chapter 8 was on 4 examples shown that MCM is a good method for testing
models’ robustness. Random errors’ of measurements were be perturbed up to 5
times of the original measurement uncertainties to test models’ robustness.
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GLOSSARY AND ABBREVIATIONS

MCM Monte Carlo Method

Recon Mass, energy and momentum balancing software with Data Validation and
Reconciliation

DoR Degree of Redundancy

DR Data Reconciliation

DVR Data Validation and Reconciliation

GED Gross Error Detection

NLP Nonlinear Programming

PDF Probability Density Function

PF Perturbation Factor

Qaver average value of Qnin

Qmin the Least Squares sum

Qerit the critical value of the Least Squares sum

Quifrel relative difference of Qmin between SL and SQL methods (see Eq.(2-22)

S Status of Data Quality

Saver mean (expected) value of the Status

SL Successive Linearization

SQP Successive Quadratic Programming

TV Threshold Value

VQaver average value of Qmi, variance (the second central moment)

% GED % of cases with detected Gross Error

u Greek letter mu — mean value

v Greek letter nu — Synonym for Degree of Redundancy (DoR)

o standard deviation of measurement error

Oxi standard deviation of reconciled value

ovi standard deviation of adjustment
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1 INTRODUCTION

Process Data Reconciliation (DR) accompanied by related techniques (Gross Errors
Detection and Elimination, measurement points placement, etc.) is in practice based on
statistical inference methods [1] using the family of probability distributions like Normal
(Gauss) or Chi-square. For linear functions the Normal distribution of inputs remains
Normal also for functions outputs. On the other hand side, most of models important in
practice are not linear and their solution is based on their linearization. In such cases the
reconciled values have Normal distribution no more, the same holds for Least Squares
functions which are not distributed exactly Chi-square, etc. It is therefore legitimate to
state a question: Is it justified to apply DR techniques to industrial models which are
mostly nonlinear?

The purpose of this report is to clear the importance of neglecting nonlinearity of models
used in practice. Thus formulated problem is not easy to solve analytically and the
Monte Carlo simulation [2] can be a good way to tackle this problem.

Monte Carlo Method (MCM) is a mathematical technique used to estimate possible
result of an uncertain event. The Monte Carlo Method simulation predicts outcomes
based on a set of random input values. It recalculates the results over and over, each
time using a different set of random numbers generated according to some probability
distribution. The well known Normal (Gauss) distribution of measurement errors
which is preferred in technical modeling (mass and energy balancing, thermodynamic
calculations, etc.) will be used throughout this report.

Application of the Monte Carlo Method (MCM) in studying DR is not new. Probably for
the first time MCM was applied by lordache et all [12] in studying the problem of the
Gross Errors Detection test power. Ozyurt and Pike [13] studied by MCM extensively the
efficiency of gross errors detection. Bagajewicz and Nguyen proposed to calculate the
expected value of accuracy [14,15] by MCM. Syed et all used MCM to verify results from
the linearized models of a gas turbine system, especially functioning of Gross errors
detection [16]. Cencic and Fruhwirth [17] used the Markov chain Monte Carlo method for
modeling non-normal distributions which are results of models nonlinearity and can’t be
solved analytically. Wingstedt and Saarela used MCM to evaluate error propagation in
computation of nuclear plant thermal power [18].

In this report four areas will be studied:

e verification of internal statistical methods used in Recon for MCM

¢ influence of model nonlinearity on Data Reconciliation results

¢ influence of measurement uncertainties on reconciled results’ precision
(confidence intervals)

e robustness of Recon’s functionality in the presence of Gross Errors in input data.

The subjects of the MCM will be random errors added to “errorless” values of measured
variables (flowrates, temperatures, etc.). With this aid we will simulate the influence of
measurement errors on final results.

6
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It is clear that such solution can’t give a general answer for all possible models occurring
in industrial practice. We have selected 12 model typical for Power generation, Oil
refining, Petrochemical and Natural gas distribution industries. In what follows 7 simple
models will be used to study MCM applied to typical process industries tasks (mainly
unit operations in these areas). At the end 5 industrial size tasks will be analyzed (a coal
fired steam generator with auxiliaries, a powerplant supercritical steam cycle, heavy
crude vacuum distillation system, a steam generation system in a nuclear powerplant
and Natural gas transport and distribution system with hydralics modeling).

The modeling tool used in this report is the mass and energy balancing software with
Data Reconciliation and Validation RECON® by ChemPlant Technology, s.r.0., see
RECON | ChemPlant Technology - process data information systems, mass and energy
balancing software. RECON in its Lite version can be here freely downloaded. The Lite
version makes possible calculation of most of examples presented further in this report.



https://www.chemplant.cz/inpage/recon/
https://www.chemplant.cz/inpage/recon/
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2 MODELING INDUSTRIAL PROCESS SYSTEMS BY RECON

The next Chapter 2 summarizes briefly theory of DR including some more advanced
methods like measurement errors propagation and the Power of testing hypotheses
about gross errors. There are many good books devoted fully or partially to these
subjects [3-10]. There is also practically oriented report [11] available free from Internet
at Papers and reports | ChemPlant Technology - process data information systems,
mass and energy balancing software. The notation in this report is taken over from the
book [4].

2.1 Models

It is universally accepted that any measurement is charged with some error. The
measurement error is defined by the following equation.

X'=x + e (2-1)

where x" is the measured value
x is the true (unknown) value
e is the measurement error

Most frequently is supposed that e is a random variable with the Normal distribution with
zero mean value characterized by the standard deviation o . In practice the standard
deviation is supposed to be related with the measurement tolerance or the maximum
measurement error. The measurement uncertainty (maximum measurement error is the
term used in Recon) is taken as 1.96 multiple of o (this stems from the Normal
distribution and the probability level 95 %).

Note: The nomenclature here is not unified. The notion measurement uncertainty has also the synonym
measurement tolerance. In Recon used maximum measurement error has the same meaning.

Let us start from the mathematical model

F(x,y,c)=0 (2-2)

where F() is the vector of implicit model equations (generally nonlinear)

X is the vector of directly measured variables


https://www.chemplant.cz/inpage/papers-and-reports/
https://www.chemplant.cz/inpage/papers-and-reports/
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y is the vector of directly unmeasured variables
c isthe vector of precisely known constants

The starting point for the following solution is the solvability analysis of a set of linear
equations in variables representing measured and unmeasured variables. The important
simplification of the nonlinear model (2-2) is so-called General Linear model

A’x +By +a =0 (2-3)

where

X is vector of measured variables
y vector of unmeasured variables
a vector of constants

A’ and B are matrices of constants

The General Linear model can be further simplified by elimination [4] of unmeasured
variables to the form containing only measured variables (note that matrices A and A’
are different):

Ax+a =0 (2-4)

2.2 Datareconciliation

EqQ. (2-2) holds for the true (unknown) values of the variables. If we replace them by the
measured values x", the equations need not (and most likely will not) be exactly
satisfied:

F(x*,y,c)#0 (2-5)

whatever be the values of the unmeasured variables (unless the degree of redundancy
equals zero).
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The basic idea of DR is the adjustment of the measured values in the manner that the
reconciled values are as close as possible to the true (unknown) ones. The reconciled
values x;‘ (marked by apostrophe) result from the relation

Xi‘= X" +V, , (2-6)

where to the measured values, so-called adjustments v; are added. In the ideal case,
these adjustments should be equal to the minus errors, but these are unknown. If,
however, we have the mathematical model that must be obeyed by the correct values
then the optimal solution is as follows:

The adjustments must satisfy two fundamental conditions:

1) The reconciled values obey Eq. (2-2) — we say that they are consistent with the model
F(x.y‘c) =0 (2-7)

2) The adjustments are minimal. Most frequently, one minimizes the weighted sum of
squares of the adjustments using the well-known least squares method

minimize Y Wila)? = 2 [(x - xDlol2. (2-8)

where v; = x;‘- x;" are so called adjustments.

The inverse values of the standard deviations o* — so-called weights — then guarantee
that more (statistically) precise values are less corrected than the less precise ones (this
is a relevant property of the method).

The least squares function (2-6) is used in the case of uncorrelated (statistically
independent) errors. In the case of correlated errors a more general criterion is
minimized:

minimize vF v (2-9)

where v is vector of adjustments and F is the covariance matrix of measurement errors.

The reconciliation proper is an optimization problem requiring computer technigue and
effective software. In contrast to many other engineering calculations, the DR cannot be
carried out manually (using a pocket calculator) even with very simple models.

10
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The mathematics of the solution itself was in the last decades many times described in
the literature (e.g. [3-11]) and will not be mentioned in the sequel.

So let us further suppose that at our disposal is the program RECON ready to use for
DR. Schematically, it is the Data Reconciliation Engine depicted in the following figure.

l todel of errars

MEESUI’EP
valles ¥ Feconciled walues x°
. The Data >
Corstants o Recunciliatiun Estirn ated wallues F,p
» Engine Other infarmation
i

I M athermatical model

Fig. 2-1: The Data Reconciliation Engine

The model (2-4) is used for DR proper. In the first step the adjustments v are calculated
according to the equation

v = - FxAT(AFAT) Y (a +Ax™) (2-10)
Reconciled values x’ are then calculated from the equation
Xl = X+ +vV (2'11)

by substitution from Eq. (2-10).

