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Preface

Increased competition forces companies 10 make their plants more profitable. The
need for improving existing plants is widely recognized. Attention now has to be
focused on optimization, retrofitting and debottlenecking (razionalization) of operating
plants based on a thorough chemical engineering analysis.

The objective of this book is not to present a systematic approach to
rationalization. It would hardly be possible in a book of this extent, considering the
diversity of techniques used in this field. There exists, however, a range of techniques
common to most of the rationalization activities. By this I mean the wide range of
problems connected with the analysis of the function of existing producing units
based on plant measurements and experiments. The data obtained thereby represent
a unique and invaluable source of information; their acquiring and processing,
however, is usually not free from problems. Therefore, in this book, I have attempted
to present a complex approach to plant measurements and experiments, starting from
planning, through process data treatment, to interpretation of results. The structure of
the book is as follows.

In the first chapter we shall acquaint ourselves with the most important activities
connected with rationalization, particularly from the standpoint of plant measurements
and experiments.

The aim of this book is to make the reader familiar with the possibility of a
rational approach to the measurement in process plants. Generally, these problems are
dealt with by the theory of measurement whose development has been associated
primarily with the exact sciences such as physics, astronomy, or geodesy. The
problems of measuring in process industries are of a rather specific character, and,
therefore, the second chapter is devoted to the application of the measurement theory
to process plants.

Virtually all types of information obtamed by measurement are subject to errors.
This is why the problem of measuring errors is dealt with in detail in the third
chapter. Besides the theoretical topics such as classification of errors and their
propagation in the course of their processing, practical methods for gathering
information on measuring errors are also presented.

The theory of errors forms the basis for the statistical treatment of measured data
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which is discussed in the next chapter. After the preprocessing of data and direct
calculations of unmeasured quantities, attention is focused on reconciliation of-
redundant data. Plant measurement could be considered to be a "battle” against gross
and systematic errors of measurement. Therefore, attention is given to the important
~practical questions of checking the measured data from the standpoint of the
occurrence of gross and systematic errors and also searching for the sources of these
EITors.

The fifth chapter is an introduction to the problems of the optimum design of
measurement. Discussed here are the possibilities of obtaining requisite information
within the shortest possible time and at minimum cost. Proper design of measurement
must also reduce the probability that the only result of a measurement will be a
statement that the measurement scheme used is not suitable.

The theories and methods presented up to Chapter S are illustrated in the text
by a number of simple examples. More extensive applications are presented in the
last chapter. Case studies, typical for measuring in process plants, have been selected
here.

In order to comprehend the entire book, and in particular, practical applications
of the presented methods, some knowledge of applied mathematics is necessary.
Processing of data that are subject to random errors is based on the knowledge of
probability theory and mathematical statistics. The computations proper rest upon the
methods of linear algebra and for this reason the matrix notation is used extensively
throughout the book. This is in tune with the current trend, since the well accepted
advantages of matrices (particularly the possibility of expressing the relations among
multidimensional objects) are today extended by the possibilities of using standard
matrix computer software.

The enumeration of the branches of mathematics will be brought to a close with
the graph theory, the usefulness of which is related to the system character of process
plants.

A brief survey of concepts from the above disciplines of mathematics is
presented in the Appendix. A reader who is not familiar with these branches of
mathematics is advised to start this book by thumbing through the Appendix and to
refer 10 it when necessary.

The book is intended particularly for engineers and managers responsible for
improving the function of existing plants. Teams executing plant studies can also be
found increasingly in research centers as well as in design and engineering
companies.

A number of methods described in this book can be applied in designing the
process control systems for new plants. The various aspects of an optimum design of
measurement and of measured data processing are very relevant today, particularly
in connection with the increasing use of automatic monitoring systems and process
computers. '

The problems of the theory of measurement are discussed in this book in a



Preface ' 11

general way. It is not concemed exclusively with measurement in process plants.
Hence the major parts of the book may also be utilized in the preparation and
processing of the results of laboratory and pilot plant measurement, particularly in the
sphere of chemical engineering.

Complex analysis of process data by statistical methods is not practical without
computers. At the same time, much experience can be gained by answering different
"what-if" questions which can occur in practice - an ideal application of the
computer. To enhance study, the reader can obtain (free) computer codes on PC
diskette (IBM XT/AT) in exchange for the coupon available at the end of the book.
Two programs (equations solver and material balancing) will enable solving and
further analysis of most of the examples presented in the book,

I owe much to all those who contributed 10 the writing of this book. This work
has only been possible because of the co-operation with my colleagues from the
Systems Engineering Department in the Research Institute of Inorganic Chemistry as
well as those from other institutions and manufacturing plants. The final version of
the manuscript was read in its entirety by Dr.V.Veverka and I wish to thank him for
his expert criticism. The English of several chapters of the book was markedly
improved by proof reading by Dr. L. Murray Rose and Peggy Temblador. The
contents of the book are based on experience I have acquired during the past 15 years
of my employment in the Research Institute of Inorganic Chemistry. Hence, my
acknowledgements also include the Institute’s management who founded the Systems
Engineering Department in 1974 and supported its work even at times when the
effectiveness of dealing with the tasks of plant improvement in process industries was
not so obvious as it is now. :

While writing this book I often pondered over the scope of the individual topics.
Although I endeavoured to evaluate objectively my experience as acquired by dealing
with dozens of research projects connected with plant improvement, I feel that the
result is far from perfect. Therefore, I should be grateful to the readers for their
comments on the book, both on the scope and on details.

Usti nad Labem Frantifck Madron
December 1991
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1 Introduction - rationalization of process plants

Until recently the main and practically only activities considered worthy of a
chemical engincer were the research and development of new equipment and
processes. This was in tune with the situation when the most common way of
development of process plants was to increase their capacity by building new
manufacturing units.

Lately, however, stagnant availability of raw materials and energy have led to
a shift of development trends towards an improved exploitation of the existing
manufacturing units by optimization.

The most frequent projects in this area are:

- economies of raw materials and energy

- structural changes involving intensification of certain processes and suppressmg of
others

- processing of different raw materials

- improving the product quality

- recovery of wastes.

The approach to the solution of such projects may differ considerably - from a
simple optimization of process variables (temperatures, pressures etc.) to cost -
intensive reconstructions. The problems encountered by a chemical engineer when
dealing with such tasks are markedly different from those arising in the course of
designing new plants. The maximum utilization of existing structures requires that
their potential has to be known thoroughly. Hence emphasis is brought to the
problems of the analysis of the function of existing equipment and systems, based on
plant measurements and experimentation with adequate processing of measured data.
In this way information is acquired that would otherwise not be available.

The objective of this chapter is to describe the most important rationalization
activities, particularly those concerned with plant measurements and experiments.

Among them, the-area referred to as "good house-keeping' represents the lowest
level. In principle, this is a case of simply maintaining the plant operation in good
order. In many plants this is satisfactorily done but sometimes an improvement in this
sphere may bring about considerable improvement. The functioning of almost every
plant can be improved by proper tuning in the values of the process variables - i.e.
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by their optimization. Gains so obtained often are "free" - the improvement can be
accomplished without financial investment. '

Nowadays a very frequent requirement is to increase the capacity of plants (so-
called debottlenecking). We can meet this even in companies whose production is
stagnating or even declining. It is the result of the tendencies o optimize the
production pattern of the whole manufacturing system by suppressing certain units,
while, at the same time, increasing the production of others.

The economy of production (profit) is determined by a number of factors, some
of which have already been mentioned (values of process variables, production rate).
In some plants, more significant savings of raw materials and energy can be attained
by changes in the structure of the respective technological system (change in the
connections among equipment in separation trains, optimization of the structure of
heat - exchanger networks, eic.). We speak about retrofitting, currently representing
an important fraction of total investment in process industries.

1.1 GOOD HOUSEKEEPING

Maintaining the operation of a manufacturing plant in good state is the first condition
for achieving good economic results. The losses as encountered in the course of plant
~ operation may be either obvious (such as escaping materials or steam into
environment) or hidden (poor utilization of heat, low conversions of chemical
reactions, etc.). In modern plants which are becoming increasingly complex, it is not
an easy matter to identify a malfunction of the system. A condition for maintaining
favourable economic parameters of the production over a long period of time is
regular monitoring of the plant operation (mass and energy balancing, assessing
specific consumptions of raw materials and energy, evaluating products quality). A
well designed monitoring system must be capable of detecting significant changes
taking place in the plant, for example fouling of heat exchangers, deterioration of
separation efficiency or a decrease in the activity of catalysts in reactors.

Considerable possibilities of improving plants® efficiency lie in the sphere of
control. Nowadays process control computers equipped with advanced control
algorithms are being installed routinely in process plants. The quality of information,
on which the computer’s decision-taking is based, is a critical factor. The function
of a costly control system can be completely negated by the malfunction of a single
measuring device. The analysis of the measured values from the standpoint of gross
and systematic errors is, therefore, very important.

Because of the growing complexity of process plants, it is increasigly more
difficult to determine the causes of impaired function of a plant - we speak about
detection and identification of abnormal states. A valuable source of information in
this respect may be detailed measurement of the plant combined wnh a diagnostic
evaluation of the measured data (Himmelblau 197 8).
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Determination of specific consumptions of raw materials and energy is of
particular importance when analysing the performance of plants since these variables
usually determine the economy of production. The activities in which we have to deal
with in this case include, for instance, performance testing of new plants, long-term
examination of trends in raw materials and energy consumption, and companson of
different technological regimes.

