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Monitoring and Performance Analysis Systems (MPAS) can help maintain near optimum industrial production.  

But, the data available in process industries are frequently incomplete and data are sometimes corrupted by 

measurement or other errors.  A major problem in designing a reliable industrial MPAS system is the 

availability and accuracy of needed measurements.  The end result is that often on-line estimation of important 

process parameters and Key Performance Indicators (KPI) become complex tasks with uncertain results.  

This work illustrates these problems, and provides possible solution, using a case study monitoring the 

performance of an industrial steam condenser.  The steam condenser is a part of a cogeneration system 

providing electricity and steam for a petrochemical complex.  A detailed model of the steam cycle, including 

the steam condenser, is presented. KPIs for the steam cycle overall efficiency include the condenser heat 

transfer coefficient and heat load and the quality of steam leaving the low-pressure turbine.  Bottlenecks in 

accurately determining these KPIs are identified and ways to overcome limitations are discussed.  Data driven 

modelling of the steam cycle targeted at process optimization is also described. 

1. Introduction 

Data measured in process industries (chemicals, oil & gas, power generation) are frequently incomplete and 

can be corrupted by measurement or other errors. Data validation is used to reduce the influence of random 

measurement errors and remove possible gross errors (Madron, 1992). Data validation also enhances data 

sets by allowing calculation of unmeasured process variables and model parameters (efficiencies, heat 

transfer coefficients, etc.). Data validation is based on data reconciliation which is now a standard technology 

for the monitoring, control and optimization of industrial processes.  

However, a major problem in designing an industrial Monitoring and Performance Analysis Systems (MPAS) 

remains the availability and accuracy of the incoming data. Consequently the accuracy of the end result – the 

on-line estimation of important process parameters and Key Performance Indicators - is a complex task with 

uncertain results. An understanding of this uncertainty is essential. An analysis of this problem needs a 

detailed mathematical model based on the system mass, energy and momentum balances and 

thermodynamic relations (the physical model). In practice such model can be complemented by empirical 

relations based on statistical processing of historical process data. Such combined model also provides 

information needed for optimal selection of measuring points, optimization of measurement precision, 

parametric sensitivity, etc. 
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Fig. 1: Scheme of a Monitoring and Performance Analysis Systems 

This approach depicted in Fig. 1 consists of (1) Creating a classical physical model (mass and energy 

balances, etc.), (2) Collecting information about available instrumentation including precision and accuracy, (3) 
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Analysis of solvability and redundancy. Analysis of errors propagation during data processing. Identifying 

bottlenecks of result’s precision and improvement of input data quality. (4) Processing of historical data to 

complement the physical model by empirical findings (so-called process data driven modelling). (5) Such 

model can be used with confidence for plant performance analysis and operation improvement.  

This work illustrates the problems with data collection and process performance monitoring using a case study 

of an industrial steam condenser. The steam condenser is part of a cogenerating system providing electricity 

and steam in a petrochemical complex. In addition to performance monitoring and diagnostics, data driven 

performance optimization is described. 

2. The Steam Cycle  

The condenser studied here (see Figure 2) is a part of an industrial steam cycle (SC) which consists of 3 

turbines (High, Intermediate and Low pressure), a condenser, 2 low pressure heaters, 2 high pressure 

heaters, a deaerator, pumps and boiler (not analysed in this presentation). The surface condenser is cooled 

by cooling water. For details see Madron (2015) 

 

 

 

Fig.2: Steam cycle. HPH -  High Pressure Heater, HPT - High Pressure Turbine, IPT - Intermediate Pressure 

Turbine, LPT - Low Pressure Turbine, LPH - Low Pressure Heater, DA - deaerator 

3. Mathematical model 

The mathematical model of the SC consists of:  

 Mass and energy balances (enthalpy, kinetic and potential energy) 

 momentum balances (modelling flow in pipes where pressure drop is significant) 

 thermodynamic models (isentropic efficiency in steam turbines, heat transfer in heat exchangers) 

 

The mathematical model can be formally written as a system of implicit nonlinear algebraic equations.  

           (1) 

where F( ) is a vector of model equations 

x     is a vector of directly measured variables  

y     is a vector of unmeasured variables 

c     is a vector of precisely known constants 

 

A model of the SC was created in the mass and energy balancing system RECON (RECON 2018), see also 

Madron (2015). Details of the modelling can be found in: Veverka and Madron (1997), for mass and energy 

balances; Gay, Palmer and Erbes (2006), for general power plant performance analysis; Cotton (1998), for 



steam turbines; and Putman (2001), for steam condensers and heaters.  Properties of water and steam were 

calculated using IAPWS IF-97 (IAPWS 1998).  The model of the SC in Fig. 2 consists of 65 equations, 25 

measured and 62 unmeasured variables. The model can be switched between Step (1) reconciliation of the 

measured data and Step (2) prediction of plant behaviour based on the parameters determined in Step (1). 

4. Process data reconciliation  

The SC studied is equipped with more instrumentation/data than necessary for solving the model. The system 

of equations given by Eq (1) is therefore redundant and data reconciliation (DR) is essential. DR details are 

provided for example in Romagnoli and Sanchez (2001), Madron (1992) or Veverka.(2001).  