2.3 Statistical properties of results

Adjustments v have the normal distribution N(O,F,) and the covariance matrix of
adjustments F,

11
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v = FAT(ARAT) AR, (2-12)

The Quadratic form of adjustments (2-8) or (2-9) is the random variable with ¥ ? (-a)(V)

distribution with v degrees of freedom. Values of )(2 1-o)(v) for probability (1-o) are
tabulated in statistical tables.

Between covariance matrices of measurement errors F, adjustments F, and reconciled
values F,- holds the important relation

F=F, +Fy (2-13)
For variances of measurement errors, adjustments and reconciled values therefore hold
ot = o’ + o’ (2-14)

Square roots of variances (standard deviations) of reconciled values are important for
estimating confidence intervals for results. On assumption of normal distribution of
measurement errors it holds that with the probability 95 % the intervals

<X —1.96 oy ;X + 1.96 oy > (2-15)

cover the (unknown) true values of individual variables.

Reconciled data are more precise in the statistical sense, if compared with the
measured ones. The enhanced precision can be quantified with the aid of the standard
deviation of the reconciled value, which is always smaller than the standard deviation of
the measurement error.

ox < G (2-16)

The measure of the precision improvement is so-called adjustability defined as
a=1-oxlo (2-17)

The adjustability characterizes the reduction of the standard deviation and thus also the

uncertainty of the result, if compared with the primary measurement. If for example the
12



Data Reconciliation and Monte Carlo Method ChemPlant Technology, s.r.o.

adjustability of the reconciled value is 0.5, the uncertainty has been reduced by half.
Adjustability 0.75 means reducing the uncertainty by a quarter, and so on. The greater
the adjustability is, the greater is also the reduction of the uncertainty.

2.4 Detection of gross errors

The most frequently used method for Gross Errors Detection (GED) is the test based on
the value the least squares function (2-8) or (2-9). The Quadratic form of adjustments (2-

8) or (2-9) is the random variable with ;{2 a-oy(v) distribution with v degrees of freedom.
Values of )(2 a1-o)(v) for probability (1-a) are tabulated in statistical tables.

If the value of the minimal value of the least squares function is denoted as Qmin,

Qmin = VIF v, (2-18)

with probability (1-a) the value of Qmin Will be less than the critical value of the ;(2
distribution with v degrees of freedom.

Qmin < ZZ (1—a)(V) = Qmincrit (2-19)

Number of degrees of freedom vis in DR solutions called Degree of Redundancy
(DoR). In most cases it holds that

DoR = Number of model equations — Number of unmeasured variables

Probability level (1-«) is usually supposed in technical sciences to be 0.95 (95 %) and
this value will be used also throughout this report). All this holds on assumptions that
only random errors with the Normal distribution are present.

Recon uses for GED slightly modified approach. The Status of Data quality S is defined
as

S = Qmin/QminCrit (2'20)

Then the Eq. (2-19) reads
13
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s <1 (2-21)

If S less than one, no gross error is detected.

The S definition has the advantage for an end DR user who does not need to know
critical values for Qmin at different degrees of freedom. In words, a gross error is
detected when the Status of Data Quality is equal or greater than 1. Mean (expected)
values of S are presented in Table 3.1 in the next Chapter.

It may be useful to note that the probability « is the expected probability of the Error
of I*'kind (a Gross Error is detected even if it is not present). In this report is
supposed that « is 0.05. This means that we can expect 5 % of cases a gross error is
detected even if it is not present.

Gross errors detectability

Gross errors detectability means that a gross error of some size will be detected with
some probability. This problem is solved by so called threshold values which are
characteristic for every measured redundant variable.

Let’s recall the Eq. (2-1) defining a random error and let’s modify it to the form

+

Xx'=x+e+d , (2-22)

where d is a gross error (which is a constant).
One has to begin with testing the gross error presence hypothesis.

As any statistical test, also the y? test has its power characteristic :

14
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1.0 A
B
probability of 11 5
kind error
P probability of I*
kind error
é_/
a ] power of -7
the test
0 d
TV -

Fig. 2-2: The power characteristic of the ¥ test

On the x - axis, we have the magnitude of the gross error d, on the y - axis the
probability P of the gross error detection. The value given by the power characteristic
for an adjustable measured variable equals the significance level a of the test assuming
the absence of gross error (d=0), and it approaches 1 for high values of the gross error

(d—>x).

The power characteristic represents though complete, still too complicated information
for the application in practice (imagine hundreds of such lines in a real size problem).
More simple is the characteristic of measured variables by means of a single number,
so-called threshold value (TV) for the gross error detection.

TV is the value of gross error that will be detected with probability g (we'll further
assume £ =0.9). TVyis a characteristic value for any measured adjustable variable. The
smaller TVg, the better. TV is called the threshold value.

The threshold value is computed from the equation

a = Sp(v,a)[ai(2-a)]"? (2-23)

where q; is dimensionless threshold value TV/o

gi =TVia (2-24)

and &g(v,a) is a constant, characteristic for the significance level a of the chi-square
test, degree of redundancy v and probability of the gross error detection £. For more
details, see the literature [4], p. 177.

Values of &p(v,a) for . =0.05,v=1,2,...,500 and $ =0.90, 0.95 and 0.99 are
presented in [19]

15
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Let us notice that for a measured variable, the threshold value is a simple function of its
adjustability defined by Eq. (3.5-2); see also the following figure.

15

Fig. 2-3: Dimensionless threshold value q as function of the degree of redundancy v and
adjustability a (for =0.05 and p=0.9)

From this diagram, one can derive certain simple conclusions:

e The greater the adjustability is, the greater is also the probability that the gross error
will be detected (low value of threshold error)

e For adjustability smaller than 0.01, the probability of gross error detection is very
small and decreases further rapidly

e The minimum threshold value equals 3.24 times the standard deviation of the
measurement (this in the case of v = 1 and adjustability = 1 , where g equals the
minimum value 3.24). Considering that the maximum measurement error is taken as
1.96 times the standard deviation, the minimum threshold value results as 1.65 times
the maximum measurement error. From this finding follows that the method for gross
error detection is not omnipotent even under optimal conditions and is effective only
for gross errors significantly greater than supposed measurement uncertainty.

2.5 DR solution by Recon

There exist two basic methods of Data Reconciliation applied to nonlinear models:

e Successive Linearization (SL)
e Nonlinear programming (NLP).

SL method is based on linearization of the model by the first order Taylor expansion.
After the least squares solution on such linearized model is solved, this process is
repeated from this new point. The iterative process is ended after equation values are
zeroed (equations residuals are below some specified values). In Recon is watched also

16



Data Reconciliation and Monte Carlo Method ChemPlant Technology, s.r.o.

condition of minimal increments of measured and nonmeasured variables in individual
iterations.

The SL method is very fast like other Newton-like methods but the problem is that for
nonlinear models it does not find the exact Least Squares minimum. The distance from
the LS minimum depends on the model nonlinearity and on the distance of measured
values from the LS minimum. Recon therefore combines the SL method which finds the
first solution and then applies the NLP (the ChemPlant’s proprietary version of the
Sequential Quadratic Programming - SQP).

In practice, for most models the SQP step is not needed as the SL method finds the

solution which is very close to the global minimum. The SQP step is the option which
can be used in DR with difficult models. See also the discussion about Example 2.2.

below.

Let’s illustrate DR on two very simple examples:
Example 2.1: Linear model

The model is very simple. There are two measured variables X1 and X2 and the model
is (let’s imagine two flowmeters on one pipe).

X1-X2=0

Let the measured values are
X1=1

X2=0.5

Both flowmeters have the same uncertainty. The solution is shown in the next figure:

1+ X2 = X1
X2 1
05 + (1;0.5)
0 : :
0 0.5 1 — X1

Fig. 2.4: DR - Linear model

17
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The solution is found in one step:
X1=0.75
X2 =0.75

The solution (arrow) is perpendicular to model line X1 — X2.

Example 2.2: Nonlinear model

This model is Parabola

X1*X1-X2=0 or X2 =X1°

The uncertainties for both variables are 0.1.

There are 4 sets of measured values which are in the different distance from the model
curve (Medium distance 1, Medium distance 2, Far distance, Near distance). See the
next Table:

Tab. 2.1: Data reconciliation of the parabola model

Data set X1 X2 Qmin | Qmin | X1 SL X1 X2 SL X2
Meas. | Meas. SL SQP SQP SQP
Near distance 1 1.1| 0.745| 0.744| 1.039| 1.040 | 1.080 | 1.081
Medium distance 1 2(15932| 5.836|1.348| 1.365| 1.818 | 1.864
Far distance 1 2 13233 3.170| 1.116| 1.171 | 1.246 | 1.371
Far distance 2 0.5 2.5 585 406 | 1.225 | 1.473 | 1.502 | 2.169

See also the next Figure:

18
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4ﬁ
31 X2 = X12
(0,5;2,5)
2t | e
o
14 o
1.1:1) (21
0 T T
0 1 2 X1 3

a)

b)

Fig. 2.5: DR - Nonlinear model (parabola). a) final SL+SQP solution for 4 data sets,
b) Detail of SL and SQP solution for the Far distance 2 data.

In Fig. 2.3 a) the arrows show the final DR solution by the SQP method. Fig. 2.3. b)
shows the solution details — the SL method with the following SQP for the Far distance 2
data (0.5; 2.5). The first SL solution finds the solution which lies on the model curve.

Then is applied the SQP method which finds the solution with the minimum Least
Squares sum. In the next Recon report is the course of iterations.