When assessing specific consumptions, it is important that the measured values
should possess the requisite precision. In the case of large-scale plants even slight
deviations from the true magnitude of specific consumptions represent large values
when taken absolutely. Measurements are subjected to errors and this problem has to
be approached from the standpoint of the theory of measurement and of mathematical
statistics. It depends on the planning of measurements, its implementation and the
processing of measured values, as to whether the acquired information concerning
specific consumptions is valuable or not. The same holds also for many real-life
situations when the result is a difference between large numbers (for example the
profit).

Measuring also plays an important role in introducing standards (indexes) of raw
materials and energy consumption which ar¢ used mostly on higher management
levels for evaluating plants performance. This means both the determination of these
indexes on the basis of plant measurements and detailed analysis of the process, and
the elaboration of methods suitable for long-term monitoring of specific consumption
and for the measured data treatment.

In warrantable cases so-called parameiric specific consumption standards are
introduced; these are not constants but they are functions of selected external
conditions (ambient temperature, raw materials quality, ctc.). Sctting up of a
parametric consumption standard involves a series of plant measurements carried out
with different values for the variables influencing the specific consumptions followed
by statistical processing of measured data.

1.2 OPTIMIZING PROCESS VARIABLES

By opiimization of process variables we usually understand the increasing of profit
by reducing the specific consumptions, or improving the products quality, or the like,
achieved by modifying the values of process variables. Those variables with which
we can influence the value of the parameter we are concemed with, are called
optimization variables. The dependence of such a parameter on the optimization
variables is denoted as objective function (optimization criterion).

When the value of a suitable parameter characterizing the functioning of a given
plant (specific consumption of materials and energy, profit, and the like) are plotted
against the plant age, we usually obtain a dependence whose shape is similar to the
curve in Fig.1.1. The experience shows that, according to the slope of the
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dependence, three periods can be distinguished differing from each other in the results
arrived at when improving the function of the plant. :

The first period is that of putting the plant onstream, which takes 0.5 to 1 year
on average. This period of the startup is characterized by removing a number of
defects that are the result, in most cases, of imperfect design. The plant operation
may be interrupted frequently, which brings about an increase in specific
consumptions. Other losses are caused by inexperienced operators.

S~

0 i 2 3 4 Fig.1.1 — Development of specific production
— tlyeor costs N

After the startup period there is a period of stabilization that may last several
years. During this period the operators are perfecting themselves and methods for the
optimum control of plant operation are sought for empirically. The economic indices
of production are improved markedly, maximum yiclds are obtained, etc. Most of the
superficial reserves have been found and utilized. -

A period of stable plant operation follows after a certain time. This period is the
longest one and the rate of plant improvement is declining during this period. The
reason is that the empirical methods of improving the functioning of the plant have
already utilized most of those reserves that could be identified on the basis of
information readily available in the plant.

The problem of disclosing the reserves is illustrated in Fig.1.2. The individual
possibilities of improving the functioning (reserves) of a plant are presented on the
x-axis in the order of their decreasing effect. The horizontal dashed line represents
the usual variability of the examined index (e.g. profit) caused by slight fluctuations
in the production conditions (fluctuation in the raw materials quality, imperfect
control, seasonal fluctuations, and the like denoted as so-called process noise).

It is obvious that so long as the effect corresponding to a given reserve is below
the noise level (reserve 4 and higher in Fig.1.2), the existence of that reserve will
pass unnoticed by the operating personnel. The magnitude of the noise can only be
decreased by special procedures based on the application of the measurement theory,
whereby a potential for achieving further reserves emerges. This is the most
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significant contribution of the measurement theory to the optimization of chemical
plants.

The methods of searching for the optimum process conditions differ in the
degree in which the theoretica! knowledge concemning the process are applied. The
lowest level represent the so-called empirical methods of optimization, when virtually
all information is obtained from plant experiments at different values of independent
variables.

—= offect

1 2 3 4 5 6 7
- reserve Fig.1.2 — Possibilities of reserves disclosing

In a simple, but very frequent case of optimization, two different technological
regimes characterized, for instance, by different values of one process variable, are
compared. The more general cases are demonstrated in Fig.1.3. If we consider a
single independent variable, the question is to find an extreme (minimum of the
specific production costs N) of the objective function of one variable in the interval,
the so-called permissible region (Fig.1.3a). The limits of the interval usually are
specified by the requirements for the product quality, by safety regulations, and the
like.

Optimization of two variables is shown in Fig.1.3b. The shape of objective
function in the permissible region (marked by section lining) is represented by lines
of constant value of the objective function. '

4
z A
% g
Ncp" u 3 i L.
/::/ /// 7 Fig.1.3 — Optimization
*topt -y ) single-dimensional;

(o)) b) wo-dimensional
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The essence of OpUmlzanon lies in an approximate determination (mapping) of
the objective function in the permissible region in such a way that the values of
variables, corresponding to an optimum, can be assessed.

The plans of experiments, whose objective is to determine the influence of the
individual variables (factors) on the objeclive function, are similar to those of
building empirical mathematical models. Generally speaking, empirical methods of
building mathematical models and empirical optimization are closely connected with
one another (Himmelblau, 1970).

When planning the experiments for empirical optimization, so-called orthogonal
designs are used most frequently as these make it possible to find in the optimum
way the effects of individual variables on the objective function. The simplest are
two-level (so-called 2"-orthogonal) designs, where n (design dimension) is the number
of independent variables. With these designs the values of independent variables are
varied on two levels, so that for the design to be complete 2* measurements
(experiments) are necessary. In the case in which » equals 2 the values of the
independent variables lie in the corners of a rectangle, when n equals 3 they lic in the
comers of 4 rectangular parallelepiped (Fig.1.4).

The application of empirical optimization methods in process industries meets
with certain difficulties. This is due, for reasons that are both objective and
subjective, primarily to the limited possibility of changing the process variables.
Changes may be limited by safety limits, or limited ranges of measuring and
controlling instruments, or the like. In some cases the source of limitation may be
aversion of the personnel to interference in the plant operation.

Sometimes importance may be attributed to the costs of experiments as these can
cause a decline of the production rate or a lower quality of the respective product. In
order to obtain better information than would be possible in the course of routine
operations, more workers may have to be engaged (for data collection, sampling,
chemical analyses), which may limit the capacity of the problem solving group. The
above factors may set a rigid limit to the number of possible experiments before the
research project is started. In other cases the number of experiments may be limited
by the time which is necessary to achieve steady state after a change in the process
variable.

To identify the effect of a particular variable on the objective function, it is
advantageous 10 use the orthogonal plans. When they are constructed, however, the
dependencies among individual factors "interfere”. If, for instance, we assume that
the rate of conversion of ammonia oxidation by air can be affected by the volume
flow rate of gas, oxygen concentration and the amount of ammonia to be oxidized,
then the values of only two of these variables can be planned, while the third one
follows from the material balance. A similar situation occurs when dependences
among factors result from the control (for example one of the variables is a
controlling and the other is a controlled variable).

To eliminate some of the drawbacks of the methods of experimental
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optimization, an evolutionary optimization method (EVOP) has been suggested
(Hunter & Kittrel 1966).

The philosophy of this method can be expressed by a requirement that a
manufacturing process should produce not only a material product but also
information about how the process could be impreved. The traditional approach to
optimization mostly starts from a small number of well prepared experiments. The
range of variables is chosen to be as wide as possible, and there is a tendency to
execute the measurements more thoroughly than usual in the routine operation.
Whereas, the EVOP method requires neither extreme changes of factors nor a detailed
examination of the process (this being its greatest advantage). A higher level of noise
that necessarily arises with this method, is eliminated by multiple cyclic repetitive
experiments. - |
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Fig.1.4 — Orthogonal factorial designs
a) two-dimensional two-level; b) three-dimensional two-level; ¢} two-dimensional three-level

The repetition is made [« ssible by the fact that the method as such does not
interfere with the manufacturing process and does not result in increased costs when
compared with the routine operation. After an optimum is assessed within the
examined region, a new region is selected and the optimization continues.

A certain disadvantage of empirical methods is that they require a considerable
number of plant measurements and are comparatively time consuming. The number
of plant experiments needed by factor experimental plans increases steeply with the
number of variables that have to be considered. Therefore, the application of these
methods in optimization of large systems is virtually out of question.

An alternative approach is optimization using a mathematical model based on
laws of nature. But even in this case we can not manage without plant measurements
and experiments. The number of plant experiments that have to be conducted when
identifying the mathematical model is considerably smaller than in the case of
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empirical optimization. In this way the volume of work that has to be done in a plant
can be substantially reduced and thus the time to solve the problem reduced.
Optimization based on mathematical modelling has two stages. The first one is
the building of the mathematical model including the objective function to be
optimized (for example t0 maximize profit). The second stage is to search for the
extreme (maximum or minimum) of the objective function. Experience shows that the
central problem and, in most cases also the bottleneck, is usually the development of
the mathematical model representing all important features of the modelled object.

1.3 INCREASING THE PLANT CAPACITY - DEBO'ITLENECKING

Nowadays a very frequent requirement is to increase the production on existing or
only slightly modified equipment. To solve this problem, a number of questions have
to be answered safety of work, wear and tear of equipment, link-up with the
environment at increased rate of production, etc. However, in the following section
we shall confine ourselves to the role of plant measurement and experiments in the
course of debottlenecking.

In principle two types of tasks can be formulated:

- assessing the maximum attainable production rate on the given equipment, and
- finding those conditions, under which it would be possible to attain the desired
production rate in the future.

When assessing the maximum attainable production rate it is usual to begin with
gradually increasing the rate of raw material input and carrying out detailed
measurements on different production rate levels (this method referred 1o cogently as
"more in - more out™).