With measured values x
+
 the system of Eq (1)  

            (2) 

is generally not solvable, regardless of the values of the unmeasured variables. The basic idea of DR is to 

adjust the measured values in such a manner that the reconciled values are as close as possible to the true 

(but unknown) values. The reconciled values xi‘ (marked by apostrophe) result from the relation 

  
    

      (3) 

where to the measured values, xi
+
 , so-called “adjustments” vi , are added.  In the ideal case, these 

adjustments would simply be equal to the unknown errors for each measurement.  Here we utilize the 

mathematical model (mass balance, energy balance, etc.) that must be obeyed allowing the “correct values” to 

be determined as follows (method of “maximum likelihood”):  

The adjustments must satisfy two fundamental conditions: 

1) The reconciled values must satisfy Eq (1) – we say that they are consistent with the model   

             (4) 

2) The adjustments are minimal. Most frequently, the weighted sum of squares of the adjustments 

is minimized using the well-known Least Squares method  

minimize 

  
  

  
 
 

   
   
    

  

  
 

 

 

(5) 

Using the inverse values of variances   
2
 (squared standard deviations   ) – the so-called “measurement 

weights” – guarantee that more (statistically) precise values undergo less correction than the less precise 

ones (measurements with large variances are considered less precise); this is a relevant property of the 

method. 

Schematically, this process can be imagined as the Data Reconciliation Engine depicted in Figure 3. 

    

Fig. 3: The Data Reconciliation Engine 

The “engine” thus transforms the input measured data (vector x
+
) to the reconciled x’.  In addition it 

computes/estimates the unmeasured variables y’ and provides other information (mostly information about the 

uncertainties of the results) which will be needed in subsequent analysis. 

We can then write for the unmeasured variables y’ symbolically  

         (6) 



These symbolic functions will be used later for calculations of parametric sensitivity and measurement error 

propagation.  

5. Propagation of errors 

The vector function (6) is the basis for analysis and optimization in a Monitoring and Performance Analysis 

System (MPAS). Linearization can be used to obtain the parametric sensitivity coefficients hij, 

    
      

  

   
 

(7) 

representing the sensitivity of the unmeasured variables and model parameters on the directly measured 

variables. The original function (6) can be linearized in vicinity of the measured values (base-case value yi(B)): 

 
 
    

    
                                         (8) 

Here then the calculated variables yi are linear functions of the measured variables xj and the well-known Law 

of Errors’ Propagation can be applied (Himmelblau 1970).  Standard deviations of measurement errors i 

represent measured values uncertainty. Other characteristics of measured values uncertainty are maximum 

measurement errors ei,max which are, in technical practice, taken as 1.96 multiples of i. For variances, yi
2
 , 

and statistically independent measurement errors we can write, 
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  (9) 

By multiplying Eq (9) by 1/yi
2
 we get a more convenient equation  

    
   
 
    
 

   
  

       
 

   
     

   
     

 

   
        

   
 
    
 

   
   

(10) 

where hij
2
xj

2
/yi

2
  multiplied by 100 is the so-called share of j-th measured variable on the variance of i-th 

calculated variable yi (Madron 1992). The individual items in Eq (10) are non-negative and each term on the 

right hand side of Eq (10) represents the % share of individual measured variable on the uncertainty of the 

results. It is clear that measured variables with “high share values” are the precision bottlenecks of the 

calculated results. 

6. Case study - Monitoring and performance analysis of a condenser 

The most important process indicators for the condenser are: 

 heat load 

 condensing steam pressure and quality 

 cooling water flowrate and temperature. 

The Key Performance Indicator of the condenser is its heat transfer coefficient (HTC) which must be included 

in the SC model. HTC is defined by Eq (11) 

                   (11) 

where Q = condenser heat load [W], HTC [Wm
-2

K
-1

], A = heat transfer Area [m
2
], LMTD = Logarithmic Mean 

Temperature Difference [K]. 

When modelling the SC it is important to understand that the HTC is not a constant. It is significantly 

influenced by the cooling water flowrate and cooling water temperature and also (possibly) by fouling on the 

cooling water side of the heat exchange.  

In the next we present results of the detailed analysis of important variables influencing the condenser’s HTC 

estimation.  But first, it is important to discuss the role/importance of Steam Quality (SQ). 

SQ is defined as % of steam in the wet steam (the quality of saturated steam is 100 %). SQ is important for 

monitoring the isentropic efficiency of the low-pressure turbine and it is also essential when setting up the 

condenser’s energy balance. Direct measurement of steam quality in industrial conditions is not easy. Cotton 

(1988) discusses several methods, but none are suitable for on-line industrial use. The only feasible way to 

determine steam quality is to calculate it from a mass and energy balance. This is the reason why an analysis 

of condenser’s performance is not possible without a complete balance model of the entire steam cycle (the 

boiler is not needed in this balance).  

For the condenser, two variants were considered/studied: (A) the flowrate of cooling water (CW) is measured, 

and (B) flowrate of cooling water is not measured (due to large pipe diameters it is sometimes difficult to 

measure it in practice).  