Task: PARABOLAO05-25 (parabola)
ITERATTIONS
Tter Qeq Qx Qy Qmin
START 2.2500E+00
1 1.2656E+00 7.9510E-01 0.0000E+00 9.7240E+02
2 1.2656E-01 1.8601E-01 0.0000E+00 6.2352E+02
3 1.8631E-03 2.3181E-02 0.0000E+00 5.8557E+02
4 4.3235E-07 3.5158E-04 0.0000E+00 5.8501E+02
5 6.0338E-02 3.2496E-01 0.0000E+00 4.2258E+02 SQP
6 3.3825E-04 9.7037E-03 0.0000E+00 4.0711E+02
7 7.0272E-04 2.9327E-02 0.0000E+00 4.0578E+02 SQP
8 4.8957E-08 1.1296E-04 0.0000E+00 4.0561E+02
9 1.7391E-06 2.0310E-03 0.0000E+00 4.0560E+02 SQP
10 8.1015E-12 2.7937E-07 0.0000E+00 4.0560E+02

19
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Legend:

Qeq mean residual of equations

Qx  mean increment of measured variables in iteration

Qy  mean increment of non-measured variables in iteration
Qmin least-square function

Let’s note that the measured data X1 and X2 are far from the model (parabola), the
Qmin = 405.6 which is much higher that than the critical value for one degree of freedom
(3.84). The limits on Qeq and Qx were set at 0.001. The SL process required 4 iteration
to reach the solution with Qmin = 585.01. The first SQP run required 2 iterations to
reach Qmin = 407.11. The improvement by 2 following SQP runs is only symbolic
(405.60).

Let’s discuss differences in Qmin (which is important for gross errors detection) and also
the reconciled values of X1 and X2 proper. More details are in Tab. 2.1. above. It can be
seen that for the Near distance point (1;1.1) the difference of Qmin between SL and SQL
methods is negligible. The same hold for reconciled values, which differs only in the last
valid digit. For Medium distance point differences between SL and SQL are in the range
of several per cents of reconciled values which are not negligible. The Far distance point
(0.5; 2.5) gives SL and SQL results significantly different for Qmin and also for
reconciled values. For completeness is presented the course of iterations of the DR
process for the SL method followed by SQP:

Discussion about Example 2.2 results:

1. Differences of results between SL and SQL methods depend on model
nonlinearity and also on the distance of measured data from reconciled values
(on data adjustments).

2. From another point of view, it is good to have some simple indicator of model
nonlinearity which includes also the distance of measured data from the model.
This distance depends also on uncertainties of individual measured values. We
propose the following relative difference of Qmin denoted as Quifrer:

Qdifre| = (QminSL - Qminst) / QminSL (2-25)

It is clear that for linear models the value of Qgirel Must be zero. Values of Qe fOr
nonlinear data sets in this Example are shown in the next Table:
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Table 2.2: Qe for Example 2.2

Data set Quifrel
Near distance 0.001
Medium distance 0.016
Far distance 1 0.020
Far distance 2 0.437

3. Probably it is not possible to set some exact limit of Qgitre for which the SL method
should be followed by the SQP method. It was shown that even for small values
of Quitrer differences in reconciled values by SL or SQP were not negligible. So we
recommend to check for some time Qgjsrel €ither by the MCM or in a model on-line
implementation. In practice most of models have Qgirer Well below 0.01, see the
next Table:

Table 2.3: Values of Qgitrel fOr models tested in this report (Chapter 6)

Subsection Quifrel Subsection Quifrel
6.2.1 0.0002 6.3.5 0.0000
6.2.2. 0.0039 6.4.1 0.0197
6.3.1 0.0017 6.4.2 0.0001
6.3.2 0.0007 6.4.3 0.0294
6.3.3 0.0000 6.4.4 0.0000
6.3.4 0.0002 6.4.5 0.0001

But in two industrial size cases the Qgifrel Was higher than 0.01 (the coal fired boiler with
accessories and the heavy crude oil vacuum distillation system). The SQP solution is not
always essential but in some cases it should be used.
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3 RANDOM NUMBERS AND PROBABILITY DISTRIBUTIONS

This short Chapter describes how measurements with “random” errors are in RECON
generated.

3.1 Random errors with the Uniform distribution

Uniform distribution

The distribution of a random variable is called uniform (rectangular), if the probability
density is constant on the whole interval of values the variable can assume. Thus if the
range of values of the random variable is the interval <a, b> then the probability density
function (PDF) equals.

fx)=1/(b-a) for x € <a, b> (3-1)
f(x)=0 otherwise

and the distribution function is

0 forxe<a
F(X)=(x-a)/(b-a) fora<x<b
1 forx>b

Both functions are depicted on Fig. 3.1. The basic characteristics satisfy

EX)=(a+b)/2 (3-2)
D (x) = (b-a)’/12 (3-3)
g 1 = |- -~ °
f T :
Wib-alf - -- E
0 a b —=x 0 a ;) —X

Fig. 3.1: Uniform (rectangular) distribution [probability density function f (x) and
distribution function F (x)]
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Uniformly distributed errors play some role in industrial practice (for example it is the
distribution of errors when some unmeasured level fluctuating in some interval in a tank
is neglected in the mass balance). This distribution is also important for generating other
distributions by software generators of pseudorandom numbers (namely generating the
Normal distribution). The function generating the Uniform distribution fora=0and b =1
is available as the standard function in the MS Visual Studio developing package used
in RECON (function RND(x)).

3.2 Random errors with the Normal (Gauss) distribution

Normal (Gauss) distribution

The normal distribution is the most important distribution of a continuous random
variable; under certain circumstances, also some other distributions can be
approximated as normal. The probability density of the normal distribution is given by the
function.

fG) = srexp [~ 4] (3-4)

202

The function is characterized by two parameters, u and o, where u equals the mean and

o the standard deviation of the random variable. The normal distribution is written briefly
as N (u, a?). The probability density function is shown in Fig.3.2.

If u =0 and ¢ = 1, one speaks of the standard normal distribution N (0,1).

04 N(0,1)
. 031
.

0,24

011 99¢, _
o - 95 2558
o U 196

(3 2 10 2 3
68.3%0 =X

954%

99,7 %/ of area

Fig. 3.2: Standard Normal (Gauss) PDF
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For generating the Normal distribution Recon uses the Box — Muller method in its “polar’
form [20].

The calling of the Normal distribution generation function contains two parameters:

e measured value (mean value of the distribution)
e standard deviation of the measurement error (sigma).

3.3 Chi - square distribution

Let us have v random variables Uy, ..., U,, mutually uncorrelated, each of them having
the distribution N(0, 1). The random variable y° defined as the sum of squares of the
random variables

x> =U?+ ..+ U? (3-5)

has the chi-square distribution with v degrees of freedom, denoted by y2(v). The
diagrams of the probability densities of the y? distributions for several degrees of
freedom are shown in Fig. 3.3.

The mean E [ ] and variance D [ ] satisfy relations

E[x*®]=v (3-6)
D [x* )] =2v (3-7)
)
Yi2)
‘{; ¥isl - oo
0l
] 0 20

Fig. 3.3: Examples of Probability density functions of the y? distribution.

The quantiles are given in Tab. 3.1.
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Table 3.1: Quantiles of y? distribution Qg

v Q.it (95%) Saver V| Qcrit (95%) | Saver
1 3.84 | 0.260 16 26.30 | 0.608
2 5.99 0.334 17 27.59 | 0.616
3 7.82 0.384 18 28.87 | 0.623
4 9.49 0.421 19 30.14 | 0.630
5 11.07 |  0.452 20 31.41 | 0.637
6 12.59 | 0.477 21 32.67 | 0.643
7 14.07 | 0.498 22 33.92 | 0.649
8 15.51 0.516 23 35.17 | 0.654
9 16.91 0.532 24 36.15 | 0.664

10 18.31 0.546 25 37.65 | 0.664
11 19.58 |  0.562 26 38.89 | 0.669
12 21.03 0.571 27 40.11 | 0.673
13 22.36 | 0.581 28 4134 | 0.677
14 23.69 | 0.591 29 42.56 | 0.681
15 25.00 | 0.600 30 43.77 | 0.685

Explanation for Table 3.1:

14
Qcrit

Saver

No of Degrees of Redundancy = mean (expected) value of Chi-square distribution

critical value chi-square distribution for 95 % confidence

mean (expected) value of the Status of Data quality). The Critical value of Sgye= 1
irrespective on v

In Chapter 2, Eq.(2-20) was defined the Status of Data Quality S. The mean (expected)
value of S is

E[S(V)] = E[Qmin] / Qcrit = v/ Qcrit

(3-8)
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4 RECON’S MONTE CARLO FUNCTIONALITY

4.1 The Base case Data Set

MCM requires some prerequisites. The first one is the Base Case model which
represents the errorless set of measured data (and of course first guesses of
unmeasured variables which will be results of modeling). It is required that the Base
Case data set fits exactly the model (all model equations must be zeroed). After that
random errors can be added to the Base Case measured data for the MCM Simulation.

This state can be achieved by the menu Updating guesses of unmeasured variables and
by replacing the original measured values by reconciled values. This is achieved by the
menu Calculate/Update guesses. See the following Example 4.1.:

Example 4.1: Creating the Base Case data set

Let’s take the Recon Demo example MC-2.

R N2 .