It is necessary to watch carefully selected equipment where troubles can be
expected at increased loads (pressure drop in columns, conversion in reactors, and the
like). Particular attention needs to be given to the determination of emissions and
other losses which are ofien extremely sensitive 1o production rate. The same is true
as regards the product quality and specific consumptions of raw materials and energy.

“The maximum attainable rate of production usually corresponds to such a state
when an item of equipment or plant section reaches the limit of its operability
(capacity of pumps, exceeding of admissible temperatures in reactors, fall in
efficiency in separalors, etc.).

The above method of debottlenecking is the most common but, in reality, the
maximum production rate is not necessarily achieved in this way. Especially in the
case of more complex plants the maximurn attainable production can be influenced
by optimally controlling the manufacturing process.

A situation where the behaviour of a plant can be influenced by the rates of raw
materials input and of recycling is demonstrated in Fig.1.5. In this case the production
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rate is directly proportional io the feed rate of raw material. An admissible region
exists in the production - recycle coordinates, within which these two variables can
be varied independently (in Fig.1.5 represented by hatching). In addition, lines of
constant specific costs of production are plotted within the admissible region.

The normal operating regime of the plant at 100 per cent production rate is
represented by point A. On condition that the rate of recycling would be constant
while increasing the production rate, the maximum attainable production would be
given by the coordinate of point C. If, however, we operate at a Iower rate of
recycling (point D), even higher production rate can be reached.

Also important is the question of economy which, in our case, is represented by
the lines of constant specific costs. For each level of production rate there exists a
certain value of recycling rate at which the specific costs are minimum. The
connecting line of the points of minimum specific costs is represented in Fig.1.5 as
the dashed line. This knowledge enables the production to be increased in such a way
that up to the production rate corresponding to point B the rate of recycling is
adjusted so as to correspond to the minimum specific costs.

Thus we have formulated the problem of intensifying the production rate as one
of optimization (i.e. finding the optimum process regime for each production level).
The task of plant measurements and experiments in solving this more complex
problem consists in finding a mathematical model representing plant behaviour at
different levels of production rate.

The second task of debottlenecking, that is to fmd conditions under which a
required production raie could be achieved (provided that this rate is too high to be
attained on the existing equipment), is one of the most intricate problems a chemical
engineer can be confronted with. In most cases he must supply underlying data for
designing new additional equipment, replacing existing items of equipment by more
efficient ones, and the like,

S
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The fundamental term in the traditional approach to this problem is so-called
bottleneck of a plant. There is usually some imbalance among the capacities of
individual equipment items in 2 production train, for a number of reasons. The
imbalance can be expressed with the aid of the capacity profile of the train, that is
by expressing the capacities of individual equipment items by the same unit of
measure (final production, raw material consumed, etc.). The equipment item having
the lowest capacity is the bottleneck. The debottlenecking is solved either by
replacing the bottleneck by more efficient equipment item or by attaching additional
equipment in parallel. At the same time, it is necessary to answer the question
whether, if the bottleneck were removed, another equipment item would not become
a new bottleneck before the required production rate is reached.

When solving this problem, we are using plant measurements and experiments
to obtain the underlying data for chemical engineering calculations for the individual
equipment. In some cases, using intermediate storage tanks, we can analyze the
function of equipment at throughputs higher than those corresponding to the capacity
of the bottleneck.

In spite of the fact that the "bottleneck” concept may be useful in some cases,
stated generally, in modern complex plants it is losing its significance.

Fig 1.6 — Simple plant with recycle
R - reactor; K - distillation column

A diagram of a simple plant consisting of a reactor and a distillation column,
- separating the unreacted raw material from product and recycling it back to the
reactor, is demonstrated in Fig.1.6. The conversion in the reactor decreases with
decreasing the mean residence time of liquid in the reactor; the column load increases
with increasing ratio of the unreacted component in the column feed and, at the same
time, the separating efficiency of the column declines. The production rate in the
above system is limited as a result of an increase in the concentration of unreacted
component in the product as the feed rate to the reactor increases.

The plant capacity limitation is caused, on the one hand, by the low conversion
in the reactor, and, on the other hand, by a low separating capacity of the column at
higher loads. It is, therefore, not posible to state which equipment is responsible for
limited production rate (the bottleneck). An increase in the plant capacity can be
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attained either by scaling up the reactor (resulting in high conversion even at high
load, thus "relieving” the column), or by installing a new column capable of
separating an increased amount of the unreacted component.

The above conception of debottlenecking is useful not only for plants with
recycling but also for some linearly arranged plants as well. If, for instance, refining
of a product proceeds in several steps, it is usually difficult to determme which
particular step is insufficient in capacity. :

In the presented examples, raising the plant capacity is based on introducing
such modifications in a plant, which will ensure that the required production rate is
attained. The question of which equipment is to be intensified is transferred to the
region of production economy - we try to find a solution that would be the most
advantageous economically. In most cases the problem formulated in this way cannot
be solved without mathematical modelling (sctting up material and enthalpy balances
of individual equipment items under new conditions brought about by intensification,
and the like).

The importance of plant measurements and experiments lies in assessing the
capacity potentials and in identifying the parameters of mathematical models of
individual equipment items. The methods based only on chemical engineering
calculations often fail because of inaccuracies of chemical engineering correlations
(in some cases errors may come up to tens of per cent of the calculated value). It is
often possible in a plant to measure the maximum capacity of the equipment directly
and thus to reduce investment costs of the debottlenecking to the minimum.

1.4 PROCESS RETROFITTING (REVAMPING)

Douglas (1988) defines retrofitting (sometimes termed revamping) as
1. minor changes in the inteconnections between process equipment;
2. replacement of one or more pieces of equipment by some other equipment;
3. change in the size of one or more pieces of equipment in an existing process.
Nowadays retrofitting represents an important method of plant improvement. It
has been reported that in 1984 more than a half of investments in the U.K. chemical
industry was direcied to retrofitting of existing plants (Atkinson *987). During recent
years particular emphasis has been laid on reducing energy consumption. According
to one estimate about 60% of the supplied energy in a typical refinery leaves the
system in the form of heated water and air. These losses, however, are not inevitable,
and they can be reduced by several tens of per cent. An important way to a better use
of energy is optimization of the utilization of heat and other kinds of energy.
Particularly successful has been the application of "pinch" technology (Tjoe &
Linnhoff 1986). Originally this method was developed for analyzing and optimizing
heat exchange systems. In course of time pinch technology has been extended to
further areas (the use of heat engines and pumps, separation systems).
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The problems of optimizing the structure of separation systems represents
another important field. Special aitention has been given to systems of distillation
columns. Distillation has been well mastered from the chemical engineering
standpoint; it is the most widely used separation method and it is considerably energy
intensive.

In principle, measurement plays an important role in two phases of retrofitting.
During the initial stage of problem solving, measurement supplies the information
about the flows of mass and energy, on which any analysis has to be based.
Nowadays, when commercial programs for the analysis and synthesis of process
systems are available, obtaining reliable data often represents the boitleneck in the
preparation of the retrofit. It is a time consuming pursuit since frequently several
process regimes under which plant operates have to be measured.

During the final stage, when the possibility of repositioning available equipment
in the plant is considered, the checking and simulating of the individual equipment
items are of importance. It is an advantage if the respective mathematical models can
be verified using plant measurements.



2 Measurement in process industries

The following chapter is devoted to some problems that are characteristic of
measuring in process industries. _

There is no doubt about the importance of problems of measuring errors. Errors
encountered during the measuring in process industries differ in their character from
errors of measurement in other branches of science and technology. In view of their -
importance, the various aspects of errors will be dealt with separately in Chapter 3.

In addition, it is characleristic of the data measured in process plants that they
often have 1o satisfy exactly valid mathematical relations expressing most frequently
the laws of conservation (of mass, energy, etc.). This fact has a marked effect on the
methods of data processing. _ :

Further attributes of technological processes affecting the gathering and processing
of data are the system character of process plants and variation with time (fluctuation)
of the values of process variables. .

Successful measurement in process plants depends not only on mastering the
theory but also on solving of a number of technical problems. It is hardly possible
to enumerate all the stumbling blocks that may be met when carrying out the
measuring in process plants. The methods of the plant measurement proper arc,
therefore, discussed in the concluding part of this chapter.

2.1 BASIC CONCEPTS

Let us consider a process plant comprising several interconnected apparatuses. The
state of such a system at a certain instant of time can be characterized by a set of
values of the state variables (temperatures and pressures in the individual apparatuses,
accumulation in storage tanks, composition of streams, and the like). From the
standpoint of gathering information on the functioning of such a system several types
of tasks may be formulated.

The basic task is to find out the performance of the plant at the given values of
selected state variables. The extent of the required information may differ from case
to case.
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For example, it may be the case of setting up the mass balance on the basis of
measurement, measuring of emissions from the plant, or there may be a demand for
more detailed information, often stemming from a certain model conception of the
plant function (e.g. the determination of heat transfer coefficients, plate efficiency of
the distillation column, or the flow pattern of phases in selected apparatuses). Those
quantities whick are 1o be assessed by such a measurement are referred to as target
quantities of the measurement.

Thus formulated task is referred to as identification of a plant. We might compare
it to photographic documentation of the essential characteristics of the plant under
conditions set beforehand.

This fundamental task is usually a part of more complex types of problems which
were mentioned in the preceding chapter {optimization of the values of process
variables, debottlenecking, and the like). It is important that these more complex
problems can be broken down into a number of plant measurements carried out at the
values of state variables that have been planned in advance.