The following uncertainties ± of directly measured variables were used: flowrates ± 2 %, temperatures  

< 100 
o
C ± 1 K, temperatures in the interval <100 to 300> 

o
C ± 2 K, temperatures > 300 

o
C ± 3 K, pressure 1 

%, and electricity generated 0.5 %.  

Table1 shows examples of calculated condenser parameters and the resulting uncertainties. 

Table 1: Calculated condenser parameters (variant A – CW flow is measured, Variant B – CW is unmeasured) 

Variable Unit 

Variant A Variant B 

value ± (abs) ± (%) value ± (abs) ± (%) 

Condenser heat load MW 79.7 1.5 1.9 79.7 1.5 1.9 

Steam quality % 94.5 0.8 0.8 94.4 0.8 0.8 

HTC Wm
-2

K
-1

 1,521 124 8.1 1,530 131 8.6 

 

It can be seen that Variants A and B do not differ too much (values and their uncertainties). This means that 

measuring the CW flowrate is not an absolute necessity for determination of HTC. This can be understood by 

considering the overall balance on the SC which is based on measured flows of feed water, steam and 

generated electricity.  

Let’s now try to improve the uncertainty of HTC which is determined as over 8 % of its value in Table 1. Table 

2 provides the “vector share values” of the most important measured variables (with shares > 1 %). 

Table 2: Shares of measured variables on HTC variance  

Measured variable Unit 
Variant A Variant B 

Share [%] Share [%] 

condenser pressure kPa 5 5 

cooling water input temperature 
o
C 38 15 

cooling water output temperature 
o
C 48 75 

feed water flowrate t/h 2 1<  

admission steam flowrate t/h 2 1< 

turbine condensate flowrate t/h 2 1<  

 

It is clear that HTC uncertainty can be significantly improved by lowering the uncertainty of the cooling water 

temperature, especially its output temperature. If the uncertainty of the output CW temperature is reduced to 

0.5 K, the resulting HTC uncertainty is decreased to 83 Wm
-2

K
-1 

(5.4 %) for Variant A and to 87 Wm
-2

K
-1 

 (5.7 %) 

for Variant B. It should be noted that these observations are valid only for the present configuration of the 

model the current measurement uncertainties) and should be recalculated after every change.  

7. Process data driven modelling 

Important process parameters, like the Heat Transfer Coefficients in the SC, are not constant but are functions 

of other process variables. While literature concerning modelling these parameters is numerous, it frequently 

provides results which are not in tune with reality. The natural method for modelling the HTC is a correlation 

and regression analysis (Himmelblau 1970) of historical process data. We have found that over 95 % of the 

HTC variability (coefficient of determination R
2
) can be explained by cooling water temperature and flowrate, if 

fouling is eliminated by cooling water conditioning. It should be noted here that the cooling water flowrate is 

strongly correlated with the condenser heat load. It is therefore sometimes possible to replace in a regression 

model, the CW flowrate by the condenser heat load as an independent input variable. Figure 4 illustrates the 

use of statistical regression in modelling of a steam condenser based on historical process data. Fig. 4a) 

shows HTC calculated on the basis of linear empirical function of input cooling water temperature and flowrate 

versus HTC measured values. The next Fig. 4b) shows prediction of HTC calculated by the same way in time. 

Such simple empirical model can be easily integrated with the original physical model. 

Empirical models, if they are regularly updated in time, can be efficiently used in an on-line performance 

analysis of existing industrial systems. This hybrid approach to modelling, which combines rigorous first law 

models with data driven empirical regression models, provides also a very reliable basis for decision support 

systems, answering What if? queries and also for process optimization. 

 



 
Fig 4: Correlation and regression analysis of HTC as a linear function of cooling water temperature and 

flowrate: Measured versus calculated HTC values 

8. Conclusions 

Process industries have the need for reliable mathematical models of high accuracy. Potential improvements 

in well-established industry sectors (bulk chemicals, oil & gas or power generation) are in order of few % at 

most, and frequently in the range of tenths of % only. Monitoring and Performance Analysis Systems, which 

utilize these mathematical models, allow near optimal process operation to be maintained. MPAS can be used 

to guide non-optimal processes to near optimal operation. The approach described in this presentation 

consists of: 

1. Creation of mathematical models based on laws of nature.  

2. Use of these models and available process data. Here data validation and data reconciliation should be 

used.  Analysis of errors propagation during this process is essential. 

3. The preceding step provides information about data measurement and data optimization (the need for 

improvement of individual measurements’ precision; better instrumentation placement, etc.). 

4. Long term monitoring provides an invaluable archive of validated historical data which can be used for 

creating empirical models (correlation and regression analysis, neural networks, etc.). Such information 

can enhance the quality of classical “first law” models as model parameters taken from standard 

handbooks or technical papers are frequently tens of per cent far from real values found in practice. 

5. We recommend MPAS which utilizes a combination of first law models and empirical models based on 

process data. Such an MPAS approach can be used for decision support, studying What if? scenarios, 

process behaviour prediction and even for direct process optimization. 
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