'
: ~
\
! i
L ]
s—a N1 52 N3

Fig. 4-1: Mass balance flowsheet (4 nodes, 6 measured and 2 unmeasured streams)

The original example results are
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RECON 11.9.7-Pro [ChemPlant Technology s.r.o.]
Task: MC-2 (Single-component balance)

ITERATTIONS

1.3081E+00
1.3081E+00

Abs.error

Iter Qeq ox Qy
START 1.4944E+01
1 3.5527E-15 3.0571E-01 2.7931E+01
2 3.5527E-15 2.0136E-15 5.1227E-16
MASS FLOWRATES
Name Type Inp.value Rec.value
S1 MC 100.100 99.287
S2 MN 41.100 41.100
s3 MC 79.000 79.359
sS4 MC 30.600 30.048
S5 MC 108.300 109.407
S6 MC 19.800 19.927
sS7 NO 10.000 58.187
S8 NO 10.000 38.259

In this example measured values are reconciled and unmeasured variables are
corrected from their first guesses to proper values. After that we can use the menu

N DN O NP P
()}
w
N

KG/S
KG/S
KG/S
KG/S
KG/S
KG/S
KG/S
KG/S

Updating guesses. Two message boxes appear on the screen.

Task: MC-2MONTECARLO

L Mon-measured variables [N):
¥ Calculation results as new guesses 7

*

Zruiit |

Task: MC-2ZMONTECARLO (Single-component balance)

l Measured variables (M}
5,

Calculation results as new values 7

Accept OK/Yes for both questions. After the new calculation the following results

appear:

RECON 11.9.7-Pro [ChemPlant Technology s.r.o.]

Task: MC-2MONTECARLO

ITERATTIONS

(Single-component balance)

0.0000E+00

3.5527E-15

Rec.value

0.0000E+00

Abs.error

Iter Qeq
START 2.5121E-15
1 0.0000E+00
MASS FLOWRATES
Name Type
S1 MC
S2 MN
S3 MC
sS4 MC
S5 MC
S6 MC
S7 NO

.287 99.287
.100 41.100
.359 79.359
.048 30.048
.407 109.407
.927 19.927
.187 58.187

KG/S
KG/S
KG/S
KG/S
KG/S
KG/S
KG/S
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S8 NO 38.259 38.259 2.059 KG/sS
You can see that the input data completely fit the model and no reconciliation is needed.
This is the Base Case (“errorless”) data set suitable for MCM.

Note: Realize that by this operation you have irreversibly lost the original measured data
(you can try it on the model file copy).

4.2 MCM Simulation

After creation of the Base Case data set and calculation of the task is possible to do
MCM Simulations. This is enabled by the menu Calculate/Monte-Carlo analysis. The
following panel appears:

E Task: Z-BISECTORMCI0TIMES@MC >
Analysis by Monte-Carlo method O
|Numberofsteps Time required Start

1 0o.00:00.157

10 00:00:01.6

20 oo:00:03.1

50 oo.00:07.8 Trends
100 000016
200 0o.00:31

500 00:01:
1000 ]

2000 00:05:13

5000 00°13°03.0
10000 002606 0
20000 00i52:12 Q
Help
Quadratic

programming
Perurbation factor 1.0 -
[ Create database (MS Access file)

! F1-Help

Fig. 4-2: Panel for configuring MCM Simulation
The following functions are available:

e Selecting number of steps (simulations)

e Using the SQP method

e Selecting of the Perturbation Factor in the range <0.5 — 5>
e Creating the MS Access Database for archiving results

e Seeing trends MCM variables.

The Perturbation Factor (PF) serves for changing the magnitude of errors added to
measured data from the Base Case data set. PF = 1 means that random errors are
generated from the original set of measured data sigmas. Higher values of PF are used
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for the simulation of large gross errors (the original sigmas are multiplied by PF, this
serves mainly for testing models’ robustness).

All results can be saved to the Recon’s MS Access Database. Trends of variables can
be seen after pressing the Trends button. The result of the model presented in Fig. 4.1
follows:

ANALYSIS BY MONTE-CARLO METHOD

Step Status (S) Iter.count Remark
1 0.170 4
2 0.433 4
3 4.1466E-3 4
4 0.157 4
5 0.478 4
6 0.057 4
7 0.200 4
8 3.6051E-3 4
9 0.418 4
10 1.984 ! 5 Gross Error
S-AVG 0.391 Average Status
S-MAX 1.984 Maximum Status Step 10
S-BAD (>1) 10.00 % Gross Error detected
Qmin-AVG 1.500 Average Qmin
Qmin-CRIT 3.840 Qmin critical
Qmin-VAR 5.079 Qmin variance
DoR 1 Degree of redundancy
S-MEAN 0.260 DoR/Qmin-CRIT

This is the result of MCM Simulation (10 steps).

¢ In the Status column are values of Statuses of data quality. The last step value is
greater than 1 — a gross error was detected! Further are shown the Average and
Maximum Status values. The S-BAD shows the number of data sets with
detected gross error(s) in per cents. As there was no Gross Error present, this is
the case of the Error if the I kind.

e The column Iter.count shows number of iterations needed for the task
convergence

e The Time stamp column shows the Date/Time under which results are saved in
the Access database for the further analysis. This functionality is important for
example for analyzing cases when the calculation did not converged.

e Further lines have the following meaning:

o Qmin-AVG Average Qmin

o Qmin-CRIT QOmin critical (constant)

o Qmin-VAR Average Qmin variance

o DoR Degree of redundancy (constant)

o S-MEAN DoR/Qmin-CRIT (constant for given DoR)
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3 Type of variable: Stream [Balance period: &0 min (1 h) ] O X
Variable Description Period (start) Value M.u. - |j|q.
51 KG/S Close
Mo RO T Charts
. 1 =
1-80-5 Allin one
. Ir
Difference
99 --0 - R-M
85 R4
58

0:00 g8:00 16:00 0:00 8:00 16:00 " 0:00

0404 2022 00:00 Hours (48) 06.04.2022 0000 ~ |
Task: MC-2MONTECARLO@MC 4| st 04020220000 | Endos0a20222300 | p | Time 05.04.2022 18:17

Fig. 4.3: Trend of measured and reconciled values of the stream S1 flowrate (50
simulation runs)

It is possible to download data for the individual simulation steps to Recon a analyze
more deeply possible problems in individual steps.

In what follows the influence of models’ nonlinearity on DR results will be characterized
by the difference between

e Theoretical mean value of the least squares function (which equals to the Degree
of Redundancy) and the average of Qmi, values calculated in MCM simulations
(see EQ.(3-6))

e Theoretical mean value of the variance of the least squares function (which
equals 2 times the Degree of Redundancy) and the average of Qnmin Variance in
MCM simulations (see Eq. (3-7))

e Theoretical value of the probability of the Error of I* Kind in testing the presence
of a gross errors (which equals 5 %) and the relative number of false Gross Error
Detection in MCM simulations (in per cents)
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5 SIMPLE LINEAR MODEL

The main purpose of this chapter is testing Recon’s MCM functions on one simple linear
model. Possible differences between values calculated from statistical theory (theoretical
expectations) and MCM results proper can have many reasons, namely:

e Generation of random numbers of the uniform (rectangular) distribution in the
interval <0 ; 1>

e Generation of random numbers with Normal distribution from random numbers
obtained in the previous step

e DR calculations done with limited accuracy

e Limited accuracy of statistical tables (for example critical values of chi-square
distribution)

e Limited number trials in MCM simulations.

In the first part will be tested basic model statistics which are

1. Probability of the I°' kind error (GE is detected even if it is not present)
2. Mean value of the Least Squares function Qmin
3. Mean value of Qmi, variance (the Second Central Moment of the distribution).

Next parts concern

4. Predicted uncertainty of results (reconciled and calculated unmeasured variables)
5. Gross errors detectability (probability that a gross error of some size will be
detected)

In all cases theoretical (expected) values will be compared with values obtained by MCM
(up to 10,000 repetitions (N)).

5.1 Basic model statistics

Let’s return to the simple model described in Example 4.1. This model has 6 measured
variables and 4 linear equations. There are 2 Degrees of Redundancy. Results of MCM
simulation for the Perturbance Factor = 1 are presented in the next table.
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Tab. 5-1: Results of MCM simulation for Example 4.1.

Run Average
N 1 2 3
GED | Quer | VQaver | GED | Quer | VQaver | GED | Quer | VQaver | GED | Quver | VQaver
Expected 5 2 4 5 2 4 5 2 4 5 2 4
10 | 0.00 2.340 5.385 0.00 1.860 2.981 0.00 1.482 1.607 0.00 1.894 3.324
100 | 1.00 1.664 2.542 4.00 2.041 3.737 4.00 1.980 2.475 3.00 1.895 2.918
1000 | 5.50 1.982 4.041 3.60 1.956 3.627 3.90 1.915 3.462 4.33 1.951 3.710
10,000 | 4.80 1.991 3.924 5.00 1.995 3.987 5.30 | 2.025 4.210 5.03 2.000 4.040
Here
N is number of simulation runs
Expected in this row are Expected (theoretical mean) values
GED number of cases when a Gross Error was Detected (in %)
Qoaver the average value of Qmin
VQaver the average value of Qi Variance.

The expected value of Qmin for DoR = 2 is 2, the expected value of the Variance is 4

(see Egs. (3-6) and (3-7)). It is clear that the expected value of GED is 5 (probability of
the GED test which also equals the probability of the Error of I* kind of this test). Such
table will be used for presenting of results throughout this Report).

Results presented in Table 5.1 are visualized in next three figures.