The concept "plant identification” is always to be understood in connection with
the objective stimulated before the measurement proper. For example a plant
measurement aimed at assessing specific consumptions of energy will differ from that
whose objective is to evaluate the possibilities for increasing the plant capacity.

When conducting the identification of a process plant we use, in principle, three
kinds of information. Firstly the prior knowledge which can be called theory of
measured object. Such information often can be expressed in the form of equations
and inequalities of a mathematical model (balance and definition equations,
calibration relations of measuring instruments, and the like). Usually, also, such prior
information includes the constants exactly known beforehand (physical and
mathematical constants, exactly known properties of substances, and the like).

The second source of information are the values of directly measured (so-called
primary) quantitics as obtained on the basis of direct. measurement. These values
almost always are subject to measurement errors and, therefore, in the course of their
. processing we make use of the third group of information, i.e. of conceptions of the
measurement errors character and magnitude; what is meant is the so-called model
of measurement errors. The mathematical model and the model of errors together
form the stochastic model of the measured plant.

The quantities appearing in the problem can be divided in accordance with several
standpoints. They may be measured directly or not and, accordingly, are divided to
directly measured quantities and those directly unmeasured. The unmeasured
quantities can be further divided into observable quantities, i.e. those which can be
assessed from directly measured quantities by solving the equations of the
mathematical model, contrary to unobservable quantities, which cannot be assessed.
The observable unmecasured quantities sometimes are designated as quannnes
measured indirectly (so-called inferential measurement).
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Unmeasured quantities may be of different nature. In some cases this is a question
of measurable quantities (temperature, composition, and the like) whose
measurement, however, has not been carried out for some reason. In other cases it is
a matter of such guantities whose direct measurement is simply impossible. For
example the rate of a certain chemical reaction can be found out only indirectly from
the rate of changes of directly measurable quantities - concentrations, In certain
circumstances the quantities may have the character of constants of mathematical
models, ¢.g. activation energy of chemical reactions, mass Iransfer coefficients, or
effective interfacial area in mass transfer apparatus. :

Example 2.1: Identification of a distillation column _
Fig.2.1 shows the diagram of a simple distillation column with installed measuring
instruments. In addition to the directly measured flow rates of feed and bottom
product we have here also the directly unmeasured flow rate of the distillate, This
flow rate, however, can be calculated from the mass balance around the column. But,
in principle, it could be measured (by installing another flowmeter) - hence this
quantity is unmeasured but it is measurable and observable.

Somewhat different is the situation as regards the flow of vapour at a certain
cross-section of the column. It is hardly possible to suggest 2 way to measure this

@I Fig2.1 -— Measure-
- ment of a distillation

B colummn
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quantity directly in practice. The vapour flow, however, can be calculated, at least
approximaiely, by solving the equations of the mathematical model of the column.
In addition to the mass balance such a model would also have o incorporate the
enthalpy balance and mass transfer on the column plates. Hence the vapour flow
inside the column is directly unmeasurable but observable.

Somewhat diferent is the case of the next quantity - the distillation plate
efficiency E. Unlike the vapour flow, that quantity actually does not exist. It is just
a parameter of a mathematical model and cannot be measured directly. However, the
efficiency can be assessed by processing the data obtained from measurements on the
given column. It is, therefore, the quantity that is not measured directly but
observable. But one has to realize that quite a number of distillation plate models
have been defined with differently defined efficiencies. Thus the value of efficiency
as assessed from the measured data is influenced by the choice of the mathematical
model and by the definition of the efficiency proper.m -

2.2 BUILDING OF MATHEMATICAL MODELS

By mathematical modelling we understand the expressing of the basic properties of
a real object by means of a mathematical model. The mathematical model itself may
be apprehended as a system of hypotheses (expressed most frequently in the form of
equations and inequalities) among variables - describing the modelled object.
Mathematical modelling is not an end in itself but usually it is a part of the solution
of a number of tasks (optimization, debottlenecking, process control and others).

2.2.1 Basic concepts

The building of a mathematical model comprises three fundamental phases. The first,
preparatory phase, involves a preliminary formulation of hypotheses on the basis of
previous experience with the object to be modelled, search of literature, chemical
engineering calculations, and so on. At the end of this preparatory phase one or more
model variants are available, representing the relations among the directly measurable
quantities (temperatures, pressures, concentrations, etc.) and those quantities which
cannot be measured directly. For these latter quantities the term parameters of
mathematical model has become common; typical examples here are the coefficients
of heat and mass transfer, equilibrium constants of chemical reactions, and the like.
In most cases, however, this preliminary information is not sufficient for 2 complete
solution of a given problem.

During the second phase values of directly measured qucntities are collected. It
may be a case of records of previous plant operation under standard regimes, or an
active approach when the process is controlled so, that the maximum of information
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necessary for mathematical modelling can be obtained. In this case we speak about
plant experiments.

The final phase is the statistical processing of measured data whereby the values
of the mathematical model parameters are obtained. Sometimes this phase is referred
to as identification of a mathematical model, The process of finding values of model
parameters is called estimation and the values of parameters are called estimates.

The obtained mathematical model can be used for calculating the output quantities
on the basis of pre-sct (input) quantities. Then we speak about simulation of the
behaviour of a real object by means of a mathematical model.

The agreement between the results of mathematical modelling and behaviour of
a real object depends on the extent to which the suggested mathematical model
describes the reality adequately. Part of the processing of measured data must be an
evaluation of the suitability of a proposed mathematical model for a particular
problem. Unless the requisite agreement between the model and reality is reached,
it is necessary to go back to the first phase of mathematical modelling and modify
the original modelling concepts. Sometimes it may happen that the data, on whose
basis the model was identified, are not sufficient. In such a case additional
measurements must be carried out in order to supplement the missing information.

The adequacy of a mathematical model is not to be understood in absolute terms
but only in consideration of the objective of the modelling. It is, therefore, necessary
always to define the region of values of variables that is concerned and to specify
further conditions 10 be met if the model is to be valid. The demands made on a
model (adequacy, mathematical simplicity, etc.) are the reason why the above
sequence of the three phases of mathematical modelling cannot be understood to be
a simple process. Confronting the results of mathematical modelling with reality
mostly results in the necessity of going back to the individual phases of the
modelling. In most cases, only when such an iterative procedure is adopted, will it
be possible to arrive at a really useful mathematical model.

2.2.2 Classification of mathematical models

Mathematical models may be classified in accordance with a number of aspects. For
our purposes it is useful to classify the models with respect to the extent in which
findings of natural and engineering sciences are utilized when building the
mathematical model. In this respect there exist two opposite poles.

On the one hand, there are models based exclusively on statistical evaluation of
measured data. Such models are referred to as empirical or regression (the most
common case being the expression of the dependence among variables by polynomial
function). When building these models we do not use any prior information that
would follow from physical or chemical atiributes of the modelled object.
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The other extreme is represented by models based on the use of laws of nature
only. Sometimes these models are denoted as mechanistic models since a certain
mechanism is assumed, according to which the changes in the modelled object
proceed. In the extreme case it is possible, at least symbolically, 1o describe the
modelled object by a system of equations expressing the laws of nature holding true
under the given conditions (fundamental equations of hydrodynamics, of heat transfer,
and the like).

The above two exireme cases, however, have a number of drawbacks. The
empirical models require a considerable amount of measured data, and their
extrapolation beyond the measured region is rather debatable. On the other hand, the
purely mechanistic models depend on the values of constants that may not always be
available a priori. Also, for most practical problems these models are unduly
complicated and their mathematical solution is difficult. Therefore, the most
frequently used models are those combining purposefully both the above approaches.

2.2.3 Empirical models

The building of empirical models has been given considerable attention in the
literature from the viewpoints of measurement planning, processing of measured data
(assessing the parameters of empirical equatmns), as well as of further applicability
of models, particularly for optimization.

When selecting the model equations, the following requirements should be -
satisfied:
- mathematically simple form
- minimum number of parameters (constants)
- good agreement between the model and the modelled object behaviour.
The most common mathematical form of an empirical model is the dependence of a
group of dependent variables on other variables (independent variables) by means of
a polynomial. For a single dependent variable (y) and a single independent
variable (x) the mathematical model has the following form:

y=a‘,+sz1x+a2f+...+a,,x"=ga,-x" | 2.1)
where g, are the model parameters and » is the model order (equal to the highest

exponent of the dependent variable in the power series).
The form of a first order model for m independent variables (x, , x; , ... , x,) is

y=by + E b; x; ' | (2.2)

i=]

The quantity m is so-called dimension of the model.
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A second-order model of dimension m is

y=by + be + Z;Eb X X; i2j (2.3)
J=boa=)

Empirical models in the polynomial form can describe any complex relation - in
some cases, however, at the cost of an inadequate increase of the model order, and
thus also at the cost of an increase in the number of model parameters. In practice
we try to manage with polynomials of the lowest possible order. The reasons for this
are numerical difficulties encountered when identifying the parameters of polynomials
of higher order from measured data. Furthermore, in polynomials whose order is
higher than necessary, the conditions for smoothing the data become worse.

i model of '

1st order
y=flxx,)
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Fig.2.2 — Empirical mathematical models
a) single-dimensional 1; b) two-dumensional

An example of modelling the real dependénce y=1-(1-x)exp (- 0.5x) by
polynomials of the first to 3rd order [Eq.(2.1)] is presented in Fig.2.2a. In Fig.2.2b
are demonstrated the possibilities of modelling the real dependence of a variable y
on two independent variables x, and x, . The function y = f (x, , x,) represented by
contour lines, i.e. lines of a constant value of the function f (x, , x,), exhibits a
maximum (point M). In the region distant from the maximum, the course of the
dependence y = f (x, , x,) can be modelled with the aid of the linear model (2.2) of
dimension 2. In the proximity to a maximum (or minimum, as the case may be),
however, the 1st order model is entirely unsuitable, and the 2nd order model has to
be used. The shapes of the contour lines that can be expressed by the 1st and 2nd
order models are demonstrated in Fig.2.3. "



34 Measurement in process industries [Ch. 2

’f‘/ f},
= -

Fig.2.3 — Contour lines of

_ polynomials of 2nd degree
a) model of 1st order; b) - d)
models of 2nd order

2.2.4 Models based on laws of nature

Building of mechanistic models usually is more complicated than it is in the case of
empirical models. The information we start from when building mechanistic models
can be divided into two groups.