% GED

100

1000

10 000

- N

expected

value

= <= Run1l

emmfj— Run 2

=/ =Run 3

Fig. 5.1: Detected Gross Errors (%) for 3 runs and increasing number of simulations
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Fig. 5.2: Averages of Qmi, for 3 runs and increasing number of simulations. The

expected value is 2.
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Fig. 5.3: Averages of Qmi, Variance for 3 runs and increasing number of simulations.

The expected value is 4.

From the table and figures above can be seen that with increasing number of repetitions
the values of % GED and S,.er cOnverge to the expected values. The values obtained
from 10,000 simulations are very close to them. Also values obtained for 1000
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repetitions may be acceptable (10,000 simulations can be time prohibitive for large
industrial models). It is good to realize that our a priori information about measurement
uncertainties (maximum errors) in practice are not precise, usually even the second digit
IS not sure.

We can conclude that this simple linear example confirmed that MCM method contained
in Recon gives reasonable results which are in agreement with GED theory (generation
of pseudorandom errors is in agreement with chi-square testing by the so called Global
test). It is not possible to analyze here the efficiency of MCM (a speed of approaching to
the final result which requires the infinite number of repetitions). It is known that this
approach is proportional to 1/(No of repetitions)*2. With a great simplification we can say
that for improving the MCM results’ precision by one order we must increase the No of
repetitions by two orders. It is well known that MCM is not very fast algorithm.

5.2 Uncertainty of results

The uncertainty of results (reconciled measured values and calculated unmeasured
values) is in RECON calculated by the error propagation method. For the Base Case
(errorless) data set such results are shown in the next report:

MASS FLOWRATES

Name Type Inp.value Rec.value Abs.error

Sl MC 100.100 100.100 1.308 KG/S
S2 MN 41.100 41.100 1.600 KG/S
S3 MC 79.000 79.000 1.249 KG/S
S4 MC 30.600 30.600 2.510 KG/S
S5 MC 109.600 109.600 2.621 KG/S
S6 MC 21.100 21.100 0.762 KG/S
S7 NO 59.000 59.000 2.066 KG/S
S8 NO 37.900 37.900 2.030 KG/S

You can see that the Input values are identical with reconciled values . The Abs.error
column contains uncertainties of results on assumption of normal distribution of errors
and 95 % probability level. Between the Absolute Error (AE) and the standard deviation
of results holds the simple relation:

s = AE/1.960 (5-1)
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where s = result’s standard deviation. It is therefore easily possible to transform the
absolute errors to standard deviations

The MCM proper in this case consists of the following steps:

1. MCM simulation is done for required number of trials N (N=10.000 in our case,
index is j))
2. From reconciled and other calculated variables (index i) is for individual variables
calculated the sample mean X; (arithmetic average)

Xi=(2X) /N

3. The sample variance s{ is calculated according to

s? = (XX - X))/ (N-1)

(5-2)

(5-3)

The sample standard deviations are square roots of sample variances s;>.Results are

presented in the next table:

Tab. 5-2: Comparison of calculated (predicted) and MCM results

Stream B.C.value s predicted s MCM AE predicted AE MCM
[kg/s] [kg/s] [kg/s] [kg/s] [kg/s]

S1 100.1 0.6662 0.6673 1.306 1.308
S3 79.0 0.6358 0.6372 1.246 1.249
S4 30.6 1.301 1.281 2.549 2.510
S5 109.6 1.361 1.343 2.668 2.632
S6 211 0.3836 0.3888 0.752 0.762

where

B.C. value flowrate value Base Case (errorless)

s predicted standard deviation predicted by RECON (method of errors propagation)
standard deviation obtained from MCM

s MCM
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5.3 Gross Errors detectability

The method for calculating GE detectability was described in Subsection 2.4. The
following study starts at the Base Case data (errorless data set which fulfill exactly the
model) described in the preceding Subsection 5.2. For this data set we can find
Threshold Values TV defined in Eq. (2-24). This information is available in Recon’s
menu Calculate/Classification:

Task: MC-2AB (Single-component balance)

REPORT ON CLASSIFICATION OF VARIABLES

All unmeasured variables observable

REDUNDANT MEASUREMENTS

Type Variable Adjustability Threshold value Unit
Beta: 90% Beta: 95%Beta: 99%

MEF Sl 0.346093 4.802 5.305 6.244 KG/S

MF S3 0.219605 4.648 5.135 6.044 KG/S

MF S4 0.163282 9.951 10.993 12.939 KG/S

MEF S5 0.404285 9.951 10.993 12.939 KG/S

ME S6 0.046892 4.802 5.305 6.244 KG/S

Legend:

Adjustability = relative cut of error due to reconciliation

Threshold value = gross error that will be detected with probability Beta
Beta = probability of detecting Gross Error [%]
MEF Mass flow

For example the GE (bias) in the measured flowrate equal to 4.802 kg/s will be detected
with the probability 90 %. There were configured 5 tasks with the bias for every of five
redundant variables, one by one. The MCM simulation was repeated 10,000 times for
every task. Results (for Beta = 90 %) are shown in the next table:
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Tab. 5-3: Comparison of calculated (predicted) and MCM results

Stream B.C.value Beta 90 % MCM value GED%
[kg/s] [kg/s] [kg/s]
S1 100.1 4.802 104.902 89.86
S3 79.0 4.648 83.648 89.54
S4 30.6 9.951 40.551| 90.20
S5 109.6 9.951 119.551 90.34
S6 21.1 4.802 25.902 89.59
where

B.C. value flowrate value Base Case (errorless)
Beta 90 %  Threshold Value for probability 90 %
MCM value biased value of the flowrate for MCM simulation
GED% % of MCM simulations when GE was detected.

It is clear the expected value for the GED% column is 90. The comparison with the table
column GED% shows that the MCM results are quite close to the theoretical (expected)
value The maximum difference is 0.46 % for variable S3.
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6 NONLINEAR MODELS

6.1 Introduction

The linear model (2-3) finds its application mostly in mass balance calculations (Yield
Accounting, utilities distribution systems, etc.). Even in such systems there occur
frequently needs of including some nonlinear equations. The first question is how to
measure model nonlinearity.

For a linear model holds that all first derivatives according to all variables are constant.
For example, the mass balance of one node

52} -
- NODE

53}

i‘ -~

Fig 6.1: Mass balance of one node

with one input stream and two output streams is written (compare with Eq. (2-4).

FI-F2-F3=0 (6-1)

Matrix of first derivatives of this model according to F1, F2 and F3 is

(6-2)

o o r
oKk O
=)

This is the incidence matrix of the flowsheet in Fig. 6.1 which contains only constants —
this model is linear. Second derivatives of matrix (6-2) are all zero.

The nonlinearity of models can be characterized by the Hessian matrix. Let’s have a
scalar function of a vector x of n variables f(x). The Hessian matrix is the symmetric
matrix (n x n).
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It is clear that for linear functions the Hessian matrix is zero matrix. In other words, the
nonzero Hessian is the measure of model nonlinearity.

The simplest case of nonlinear models is the bilinear model. Left suppose for example
that the enthalpy H of a stream is calculated according to the function

H=Fcpt (6-3)

where F is the mass flowrate, t is temperature and c, (constant) is the mean heat
capacity of the stream .

The Hessian matrix is then

0;cp

Cp: 0 (6-4)
The Hessian matrix in this case is nonzero.
The another nonlinear example is the component balance in the form
m;=Fcy (6'5)
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where m; is the mass flow of the component 1 (concentration c;) and F is the overall
mass flowrate.

The Hessian matrix is then

5]

1.0 (6-6)

Bilinear models are very frequent in engineering (component and heat balancing). They
belong to models with the weak nonlinearity.

There exist more nonlinear models, containing for example logarithmic or exponential
functions. Quite dangerous can be the Logarithmic Mean Temperature Difference
(LMTD) which is even not defined in the quite common case of equal temperature
differences. There exist also complex models for turbine efficiencies, Stodola equations,
etc. A significant problem can arise when derivatives are not continuous (for example at
phase changes). Luckily some strongly nonlinear calculations frequently need not be
included in the main model and can be calculated after the DVR proper is completed
(data postprocessing in Recon). This recommendation holds for example for turbine
efficiencies and heat transfer coefficients.

Further on we will present in the next three Sections results of MCM simulations for
models of increasing nonlinearity and size. Three MCM results will be presented:

GED number of cases when a gross error was detected (in %). As in all cases
no gross error was present, this is the percentage of Errors of the I* kind.
The expected value is 5 %

Qaver the average value of the Least Squares function. The expected value
equals the Degree of Redundancy (see Table 3-1).

VQaver the average value of the Least Squares function variance. The expected
value equals the Degree of Redundancy times 2. This is the second central
moment of the Chi-square distribution

Further in this Chapter we will study 12 models of different types and complexity. In the
next table is the summary of basic characteristics of models which are named by their
Subsection in this report.

6.2 Bilinear models

In this subsection two small bilinear models will be analyzed:
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e A crude oil preheat system
e System of 3 distillation columns (multicomponent balance)

6.2.1 Heat balance — Crude oil preheat
This is the standard Recon’s Demo example E-12.

A crude oil preheat train

ERE @
@ SPLITTER
CRUDES

-~ ERGET

The crude oil is heated by contact with the kerosene stream, splits and is further heated
by the light gas oil and heavy gas oil.

This model has

18 measured variables

7 model equations

5 Degrees of Redundancy.

Results are shown in the next table:

Tab. 6-1: Results of MCM simulation, Subsection 6.2.1.