The laws of conservation (of mass, energy and, provided that certain
presumptions are met, of other quantitics as well) belong to the first group. In most
cases these laws are valid strictly and we can often use them when verifying the
validity of other assumptions serving as the basis for our modelling.

In ‘the second group are the other laws of nature, dependences assessed
empirically, and the like. The validity of this type of information is not the same as
that of the laws of conservation; they have rather the character of hypotheses that
actually hold more ‘or less perfectly. Typical examples are the models of chemical and
phase- equilibria, models of the kinetics and stoichiometry of chemical reactions,
chemical engineering correlations, efc.

When compared with the applications of mathematical modelling in other branches
of science and technology, the conservation laws expressed in the form of mass and
energy balances are of considerable importance in building mathematical models in
process industries. - ' -

Conservation laws - macroscopic balances

The diagram of the system adopted in seting up balance equations is shown 1n
Fig.2.4.
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accumulation

input output

system

= Fig.24 — Balanced
system '

The balance of any quantity over an integral period of time can be written in
words: : -

input - output + source - consumption - accumulation = 0 (2.4)

Further, let the output be taken as negative input, consumption as negative source,
and accumulation as fictitious output. Eq.(2.4) then becomes

input + source = 0 ' 2.5

Generally, in the balance equation (2.5) appear the integrals of balanced quantities
in time. However, the equation may also be written in terms of velocities. It may be
a case of a steady-state system or it is possible 1o define in an appropriate way the
mean integral velocities within the given time interval. Further, we shall consider
steady-state systems and introduce the following notation:

m, mass flow rate in stream & (positive at the inlet, negative at the outlet)
n,  substance flow rate (in moles)

xz; mole fraction of ith substance in kth strcam

w,; mass fraction of ith substance in kth stream

n,; flow rate of jth substance in kth stream (n,;=n, x,; )

m,; mass flow rate of ith substance in kth stream (m, ;= m, w;; )

H, flow rate of enthalpy of kth stream

h,  specific enthalpy as related to mass (H,=m, h, )

In practice we meet with applications of laws of conservation of mass, energy and,
less frequently, of momentum. The character of these laws is absolute and the
equations expressing them hold exactly. The class of models with exact validity may
include also balances of those parts of molecules which are not subject to changes
in a given process (atoms or stable groups of atoms) in cases concerning chemical
systems with clear stoichiomeiry.
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The law of conservation holds for the total mass and Eq. (2 5) has the following
form:

Em=0 | | . (2.6)

As regards the mass of individual substances, however, the law of conservation
does not hold in general and the source term has to be expressed in the balance
equation. Let us assume that in a system of / substances s, , ... , 5, J chemical
reactions are taking place

TAi5=0 j=1,..,7 Q.7

where A;; is the stoichiometric coefficient of ith substance in jth stoichiometric
© equation (1t holds for the products A;; < 0).
The system of equations (2.7) can be written in the matrix form

As=0 | | (2.8)

where A is the matrix of stoichiometric coefficients (4;; ) |
§ is the vector of substances (s; ). _
The balance equation (2.5) for individual substances then becomes

};.n“- ?Aj,.rjso _ | . _ _ (2.9)
where r; is the rate of jth reaction; or alternatively, in the matrix form
NTT1-Ar=0 ' ' ' - (2.10)

where Ni is the matrix of flow rates of substances (m )
1is the unit column vector.
Now let us assume that the substances are composed of chemical elements
E,, _E.z The elemental composition of ith substance is expressed by a formula

En ey By By e

where ¢;, is the number of atoms of zth element in the molecule of ith substance. The
numbers ¢;, form the so-called atom matrix E. Let us consider further that for each
correctly wntten stoichiometric equaﬂon the law of chemical elements conservation
must hold true

zef,Aji=0 z=1,..,2 o (2.12)
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or, in the matrix form
ETA =0 _ (2.13)

Now, if Eq.(2.10) is multiplied by the matrix E7 from the left hand side, and,
considering Eq.(2.13), we obtain

ETNT1=0 - | , o (2.14)

We have thus obtained a different type of balance equation - an equation
expressing the conservation of chemical elements in a balanced system. Ii is now
necessary to raise the question about the difference between the balance equations
(2.10) and (2.14). '

Considering our knowledge about a given system it is obvious that working with
the model (2.14) will be simpler since the information on elementary composition of
substances is usually more readily available than the knowledge of all the chemical
reactions taking place in the system. On the other hand, scarcity of information as
used in the building of a mathematical model will manifest itself outwardly by the
decrease in the number of equations of the model. The number of chemical elements
occurring in the problem is frequently smaller than the number of balanced
substances (take, for instance, complex mixtures of organic substances composed of
a few chemical elements). Looking at Eq.(2.10) we can see that in the case when no
reactions proceed in a system, the mathematical model consists of / independent
equations, whereas the model (2.14) consists of only Z equations (Z < 1). It can be
proved that the two models are equivalent only in the particular case when the sysiem
of equations (2.7) contains the maximum number of independent equations that can
be written in the given system (Schneider & Reklaitis 1975).

Example 2.2: The balance model of fermentation
Let us consider the process for the manufacture of biomass (yeast) from ethanol.

Starting materials:

1 - ethanol (elemental formula C,H,0),

2 - oxygen (O, ),

3 - ammonia (NH; ),

4 - mineral nutrients represented by a fictitious element Ah with relative atomic
mass 1. :

Products: '
5 - biomass, empirical formula C, g;H;5/0;NpesAhy o , Where Ah stands for the
mineral component of the biomass,
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6 - acetic acid - an undesirable by-product (C,H,0, ),
7 - carbon dioxide (CO, ),
8 - water (H,0)

The above eight substances consist of five elements, C(1), H(2), O(3), N(4), and
Ah(5). The atom matrix E is shown in Table 2.1. It has the dimension of (5 x 8) and
the full rank, i.e. rank(E) = 5. Hence, there exist only (8 - 5) = 3 linearly independent
stoichiometric equations in the given system. Such a system is, for instance:

Table 2.1 — Atom matrix (Example 2.2)

~ element
substance
C H 0 N Ah
ethanol (1) 2 6 1 0 0
oxygen 2) 0 0 2 0 0
ammonia ) 0 3 0 1 0
mineral nutrients 4) 0 0 0 0 1
biomass (5) 3.83 7.00 1.94 0.64 7.00
acetic acid (6) 2 4 2 0 0
carbon dioxide €)] 1 0 2 0 0
water 8) 0 2 1 0 0
1. synthesis of biomass
| 1917 C;H;OH + 1.618 O, + 0.643 NH, + 7 Ah -

2. oxidation of ethanol to CQ, (it is supposed that this reaction supphes energy for
the reaction 1.)

C;H,OH +3 0, - 2 CO, - 3 H,0 = 0 . (2.15b)
3. formation of acetic acid
C,H,OH + O, - CH,COOH - H,0 = 0 (2.15¢)

Any additional equation we should write would necessarily be linearly dependent
on the above three equations. For instance the oxidation of acetic acid to CO,
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can be expressed as the difference of equations (2.15b) and (2.15¢). The matrix of
stoichiometric coefficients A is presented in Tab.2.2,

Table 2.2 — Matrix of stoichiometric coefficients (2.15)

Substance
Reaction
acetic
ethanol 0, NH, Ah Dbiomass acid CO, H,O
)] 1.917 1.618 0646 7 -1 0 0 -3214
(2) 1 3 0 0 0 0 2 -3
3) 1 1 0 0 0 -1 0 -

The mathematical model of the biomass formation stoichiometry has the form of
equations (2.10) or (2.14) where data from Table 2.1 and 2.2 are substituted for the
matrices E and A. Since the system (2.15) is the maximum system of linearly
independent equations in the given set of substances, both the models are equivalent.
In both cases at least three quantitics n; have to be measured, so that the remaining
ones could be calculated from the equations of the mathematical model.

All the equations presented in this section are written by means of the
quantities n, ; . The advantage of this lies in that the equations of the mathematical
model are linear. Besides, here we could use for convenience a simple notation of the
stoichiometry of chemical changes in this system of quantities.

It would not pose any problem to rewrite the equations in the system of mass
flows, using. the substitution n,; = m,; / M, . More frequently, however, we need to
rewrite the equations by mecans of mole or mass fractions. Unlike the previous
qquantities, these can be measured directly and also they appear in a number of
physical chemistry relations. Here, too, the substitution n; ; = n, x;; O m,; = m, wy;
can be made. In these cases, however, the system of balance equations must be
supplemented by additional relations

Tx,=1 k=1,2..,K (2.16a)
Yw=1 k=1,2,...K (2.16b)

Balance of energy

Till now we have assumed that the streams in Fig.2.4, connected with the balanced
system, represent streams of mass. For the purpose of balancing energy we have to
consider also the heat and work supplied to the system. Formally this can be done in
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such a way that each of the streams is characterized by the following vector of stream
parameters:

(mt,wils-"!wt}'sHthtvwk) . : (2'17)

where Q is the flow of heat and W flow of work, both positive if entering the system.
The streams of mass have Q and W equal to zero, while the streams of heat and work
have all parameters equal to zero with the exception of @ or W.