Run Average
N 1 2 3
GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver
Expected 5 5 10 5 5 10 5 5 10 5 5 10

10 10.00 6.174 11.709 | 0.00 3.592 6.781 20.00 5.427 13.117 10.00 5.064 10.536

100 3.00 5.332 9.169 2.00 4.727 8.197 5.00 4.670 10.120 3.33 4.910 9.162

1000 5.30 4.950 10.203 6.10 4.935 10.562 3.80 4.839 8.351 5.07 4.908 9.705

10,000 5.20 5.005 10.112 5.20 5.016 10.195 5.00 4.967 10.204 5.13 4.996 10.170
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6.2.2 Multicomponent balance — LPG separation train

This is the standard Recon’s Demo example MC-6.

LPG separation train

— i

2

[

This model has

38 measured variables (flowrates and concentrations)
23 model equations

5 chemical components

18 Degrees of Redundancy.

Results are shown in the next table:

Tab. 6-2: Results of MCM simulation, Subsection 6.2.2.

Run Average

N 1 2 3

GED Qaver VQaver GED quer VQaver GED quer VQaver GED quer VQaver
Expected 5 18 36 5 18 36 5 18 36 5 18 36

10 | 000 | 17.403 | 26.020 | 0.00 | 13.268 | 37.549 | 0.00 | 21.055 | 29.407 | 0.00 | 17.242 | 30.992
100 | 7.00 | 19.170 | 37.796 | 5.00 | 17.807 | 33.647 | 1,00 | 17.774 | 29.126 | 4.33 | 18250 | 33,523
1000 | 630 | 17.924 | 40.148 | 5.60 | 18.106 | 36.702 | 6.20 | 18.266 | 38.848 | 6.03 | 18,099 | 38.566
10,000 | 573 | 18124 | 38932 | 551 | 18157 | 38.871 | 574 | 18.196 | 39.050 | 5.68 | 18.159 | 38.951

6.3 Small General models

5 small general models will be treated here. They are cutouts from larger industrial

models:

e Steam generator in a nuclear powerplant
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e Steam to steam heat exchanger in a supercritical boiler
e Component and heat balance of a bisector air preheater
e A simple model of a coal fired boiler with air preheat

e A simple model NG gathering and distribution with hydraulic calculations

6.3.1 Steam generator in a nuclear powerplant

This is the standard Recon’s Demo example E-4.

v SGS -
e
N
HWIMN
SGW
e HWOUT pmermns -

This model has

10 measured variables (flowrates, pressures and temperatures)
4 model equations

2 Degrees of Redundancy.

Results are shown in the next table:

Tab. 6-3: Results of MCM simulation, Subsection 6.3.1.

Run Average
N 1 2 3
G ED QOVGI VQaver G ED QGVEI VQEVE[ G E D QGVE! VQaver G E D QUVEF VQaver
Expected 5 2 4 5 2 4 5 2 4 5 2 4
10 | 10.00 | 1.858 5.254 0.00 | 1.860 2.426 0.00 | 2221 2.937 3.33 | 1.980 3.539
100 | 3.00 1.997 2.927 5.00 | 2.076 3.751 7.00 | 2.241 4.753 5.00 | 2.105 3.810
1000 | 4.80 2.014 3.777 510 | 2.019 4.253 4.40 | 1.870 3.949 4.77 | 1.968 3.993
10,000 | 5.10 2.006 4.069 5.10 | 1.993 3.926 5.10 | 2.023 4.095 510 | 2.007 4.030
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6.3.2 Steam to steam supercritical heat exchanger

This exchanger serves for control the reheat steam temperature by contact with the
superheated main steam. The pressure of the main steam is supercritical (27 MPa).

Steam to steam heat exchanger

RHIN] SSHE-RH |-—RFOUT }=-m
2
j

= SSHE-MS | —jsour }—w

This model has

9 measured variables (flowrates, pressures and temperatures)
4 model equations

2 Degrees of Redundancy.

Results are shown in the next table:

Tab. 6-4: Results of MCM simulation, Subsection 6.3.2.

Run Average

N 1 2 3

GED Qaver VQaver GED quer VQaver GED quer VQaver GED Qaver VQaver
Expected 5 2 4 5 2 4 5 2 4 5 2 4

10 0.00 2.343 3.435 0.00 | 2.042 2.097 0.00 | 1.953 1.307 0.00 | 2.113 2.280
100 3.00 1.917 3.830 4.00 | 1.894 3.972 3.00 | 1.849 3.345 333 | 1.887 3.716
1000 5.30 2.013 3.840 540 | 1.999 4.050 540 | 1.968 4.309 537 | 1.993 4.066
10,000 5.00 2.019 4.046 480 | 1.958 3.855 4.90 | 2.000 4.008 4.90 | 1.992 3.967

6.3.3 Bisector rotary air preheater

This exchanger serves for preheat of air by contact with flue gases. The model
combines the multicomponent balance with heat balance. This makes possible to
calculate the AIRLEAK flowrate which is important for preheater’s diagnostics.
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This model has
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12 measured variables (flowrates, pressures and temperatures)

12 model equations

6 chemical components

1 Degree of Redundancy.

Results are shown in the next table:

Tab. 6-5: Results of MCM simulation, Subsection 6.3.3.

Run Average
N 1 2 3
GED Qaver VQaver GED quer VQaver GED quer VQaver GED Qaver VQaver
Expected 5 1 2 5 1 2 5 1 2 5 1 2
10 | 0.00 0.757 | 0469 | 10.00 | 1.381 | 3.148 | 2000 | 1612 | 4147 | 10.00 | 1.250 2.588
100 | 11.00 | 1.173 | 2.805 1.00 0.933 | 1.442 7.00 1.061 | 2137 6.33 1.057 2.128
1000 | 4.90 1.021 | 1.948 4.80 1.018 | 2.188 4.90 0.998 | 1.767 4.87 1.012 1.968
10,000 | 4.90 0.993 | 1.918 4.90 0.998 | 1.922 5.10 0.997 | 2.043 4.97 0.996 1.961

6.3.4 Coal boiler with air preheat

A little bit more complex is the model of a coal fired steam generator with air preheat
(Demo example E-16). In the FIREBOX is burned coal, the released heat is transferred
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to the steam generator (SG). Flue gases (FGHOT) transfer the heat (QBOIL) to the air
(AIRCOLD).

A simple coal boiler

s ¢ 4
. | H i
Coal burning @O'@ S
| |
i i
oAt}
FIREBOX FLUEGAS} BOILER  |~{@80i]s SG
T
]
HRAOT L FEOT Ry
! BN
|
APH-AIR ‘m— “-‘ APH-FG DR

This model has

22 measured variables (flowrates, pressures and temperatures)
18 model equations

11 chemical components

3 Degree of Redundancy.

Results are shown in the next table:

Tab. 6-6: Results of MCM simulation, Subsection 6.3.4.

Run Average
N 1 2 3
GED Qaver VQaver GED quer VQaver GED quer VQaver GED Qaver VQaver
Expected 5 3 6 5 3 6 5 3 6 5 3 6
10 | 10.00 | 3.047 9.113 0.00 | 3.100 4.923 0.00 | 3.060 3.613 3.33 | 3.069 5.883
100 | 6.00 2.960 7.502 6.00 | 2.956 5.746 4.00 | 3.012 5.087 533 | 2976 6.112
1000 | 3.90 2.901 5.354 430 | 2.855 5.185 6.20 | 3.144 6.665 4.80 | 2.967 5.735
10,000 | 5.10 2.991 6.138 470 | 3.020 5.924 520 | 3.021 6.066 5.00 | 3.011 6.043

6.3.5 Natural gas gathering and transportation with hydraulic calculations

The mass balance of a gas is complemented by hydraulic calculations (momentum
balancing which includes pressure drops in individual pipelines.
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Gas gathering and transportation system

SN -] -—-a*‘ ,7- ---- ———
.
TG | (v~ mnete
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This model has

10 measured variables (flowrates, pressures and temperatures)
19 model equations

4 Degrees of Redundancy.

Results are shown in the next table:

Tab. 6-7: Results of MCM simulation, Subsection 6.3.5.

Run Average

N 1 2 3

GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver GED Qaver VQaver
Expected 5 4 8 5 4 8 5 4 8 5 4 8

10 0.00 3.298 4.884 0.00 3.124 3.780 0.00 2.628 1.107 0.00 3.017 3.257
100 6.00 3.723 9.196 3.00 3.938 5.869 4.00 4.160 7.764 4.33 3.940 7.610
1000 | 4.70 3.908 8.359 5.50 4.180 8.620 6.80 4.103 9.490 5.67 4.064 8.823
10,000 5.38 4.087 8.516 6.03 4.207 8.870 5.48 4.133 8.501 5.63 4.142 8.629

6.4 Models of industrial size

Five models of industrial size will be analyzed:

e Coal fired boiler (powerplant 660 MWe) with accessories (2 trisector air
preheaters)
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e Steam cycle (steam turbines, heaters, condensers, etc.)
¢ Vacuum distillation column of heavy crude oil

e Monitoring heat power of a nuclear reactor

e Natural gas transport and distribution system

6.4.1 Coal fired supercritical boiler

This model servers for monitoring of boiler's KPIs (efficiency, losses, etc.). The burning
of coal is modeled as the reaction invariant chemical reactor. Besides that the model
contains auxiliaries, namely two trisector air preheaters.
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This model has

34 measured variables (flowrates, pressures and temperatures)
171 model equations

11 chemical components

7 Degree of Redundancy.

Results are shown in the next table:
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Tab. 6-8: Results of MCM simulation, Subsection 6.4.1.

Run Average

N 1 2 3

GED Qaver VQaver GED Qm/er VQaver GED Qaver VQaver GED Qaver VQaver
Expected 5 7 14 5 7 14 5 7 14 5 7 14

10 10.00 | 7.963 18.784 0.00 | 7.642 6.692 0.00 | 5.908 5.360 333 | 7171 10.279
100 4.00 | 6.616 11.624 2.00 | 6.703 11.170 400 | 6.988 15.017 333 | 6.769 12.604
1000 4.80 | 7.015 25.895 460 | 7.137 24.727 5.41 | 8.160 18.215 494 | 7.437 22.946
10,000 532 | 7.924 14.120 5.48 | 8.158 18.332 5.61 | 9.005 16.813 5.47 | 8.362 16.388

6.4.2 Steam cycle of a powerplant

This model servers for monitoring of the Heat Rate of the whole steam cycle. Monitored
are also parameters of all substantial equipment (turbines, heaters, condenser, pumps).
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214 measured variables (flowrates, pressures and temperatures)
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255 model equations

1 chemical component (H20)

30 Degrees of Redundancy.

Results are shown in the next table:

Tab. 6-9: Results of MCM simulation, Subsection 6.4.2.

Run Average
N 1 2 3

G ED QL‘IVEI VQaver G ED Qaver VQaver G E D Qaver VQaver G E D quer VQaver
Expected 5 30 60 5 30 60 5 30 60 5 30 60
10 | 10.00 | 31.174 83.350 | 0.00 | 27.105 19.604 | 10.00 | 30.178 | 75.555 | 6.67 | 29.486 | 59.503
100 6.00 | 30.110 59.301 | 6.00 | 30.025 70.027 5.00 | 31.089 | 58.133 | 567 | 30.408 | 62.487
1000 530 | 29.424 60.656 | 4.80 | 29.968 63.336 510 | 29.982 | 59.796 | 5.07 | 29.791 | 61.263
10,000 6.00 | 30.220 65.430 | 5.64 | 30.256 63.353 5.84 | 30.289 | 64.885 | 583 | 30.255 | 64.556

6.4.3 Vacuum distillation of heavy crude oil

This model serves for setting up mass and heat balance of a vacuum column including
heavy crude preheat and generation of steam. There are 24 heat exchangers of 3 kinds:
heat exchange between hydrocarbon streams, water coolers and steam generators.
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This model has

i

-

@

58 measured variables (flowrates, pressures and temperatures)

32 model equations

24 heat exchangers (coolers, heaters, steam generators)

9 Degrees of Redundancy.

Results are shown in the next table:

Tab. 6-10: Results of MCM simulation, Subsection 6.4.3.

Run Average
N 1 2 3
G E D Qaver VQaver G E D Qaver VQaver G E D Qaver VQaver G E D Qaver VQaver
Expected 5 9 18 5 9 18 5 9 18 5 9 18
10 | 20.00 | 12.358 | 31.894 | 0.00 | 8334 11.837 | 20.00 | 10.312 | 19.081 1333 | 10335 | 20.937
100 | 8.00 | 9.134 22.464 | 5.00 | 9.322 16.266 | 6.00 | 9.500 16.654 6.33 9.319 18.461
1000 | 4.20 | 8.866 17.180 | 4.10 | 8.686 17.143 | 4.60 | 9.066 17.273 4.30 8.873 17.199
10,000 | 5.40 | 9.100 18.830 | 530 | 9.042 18220 | 5.70 | 9.100 19.320 5.47 9.081 18.790
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6.4.4 Steam generation system of a NPP

This model serves for monitoring of a Nuclear Power Plant heat power. The heat
balance is based on measured flows of the Feed Water, generated Steam and the

Purge streams.
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This model has

33 measured variables (flowrates, pressures and temperatures)

15 model equations

4 steam generators

10 Degrees of Redundancy.

Results are shown in the next table:
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Tab. 6-11: Results of MCM simulation, Subsection 6.3.4. Expected Sayer = 0.546

Run Average
N 1 2 3
G ED Qaver VQaver G ED Qm/er VQaver G E D Qaver VQaver G E D Qaver VQaver
Expected 5 10 20 5 10 20 5 10 20 5 10 20
10 | 0.00 7.904 8.979 0.00 | 8.497 14.359 0.00 | 10.188 11.213 0.00 | 8.863 11.517
100 | 5.00 10.376 19.426 | 4.00 | 10.634 | 19.932 3.00 | 10,624 | 16.183 4.00 | 10.544 | 18514
1000 | 4.70 9.987 20.633 5.20 | 10.037 | 20.969 5.30 | 10.079 | 21.813 5.07 | 10.034 | 21.139
10,000 | 5.00 10.000 | 20.070 5.10 | 9.971 20.610 | 530 | 10.100 | 20.610 5.13 | 10.024 | 20.430

6.4.5 Natural gas transport and distribution system

This model serves for monitoring the mass and momentum balance of the natural gas
transport and distribution system. It includes two pressure reduction steps. The mass
balance of a gas is complemented by hydraulic calculations (momentum balancing
which includes pressure drops in individual pipelines).
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Compression

26 measured variables (flowrates, pressures and temperatures)
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52 model equations

7 Degrees of Redundancy.

Results are shown in the next table:
Tab. 6-12: Results of MCM simulation, Subsection 6.4.5.

Run Average
N 1 2 3
GED Qaver VQaver | GED |  Quver VQaver | GED | Quver VQaver | GED | Quver VQuaver
Expected 5 7 14 5 7 14 5 7 14 5 7 14
10 | 0.00 8.050 10.900 | 0.00 | 6.774 3.841 0.00 | 6.876 9.665 0.00 | 7.233 8.135
100 | 5.00 7.010 15.670 | 6.00 | 7.304 12.461 | 2.00 | 6.728 11.728 | 4.33 | 7.014 13.286
1000 | 4.30 6.938 13.752 | 6.20 | 7.145 14.521 | 5.60 | 7.137 15312 | 537 | 7.073 14.528
10,000 | 5.14 7.056 14316 | 513 | 7.039 14.235 | 4.85 | 7.057 14.239 | 5.04 | 7.051 14.263

6.5 Models’ summary

In the next table is the summary of main model parameters:

Tab. 6-13: Main model’s parameters Models are named by their Sections in Chapter 6

Sect. Task Nmeas | Neq | DOR | Neomp | Func Tunc | Ciime
[%] [K] [s]
6.2.1 | Crude oil preheat 18 7 5 1 1-5 1-6 0.1
6.2.2 | LPG separation 38 23 18 5 2-6 - 0.1
6.3.1 | Steam generator 10 4 2 1 2-5 1 0.1
6.3.2 | Steam to steam exch. 9 4 2 1 3 3 0.1
6.3.3 | Air preheater 12 12 1 6 2 1-2 0.2
6.3.4 | Simple coal boiler 22 18 3] 11 1-5 1-3 0.4
6.3.5 | NG gathering 10 19 4 1 5 - 0.1
6.4.1 | Coal fired boiler 34| 171 7] 11 5-10 1-5 3
6.4.2 | PP steam cycle 214 | 255 30 1 1-10 | 1-2% 3
6.4.3 | Vacuum distillation 58 32 9 1 1-5 | 2-3% | 0.1
6.4.4 | NPP steam generation 33 15 10 1 2-4 1 0.1
6.4.5 | NG distribution 26 52 7 1 2-10 - 0.2
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Legend:

Nmeas Number of measured values

Neg Number of model equations

DoR Degree of redundancy

Ncomp Number of chemical components

Func Uncertainty of measured flowrates

Tunc Uncertainty of measured temperatures (mostly in K), two cases in % of °C
Ciime typical computing time for 3 iterations of SL (in practice the time can be

doubled by the following SQP step). All calculations in this Chapter were

done with the SL and then with the SQP method

In the next table are summarized main results of MCM for 12 models from Table -13.

They are averages of 3 runs of MCM simulations with 10,000 repetitions.
Tab. 6-14: Main results of Chapter 6

Sect. Task GED | Ratio | DoR | Qaver | Ratio | 2*DoR | VQaver | Ratio
6.2.1 | Crude oil preheat 513 | 1.026 5| 4.996 | 0.999 10 10.170 1.017
6.2.2 | LPG separation 5.68 1.136 18 | 18.159 | 1.009 36 38.951 1.025
6.3.1 | Steam generator 5.10 1.020 2 2.007 | 1.004 4 4.030 1.008
6.3.2 | Steam heat exchanger 4.90 0.98 2 1.992 | 0.996 4 3.967 0.992
6.3.3 | Air preheater 497 | 0.994 1| 0.996 | 0.996 2 1.961 0.980
6.3.4 | Simple coal boiler 5.00 | 1.000 3| 3.011 | 1.004 6 6.043 1.007
6.3.5 | NG collection 6.63 1.326 4 4142 | 1.031 8 8.629 1.079
6.4.1 | Coal fired boiler 5.47 1.094 7 8.362 | 1.195 14 16.388 1.171
6.4.2 | PP steam cycle 5.83 1.166 30 | 30.255 | 1.008 60 64.556 1.076
6.4.3 | Vacuum distillation 547 | 1.094 9| 9.081 | 1.009 18 18.790 1.044
6.4.4 | NPP steam generation 5.13 1.026 10 | 10.024 | 1.002 20 20.430 1.022
6.4.5 | NG distribution 5.04 1.008 7 7.051 | 1.007 14 14.236 1.017
Averages of Ratios - 0.077 - - 0.021 - - 0.041
deviations from 1

Legend:

GED % of cases with detected gross error. Expected value is 5 %
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Ratio ratio Average value/Expected (theoretical) value

Qaver Least Squares value. Average of 3 runs of MCM simulations with 10,000
repetitions. The Expected value is DoR

VQaver Variance of Least Squares value. Average of 3 runs of MCM simulations
with 10,000 repetitions. The Expected value is 2*DoR

In the last row of the table are averages of deviations from the expected value which is 1
- [ABS(Ratio - 1)]. It is clear that the expected value of this deviation is zero. Results can
be also compared with analogical values found in Chapter 5 — Table 5-1. In the next
Tab. 6-15 we multiply ratios by 100 to get values in per cents.