The conservation law (2.5) for energy holds in the following form

?(U*+PkV,,+Ew,_*+Em_k+Qk+W*)=0 (2.18)

where U, is the internal energy of the siream k E,, is potenual energy, Ey, ., is
kinetic energy.

We have neglected the other kinds of energy. When pressure energy (equal to the
product PV) is merged with internal energy, we obtain the usual form using the
concept of enthalpy H = U + PV

| L Het By +Eiar+ QG+ W) =0 o (2.19)

After neglectmg the kmeuc and potential energies Eq.(2.19) is simplified to so-called
balance of enthalpy

L (H+ 0+ W)=0 | (2.20)

In certain cases assessing the enthalpies of the streams H, may pose a problem.
The situation is simple only if a single substance occurs in the system (e.g. water in
a power station system). The choice of a standard state to which enthalpy is related
is arbitrary and it only remains to find the dependence of the enthalpy on temperature -
and pressure. '

In systems with more substances there is one more problem - enthalpy of
mixing - which can be neglected only in the case of ideal solutions. The most
complicated situation is encountered with systems in which chemical reactions are
taking place. In such a case it is not possible to select a zero level of enthalpy for all

“the substances present in the system but only for some subset. The number of
elements of such subset is determined by stoichiometry of the chemical transfor-
mation. These special problems are dealt with in detail by Veverka & Madron (1981).

Further types of models

Balance equations represent the simplest kind of mathematical models. They are
based on the laws of conservation and their validity is absolute. If they happen to be



Sec. 2.2] Building of mathematical models 41

in contradiction with reality, it is not caused by invalidity of the conservation laws
but it is rather a case of wrong assnmptions on which the balancing has been based
(for instance an escaping stream was not considered, the stoichiometry of a chemical
reaction is more complex than assuined, etc.).

Balance models form the basis for more complicated models, which bring into the
problem new information about the modelled process. In most cases this is a question
of the principles of physical and chemical equilibria and of kinetic models of the
course of chemical processes.

Equilibrium is a hypothetical state that would be established in an insulated system
after an infinitely long period of time, or, in the case of a flow-through system, after
infinitely long time of contact among the streams occurring in the system. In practice,
however, a fairly close approach to an equilibrium can be assumed in a number of
technically important cases. Equilibrium models also play a role when modelling
nonequilibrium processes, 100, since the driving force of those processes usually is
expressed as a deviation from the equilibrium state.

As regards phase equilibria, we most frequently meet with the equilibrium in
single-component two phase systems. In the former case there exists only one degree
of freedom and the respective mathematical model is given by a relation between
pressure and temperature

=f (M " | (2.21)

In multicomponent systems each additional component means one additional degree
of freedom. For an I-component mixture and the two-phase system the equilibrium
at a given temperature is expressed by equations for pressure and for [ — 1
equilibrium coefficients X,

p=fT % - (2:22)
yi = K'. X; (2.23)

where y; and x; are mole fractions of ith substance in both phases at an equilibrium.
The distribution coefficients K, , generally, are function of temperature, pressure, and
composition. -

In a system with a single chemical reaction (2.7) the equilibrium can be expressed
with the aid of the equilibrium constant of the reaction K, .

Kl=a™ a .. aM™ ‘ (2.24)

where a; is activity of ith component and A, is stoichiometric coefficient in the
equation. The equilibrium constant X, is a function of the Gibbs free energy of the
reaction, temperature, and pressure. Equilibrium in a system, in which more reactions
are taking place, can be defined by analogy.
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The most common form of expressing the rate of a process, in which exchange of
momentum, heat and mass between two phases is taking place, is

rate = surface area x coefficient x driving force - {2.29)

In the case of heat and mass transfer we speak of heat and mass transfer coefficients.
In the case of heat transfer the difference in temperatures in the bulk of the two
phases is the driving force. With mass transfer, the driving force is expressed as the
difference in the concentration of the substance in the bulk of one phase minus the
equilibrium concentration which corresponds to the concentration of that component
in the bulk of the second phase.

%

Fig.2.5 — Heat eichanger

Example 2.3: Mathematical model of a heat exchanger

In Fig.2.5 is presented the shell-and-tube heat cxchanger with a single pass in the
shell side and double pass in tubes. The equations of a simple mathematical model
describing the behaviour of this exchanger are as follows:

Heat balance of the hot stream

Q=F,cp (F; - Ty) | | (2.26)
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Heat balance of the cold stream

Q=Fycph-1) (2.27)
Definition equation of heat transfer

Q=KAeAt, _ | | (2.28)
Definition equation of the mean logarithmic temperature difference A ¢,

Ty -8) - (T, - 1) - |
A = 2.29
ha = Tog (T, - 1) / (T - 1] (229)

Equation of the correction cross-flow factor of the mean logarithmic tempefature
difference £ (Bowman, Mueller & Nagle 1940)

M log{(1-P)/(1-RP)]

g = (2.30)
R-1 o 2/P-1-R+M
8 2/P-1-R-M
where ( is the heat flux -
F mass flow
Cp specific heat capacity
K overall heat transfer coefficient
A heat transfer area
A1,  mean logarithmic temperaturc difference
€ cross-flow correction factor

t, T temperatures
P=-1)/{T -1)
R=(T -T)/(-1)
M= +RH"”?

The above system of five equations represents the mathematical model among
directly measured quantities (flow rates, temperatures) and directly unmeasured
quantities (parameters) K , 0 ,eand A ¢, .

When building this mathematical model we adopted a number of simplifications:
- neglecting the loss of heat to the environment
- independence of heat capacities on temperature
- in the derivation of Eq.(2.30) it was assumed that the flow of liquid in both the
shell and tube space is of piston character and that the heat transfer coefficient is
constant within the whole heat exchanger.
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Such simplifications restrict the possibilities of the application of this model
considerably, It could be used for example for extrapolation within some region on
the basis of K estimated from plant measurement. If we wanted to use the
mathematical model of the heat exchanger for a wider range of process variables, it
would have to respect the local dependence of K on hydrodynamic conditions and
properties of substances in the exchanger.m

2.3 SYSTEM CHARACTER OF PROCESS PLANTS

A typical feature of the development of process industries during recent decades has
been concentration of production into large systems comprising several complex and
confusing interrelations. Process plants represent complex systems linked to one
another and the environment so as to enable functioning in the most efficient way.

The complexity of modern plants that is caused by Lhe requirement of efficient
utilization of raw materials and energy (waste-free processes, energy integration, etc.)
leads to increased demands on designers as well as users of plants, and on those
concerned with the rationalization of operating plants.

Experience shows thal it is often not possible to cope with the plant as a whole
in adequate depth. The reason for this may be the limited resources of the team
engaged in the analysis and optimization of the given plant (problems with carrying
out a greater number of chemical analyses, limited capabilities of the computer used
for measured data processing, and the like). Therefore, a multi-level system approach
is adopted, consisting usually of three steps (F1g.2.6):

mathematical

plant measurement models of
a system subsystems

‘ .
|
I
|
I

decomposition of

[

system mathematical
Y - —— —™] synthesis modet of
approach . a system

Fig.2.6 — Mathematical mode]ling of complex systems

- decomposition of the system into simpler subsystems (either individual apparatuses
or groups thereof) that are enough simple 1o be dealt with without considerable
problems;
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- thorough analysis of functioning of the individual subsystems, based on plant

- measurements and experiments, published data, chemical engineering calculations,
etc. The ideal situation is when the results of these activities are presented in the
form of a mathematical model of a subsystem;

- re-synthesis of the system. The simplification made by decomposition of the system
has to be compensated by respecting relations among elements of the system.

Applying the graph theory

The number of measured quantities, even in cascs of relatively small subsystems,
amounts to tens to hundreds, so that processing of the data obtained requires the use
of a computer. When coding the structure of measured system for a computer we are
using terms and methods of the theory of graphs (see Appendix-A.5). Now fet us
illustrate the graph formulation of the simple system structure for purposes of
computer processing of the material and energy balances.

Fig.2.7 — Desorption of ammonia from water solution

Nodes: 1°, 2° - desorbers; 3°, 4” - heat exchangers; 5° - pump

Streams: 1 - cold ammonia solution; 2 - hot ammonia solution; 3, 4, 5 - partly desorbed solution;
6, 11 - steam; 7, 8 - ammonia and water vapors; 9, 10 - waste water; 12 - condensate

Example 2.4: Siripping of ammonia from aqueous solution

A part of a urea plant is shown in Fig.2.7. The purpose of this subsystem is stripping
of ammonia by steam in two strippers connected in series. Besides deserption, heat
exchange is taking place in two exchangers. There is also a pump, transporting the
liquid between the two strippers.
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It is expedient to sec the exchangers, in which no mixing of streams occurs, -as
independent tube and shell spaces. The graph in Fig.2.8 contains two additional nodes
as well as three streams of energy that are not shown in the original flowsheet (heat
flows within the exchangers and mechanical energy supplied to the pump).

Such a graph containing the characteristic features of the process flowsheet is
coded to a form suitable for a computer. For this purpose the notation of the graph
in the form of the reduced incidence matrix (see Appendix A.5) is used.