Tab. 6-15: Comparison of average absolute deviations in % for linear and nonlinear
models

Deviation Deviation Deviation

GED [%)] Qaver [%)] VQaver [%]
Linear model (Table 5-1) 0.6 0.0 1.0
Nonlinear models (Table 6-14) 7.7 2.1 4.1

It can be seen that nonlinear models has in all cases significantly higher ratios. But in
practice, the ratios for nonlinear models are still very small. For example, the highest
deviation is 7.7 % for the Gross Error Detection ((Error of the Ist kind). This means that
the average absolute value was in the interval 5 + 5*0.077 = 5 + 0.38. Such distance
from the expected value which equals 5 is negligible. Our information about
measurement errors is not very precise, we sometimes can’t guarantee even the value
of the first digit of the standard error sigma. The same holds also for Qaver and for
VQauver.

The conclusion is that even if there is some difference between behavior of typical linear
and nonlinear models, this difference is not significant from the practical point of view.

56




Data Reconciliation and Monte Carlo Method ChemPlant Technology, s.r.o.

7 INFLUENCE OF MEASUREMENTS’ UNCERTAINTIES

As was already shown earlier, aside of model’s nonlinearity also measurements’
uncertainties play role in statistical treatment of process data. It is clear that the
linearization of a curve is justified only in a small vicinity of the measurement point. With
increasing measurement errors also errors brought by linearization grows. In other
words, for strongly nonlinear function the linearization can be justified only in the small
area around the measured value. In this subsection we will study this problem on 2 small
bilinear models from the Subsection 6.1. For every model will be tested several model
versions differing in increasing values of measured values’ uncertainties.

7.1 Crude oil preheat

This is the Demo task E-12 used in the Section 6.2.1. The parameters of model versions
are presented in the next table. The uncertainties of flowrates are changed from 1 % to
20 % of the measured value. The uncertainties of temperatures are changed from 1 to
20 K of the measured value For all model versions were calculated 1,000 simulations.

Versi UFlow | UTemp
ersion [kg/s] K] GED [%] Qaver VQaver

Expected value > - - 5 5 10
1 1% 1 5.8 5.195 | 10.558
2 3% 3 5.0 5.002 | 9.971
3 5% 5 4.5 4995 | 9.582
4 10 % 10 3.9 4902 | 9.060
5 20 % 20 4.8 5.194 | 9.810
where Version Version of uncertainty

UFlow uncertainty of flowrates

UTemp uncertainty of temperatures

GED Gross error was detected (Error of I Kind)

Qaver average value of Quin

VQaver average value of Qi varaince
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7.2 Multicomponent balance — LPG separation train

This is the Demo task MC-6 used in the Section 6.2.2. The parameters of model
versions are presented in the next table. The uncertainties of flowrates were changed
from 1 % to 20 % of the measured value. For all model versions were calculated 1,000
simulations.

Version UFlow [kg/s] GED [%] Qaver VQayer

Expected ]
value - 5 18 36
1 1% 5.1 18.028 35.835
2 3% 5.2 18.132 38.770
3 5% 4.4 17.712 37.384
4 10% 5.5 18.221 36.669
5 20% 4.6 18.002 37.970
where Version Version of uncertainty

UFlow Uncertainty of flowrates

UTemp uncertainty of temperatures

GED Gross error was detected (Error of 1% Kind)

Qaver average value of Qnin

VQaver average value of Qni, variance

7.3 Conclusions

From two tables in this Chapter is clear that for the two bilinear models can be seen that
there is no evident significant influence of measurement uncertainties on basic statistical
characteristics of the data reconciliation process.
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8 USING MCM FOR TESTING MODEL ROBUSTNESS

For on-line installations of DR systems in industry which are running 24 hours 7 days a
week is important their robustness. In an on-line running is too late to solve problems
caused by insufficient numerical properties of software, changes in plant hardware
configuration, etc. MCM is therefore good for testing DR software before the DR system
proper is installed in harsh industrial conditions.

The most simple method for testing DR system robustness are MCM functions of
RECON (recall Chapter 4). There is the option of simulating gross errors by multiplying
all uncertainties of the model by the Perturbation Factor which is in the range 1 — 5
(recall that PF = 1 means standard random errors). Complete results of MCM can be
saved to the MS Access DB from which problematic data sets can be downloaded and
analyzed off line.

This chapter is not systematic, only informative. On four previously described tasks (2
small and 2 of industry size) will be shown typical behavior of models in presence of bad
data.

The following characteristics of results will presented:

PF Perturbation Factor

Iter average number of iterations (SL + SQP)

GED number of cases when Gross Error was detected [%]

Saver Average value of the Status of data quality (Status > 1 means that GE was
detected)

Smax maximum value of the Status of data quality

Nnotconv number of cases when calculation did not converged [%)]

In 2 cases the number of MCM repetitions was 10,000,- (Sections 8.1 and 8.2), in 2
cases (Sections 8.3 and 8.4) the MCM repetitions were 1000.
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8.1 Crude oil preheat

Model from Subsection 6.2.1.

PF Iter GED [%] Saver Smax Nnotcony [%0]
1 4.32 4.63 0.45 2.44 0.00
2 4.87 73.9 1.81 9.28 0.00
3 4.97 93.80 4.06 23.66 0.00
5 5.01 99.36 11.52 92.19 0.00
8.2 LPG separation
Model from Subsection 6.2.2.
PF lter GED [%] Saver Smax Nhotconv [%0]
1 3.00 6.7 0.636 1.54 0.00
2 3.05 98.7 2.591 15.46 0.00
3 3.26 100.0 6.076 77.08 0.00
5 3.67 100.0 18.822 201.59 0.00
8.3 Steam cycle of a powerplant
Model from Subsection 6.4.2
PF Iter GED [%] Saver Smax Nnotconv [%0]
1 7.66 5.6 0.667 1.21 0.00
2 7.96 100.0 2.94 6.88 0.00
3 8.69 100.0 8.19 23.18 0.50
5 9.65 100.0 19.84 68.97 4.50
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8.4 Vacuum distillation of heavy crude oil

Model from Subsection 6.4.3

PF Iter GED [%)] Saver Smax Nnotconv [%0]
1 4.97 5.9 0.543 1.778 0.00
2 5.84 88.9 2.092 6.772 0.00
3 6.16 98.9 4.727 16.508 0.00
5 7.17 100.0 13.801 42.779 0.00

8.5 Conclusions

From results of this Chapter can be seen that models in Sections 8.1, 8.2 and 8.4 are
well robust. The model in Section (8.3) (Steam Cycle) has problems with the
convergence in the case of MCM Perturbation Factor 3 and 5 (the calculation did not
converged in 0.5 % of runs in the case of PF = 3 and in 4.5 % of runs in the case of PF =
5).

The original uncertainties of Flowrates in this case were 1 - 10 % of the measured value
and the temperature uncertainties were in the range 1 — 2 % in the Celsius temperature
scale (see Table 6-13). In the case of the Perturbation Factor 5 this means very bad
input data for calculation (for example flowrate errors up to 50 % of the Base Case
value). High temperature perturbations can also lead to phase changes in water/steam
streams.

It should be noted here that RECON’s MCM module enables one to save all MCM
repetitions data to the MS Access Database. Data can be then manually imported and
the cause of problems can be revealed.
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9 DiIsSCcuUsSION AND CONCLUSIONS

The main purpose of Chapter 5 was to verify that MCM methods used in RECON
(generation of random variables, etc.) are sound. Calculations revealed that it is needed
to make 10,000 MCM repetitions to get reliable results. The MCM analysis of a simple
linear model has confirmed that the DRV methodology works and the results’ precision
agrees with MCM results (Table 5-2). Also the Gross Errors Detectability method gives
good results (Table 5-3).

The core of the report is in Chapter 6. The spectrum of 12 nonlinear models covers
typical DRV tasks we can meet in Chemical and Power Industries. Models’
characteristics are shown in Table 6-13. The typical type of nonlinearity is a product of
two variables (bilinear models, namely multicomponent and heat balances). The
nonlinearity in all cases did not caused significant deviations caused by models’
linearization during the DRV solution (Table 6-14).

In Section 2.5 was proposed the practical and simple measure of models’ nonlinearity by
Eq. (2-25). It is the relative improvement of the Least Squares function calculated by the
Successive Linearization and then improved by the SQP method.

In Chapter 7 were analyzed two bilinear models as concerns the influence of
measurement uncertainties on statistical results of DRV. It was concluded there that
there is no evidence of significant influence of measurement uncertainties on basic
statistical characteristics of the data reconciliation process.

In Chapter 8 was on 4 examples shown that MCM is a good method for testing models’
robustness. Random errors of measurement were perturbed up to 5 times of the original
measurement uncertainties to test models’ robustness.
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