Fig.2.8

Graph of the flowsheet in Fig.2.7

Nodes: 1°, 2°- desorbers; 3°, 4°- tube side of exchangers; 5°- pump; 6°, 7°- shell side of exchangers
Edges: 1 - 12 - see Fig.2.7; 13, 14 - heat flux; 15 - work ‘

—- mass streams ; - - - streams of energy

When forming the incidence mauix it is necessary to realize that the node
representing the environment, which will be considered as the reference node, is not,
for the sake of clarity, present in the graph in Fig.2.8. In this case we obtain a
reduced incidence matrix as presented in Table 2.3. So, for instance, the stream 2
represents the preheated solution of ammonia leaving the tube side of the exchanger
(node 3°) and entering the first swripper (node 1°). In the second column of the
reduced incidence matrix, corresponding to the stream 2, there are element 1 in the
first row (node 1°) and element -1 in the third row (node 3=

The reduced incidence matrix makes it possible to write in a simple way balance
equations in a system described by a given graph. When balancing a certain variable
that satisfies the conservation law (overall mass, energy, eic.), we write the set of
balance equations around the nodes by a simple matrix equation
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Table 2.3 — Reduced incidence matrix of graph (Fig.2.8)
(zero elements are omitted for simplicity)

Stream
Node

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1’ 1 -1 -1 01

2 1 1 1 -

3’ 1 -1 -1
4’ 1 -1 i
s’ 1 -1 1
6 , 1 -1 1

7’ ; 1 -1 -1

Av=20 (2.31)

where V is the vector of extensive characteristics of the individual streams (for
example the vector of mass flows in the case of mass balancing). The reason for this
is obvious. The balance equation around the kth node is formed by the scalar product
of the kth row of matrix A with the vector V.

J Fig.2.9 — Cooling water system
° al a) flowsheet; b) graph representation

The existence of balance and other constraints give rise to problems in the course
of processing of measured data. Let us demonstrate it using the following simple one-
component balance. '

Example 2.5: Mass balance of a cooling water network.

Let us consider the subsystem of cooling water piping, depicted in Fig.2.9. Here the
oriented edges stand for the piping, node 1’ is the splitter of streams, nodes 2’ and
3’ are the shell sides of heat exchangers.
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The flow through such a piping at a certain instant of time can be characterized
by the vector v= (v, , v, , v, ¥4, vs)" where the ith element of the vector represents
the mass flow rate through the ith pipe (positive or negative, depending on whether
or not the flow direction corresponds to the orientation of edges in Fig.2.9).

The set of all possible vectors Vv is an example of a linear space (see
Appendix A.1), vectors v are the elements of this space.

In the case in which the heat exchange network is in a poor condition, water losses
may take place due to leakage or, the other way round, the cooled medium may leak
to the water cooling system. Under such circumstances, the flows are not constrained,
and the dimension of the vector space is 5. When all the five flow rates are measured,
we can analyze results and draw some conclusions as regards the extents of leakage
in individual nodes; we cannot, however, judge about the reliability of measured
values. _ '

Now let us abandon the idea of the heat exchanger network being, as mentioned
above, in bad state, and let us consider that the network is absolutely leakproof and,
besides, no accumulation of cooling water takes place. Under these assumptions not
all the flow rates are independent since among them three balance relations must be
satisfied:

node I’: v, -v, - v, = ( :
node 2: Voo -V, =0 : (2.32)
node 3’: vy -vs =0 '

Here only two elements of the vector v are independent, whereas the values of the
remaining three elements are dependent. If v, and v, are chosen to be independent,
it holds

V=V, . (2.33)
v$ = Vl - v2 ’

Then the form of an arbitréry vector V has to be
v=(v, Vy o Vi = Vy, Yy, V= Vy)

The dimension of thus defined vector space is no more S but only 2. The set of
vectors describing an arbitrary flow of the cooling water (in a perfectly leakproof
network without accumulation) forms a two-dimensional vector subspace of the
original vector space.

Provided that we measured the flow in the above cooling network, all the final
results should be within the space of dimension 2 (so-called admissible solution).
Therefore, all the measured values have to be adjusted (reconciled) appropriately o
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prevent the results from being in contradiction with relations among the system
elements.m

2.4 DYNAMICS OF PROCESSES

A characteristic feature of real processes of chemical technology is their variability
with time. Time - dependent changes of state variables characterizing a given process
either may follow from the nature of the manufacturing process proper (for example
discontinuous operations), or it is a case of more or less unavoidable accompanying
phenomena of continuously operating plants (start-up, shut-down, subtle ﬂuctuauons
of state variables as the result of external disturbances, etc.).

To have industrial processes, including their dynamics, under control often
represents a rather difficult problem. For some purposes, such as, for instance,
control, the knowledge of the process dynamics is indispensable. In other cases,
however, information at a considerably lower level is sufficient and its acquisition is
usually simpler, too, for instance when
- setting-up mass and energy balances over a longer period of time,

- assessing mean specific consumptions of raw materials and energy,
- determinig time - averaged values of parameters of equipment (heat transfer
coefficients, and the like).

Henceforth, those data that do not contain explicitly the information on the
dynamic- properties of the system will be referred to as static properties. This may
involve both the continuous and discontinuous processes. The dynamics of the
processes, however, should not be ignored in these cases, too, since the precision of
the measurement could be affected considerably. Therefore, the basic types of the
course of technological processes will be presented.

Variability of technological processes in time

It follows from the analysis of recordings from a number of continucusly operating
plants that the changes of process variables in time can be divided essentially into
three groups.

The first group represents minor fluctuations in the vicinity of nominal values,
caused by random disorders, minor control actions, and the like. In these cases we
say that the unit is in a stationary state (Fig.2.10a). :

The second group covers long-term trends in the function of a plant brought about
for example by ageing of a catalyst or by fouling of heat-exchange surfaces
(Fig.2.10b). In the case that such changes do exist but can be neglected within a
certain short period of time, we speak about a quasi-stationary state. The third group
is formed by considerable changes that are a result of, for instance, change-over of
the plant to a new process regime (Fig.2.10c).
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Fig.2.10 — Variability of process variables in time

2) fluctuation of product solution concentration (c}; b) rise in specific
consumption of steam ($) and in temperature in a reactor (TR} as a result
of catalyst ageing; c) the changes of controlled temperature (TP) as a
result of gas flow (V) drop

If the objective of measurement is, for example, assessing of the mean specific
consumption over a certain period of time, the variability of manufacturing process
in time is the cause of errors that are, most frequently, of a random nature, and
depend particularly on the character of the time variation as well as on the measuring
method used (sampling frequency, use of measuring instruments equipped with
integrators, and the like).

To assess static properties, it is particularly important to carry out the
measurements in plants operating under stationary or quasi-stationary state. If there
occurs a more significant disruption, such measurement cannot, in most cases, be
used for assessing the static properties of the process.
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Fluctuation of process variables

An important feature of the planning of measurement and of processing of the results
is the fluctuation of process variables around nominal values, which is an
accompanying phenomenon of most continuously operating plants.

Most types of fluctuations of process variables can be classified as follows
(Fig.2.11). -

pericdic
deterministic <cperiodic
transient
types of
fluctuation
stationary
random
{stochastic) non - stationary

Fig.2.11 — Fluctuation of process variables

Deterministic fluctuation can be described completely by a mathematical model.
Its course is determined and it is known in advance. Periodical fluctuation has a
course recurring at a certain periodicity. Its frequency spectrum contains either a
single component only (harmonic fluctuation) or, in addition to the fundamental
component, also the overtones (polyharmonic fluctuation). The representative of
aperiodic fluctuation is the guasi-periodic process, also having a discrete frequency
spectrum, but the frequencies of its components are not integer multiplies of the
lowest frequency.

Stochastic fluctuation is characterized by the fact that its next course cannot be
predicted precisely even when the previous course of the fluctuating variable is
known.

Let us present, for illustration, a few examples taken from continuously operating
plants. The given classification is only schematic; the real courses of the process
variables exhibit the characteristics of different types of fluctuation simultaneously.

A frequent source of a periodical fluctuation is poor functioning of the control
system. In Fig.2.12a is presented the volume flow rate of gaseous carbon dioxide; its
fluctuation, which can be considered roughly harmonic, is caused by the control of
CO, gasification. ‘

An interesting example of the transition process - damped harmonic fluctuation -
is shown in Fig.2.12b. In the reactor producing hydrogen the temperature in the bed
of catalyst TK began to oscillate without apparent reasons. At an instant of lime,
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Fig.2.12 — Periodical fluctuation of process variables

marked by the arrowhead in the diagram, the gas flow through the reactor was
reduced, which brought about a slow damping of the oscillations.

As may be seen in Fig.2.12¢, roughly harmonic fluctuation may develop also when
no control is used. The presented example refers to the course of hydrogen
temperature from the chlorine and caustic soda plant. Hydrogen is cooled by water
introduced at a constant rate, while the cooling water temperature is fluctuatmg
during the day in accordance with the temperature of ambient air.

The examples of stochastic fluctuations of process variables are shown in Fig.2.13.
The first one is the course of the volume flow rate of ammonium carbonate solution
entering the ammonium nitrite plant. It is being adjusted manually by the operators
according to the results of analyses and serves for control of ammeonium carbonate
concentration in the product. Such a type of fluctuation can be considered a
stochastic multilevel signal, for which a constant value between two transitions from
the first to the second level is characteristic. Its randomness consists in that it is not
known in advance when the change in the level will take place, nor what the next
level is going to be.
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Fig.2.13 — Stochastic fluctuation of process variables

Rapid fluctuations of ammonia flow into the reactor for ammonia oxidation by air
are shown in Fig.2.13b. This fluctuation resulis from controlling the flow rate at the
requisite level.

A more complex type of fluctuation is demonstrated in Fig.2.13¢, which illustrates
the time dependence of concentration (expressed by the volume fraction ¢ in per
cent) of CO, in gases leaving an industrial fermenter. The fluctuation of the CO,

concentration, which has a number of causes, is the direct result of changes in
microorganism respiration.



54 " Measurement in process industries - [Ch. 2

Using the theory of random processes

A suitable approach to data processing in the case of fluctuating variables is the
theory of random processes (see Appendix A.3). Some conclusions derived from this
theory can also be applied to periodical deterministic processes.

In the processing of measurements in process industries the stationary random
processes play an important role, indeed, which is due to the fact that the most
important process variables usually are controlled within comparatively narrow
margins. When the stationarity of fluctuation of variables in process industries is
impaired, it is mostly a case of breaking the assumption of the mean values constancy
(trends, deterministic fluctuation). In these cases the fluctuation may be considered
to be a sum of the deterministic and stationary stochastic processes.

Another important concept is the ergodicity of random processes. The ergodic
stationary random processes are marked by the fact that the mean value and the other
moments of all the other realizations at any instant of time are equal 10. the mean
value and moments of any individual realization. By a realization in manufacturing
processes we mean, for instance, the courses of repeated discontinuous operations, in
continuous processes the production on identical parallel trains or production in
regular cycles separated by shut-downs for equipment maintenance and cleaning.
Hence the ergodicity of random processes is a certain statistical form of expressing
their reproducibility, either in the course of time or in the sense of various
realizations of the manufacturing equipment.

There are not many opportunitics for verilying ergodicity when carrying out
measurements in modern high-capacity production plants and, in most cases, the
ergodicity is only assumed.

It is typical for most plants in process industrics that the course of process

variables is continuous with respect to time. The information about continuous
processes we obtain, however, often applies only to certain instants of time. Thus
discrete dependencies - time series - are created. The reason for the transformation
of continuous processes to time series is, for example, the discrete nature of chemical
analyses or discretization of analog signals for processing on digital computers. Next
we shall, therefore, concentrate our atiention upon the treatment of time series.
- The mean value p and variance ¢, defined analogically as in the case of common
random variables, are important statistical characteristics of random processes. On the
assumption of ergodicity, these parameters can be assessed from a single realization.
When, in the case of a time series, the measured values at the instants .2 ...t
are X, , X, ,..., %, , then the unbiassed estimate of the mean value p_ is the samnple
mean x :

1

fi=x= — X x | (239
=1
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The estimate of variance o is the sample variance
1 _ .
6’= — Y (-3 (2.35)

The relation among values of a random process at various instants of time is
expressed by the autocorrelation function R(7), defined for a stationary process as
the mean value

R(M=Ex®x+7)] : 236

where 1 is the time shift.
The autocorrelation function is presented either in the centred form [R’(T)] or in
the standardized form [p (D]: ' :

R (¥) =R (1) - .2 | | (2.37)
p(r)=R 1)/ (2.38)
The estimate of an autocorrelation function of a time series is calculated from

A 1 "l -
Ri)=— X oxx,, (2.39)

= i=1

where x, stands for the value of the time series element at timeit,andr =1/ .

The centred or standardized autocorrelation function can be calculated from the
relation (2.37) and (2.38), into which the estimates as found from the relations (2.34),
(2.35) and (2.39) are substituted for j, , 6, and R (7). A certain drawback of this
procedure is the fact that the standardization is not perfect [ (0) # 1]. This
disadvantage, however, is not encountercd when using an alternative method where
the centred autocorrelation function is estimated directly

A 1 hor _
Rty — X&x-X)0x,,-% | (2.40)
. n - T ;=1
and the standardized autocorrelation function is assessed from

p(ri)=R ()R © (2.41)
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For large values of n, however, the differences between the two approaches are
negligible,

Hence the autocorrelation function of a time series is defined only for integer
multiplies of the sampling period ¢, . The course of real autocorrelation functions is
approximated by empirical functions, among which for example the function

a:

B
R(=a’+2 2' cos (@; T) + c exp ( - a hl) cos (B 1) (2.42)
=1

where a; , ¢, ®; , & and B are parameters, is capable of expressing even very
complicated real courses of autocorrelation functions. The parameter a, represents the
mean value of a random process, the second term on the right-hand side of Eq.(2.42)
expresses the deterministic fluctuation (obviously in the case of purely stationary
random processes this term is null).

Often we manage with an autocorrelation function in the form of the last term in
Eq.(2.42):

R’ (1) =cexp (- o ki) cos (B 1) (2.43)
where the parameter ¢ is equal to the random process variance, or
R’ (D) =cexp (- o hl) (2.44)

The various aspects of statistical properties of time series in process industries find
their application, among others, in the analysis of errors of measurement of
fluctuating process parameters (see Subsection 3.3.5).

Let us elucidate this problem further using an example.

Example 2.6: Statistical properties of ammonia flowrate fluctuation

A sector of the recording of the volume flowrate of gaseous ammonia is shown in
Fig.2.13b. The objective is to assess the mean value, variance, and the autocorrelation
function of flowrate fluctuations.

For the use of computer processing, the record was transformed into the time
series by sampling at ¢, = 0.968s. Besides, 10 make the reading easier, the value of
the flowrate V proper was, during the reading, transformed into a quantity y according
to

y=(V-1,253.5)72422 | (2.45)
In total, a recording 8 minutes long was processed using the above method. The

mean value, variance and autocorrelation function were calculated according to
relations (2.34), (2.35) and (2.40). The following values were found:
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which correspods to

1, = 1,293 m*
G,” = 7.93* m® h

The calculated values of the centred autocorrelation function are plotied as poim"s in
Fig.2.14. The dependence of the centred autocorrelation function on time shift T was
approximated to by the least squares method with the aid of empirical function (2.43):

R’(t) = 7.93% exp (- 0.293 It)) cos (0.267 1) (2.46)

(see the solid line in Fig.2.14).

—= T[S

Fig.2.14 — Centred autocorrelation function of ammeonia flow

It can be stated that the ammonia flowrate fluctuates in the vicinity of
1,293 m® h™ with the standard deviation 7.93 m* h™ , which corresponds to 0.6%
of the mean value. The autocorrelation function is almost null at the time shift of 3s,
which means that after that time the values of the flowrate are virtually
uncorrelated.m
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Verifying the process stationarity

Estimation of mean value, variance and autocorrelation function of a stationary
random process does not present a serious problem, particularly when a computer is
employed. The results may be distorted, however, due to the fact that a random
process is not really a stationary one - most frequently a long-term trend or a
deterministic periodical process are involved.

The presence of both the above influences can be assessed based on the sequence
of positive and negative deviations of the time series from the mean value or median.
If we denote a positive deviation from the median by + and the negative deviation
by -, we may obtain, for instance, the following sequence:

s T I S S

in which the positive and negative signs alternate regularly and all the groups are
roughly equally long. In the case of such a time series we can assume that it contains
a significant deterministic periodical component. On the other hand, the sequence

gives evidence of a significant trend (growth of the time series values with time).

There exists a number of statistical tests for detecting deviations from stationarity.
The simplest of these is the sign test according to Wald and Wolfowitz
(Himmelblau 1970). In this test the median of time series is found first and a
sequence of signs is set up in the above mentioned way. The testing criterion U* is
defined as the number of time intervals during which there was no change in the sign.
It is the random variable with a certain distribution, whose quantiles are presented in
Table 2.4. The use of the Table will be elucidated using an example.

Let us consider a time series with the respective sequence of signs (median = 4.5):

5565.3'45357466534553235455‘6
R R N T kR 2 b LTI ST SRS

In the sequence of 26 elements of this time series, altogether 13 periods occur with
no change in the sign; hence n = 26 and U" = 13. Now we shall carry out the two-
sided test for the significance level a = 0.05. The hypothesis of the time series
stationarity is not rejected, if it hoids

Uga < UM < U : (2.47)

In Table 2.4 we find Uy'e;s = 19 and Uy'y,s = 8 . Since 8 < 13 < 19, the hypothesis
of the stationarity of the time scries is not rejected.

There exist other stationarity tests (more efficient than the above mentioned simple
test), which can be found in specialized literatute (Himmelblau 1970).
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Table 2.4 — Quantiles of variable U*
PlU*< Ut (n)l=P

P
/2
0.01 0025 0.05 0.95 0975 0.99

5 2 2 3 8 9 9
6 2 3 3 10 10 11
7 3 3 4 11 12 12
8 4 4 5 12 13 13
9 4 5 6 13 14 15
10 5 6 6 15 15 16
12 7 7 8 17 18 18
14 8 9 10 19 20 21
16 10 11 11 22 22 23
18 11 12 13 24 25 26
20 13 14 15 26 27 28
25 17 18 19 32 33 34
30 21 22 24 37 39 40
35 25 27 28 43 44 46
40 30 31 33 48 50 51
45 34 36 37 54 55 57
50 38 40 42 59 61 63
60 47 49 51 70 72 74
70 56 58 60 81 83 85
80 65 68 70 %1 93 96
S0 74 77 79 102 104 107
100 84 86 88 113 115 117

Further information about possible impairment of stationarity can be obtained from
the analysis of autocorrelation function of the random process. It is known that with
increasing time shift, the autocorrelation function of a stationary random process
tends to zero. When the process contains a significant periodical component, the
estimated autocorrelation function also fluctuates periodically around zero even for
large values of the shift t. The autocorrelation function of a process with significant
trend has also a characteristic course (Fig.2.15).

When a process includes significant deterministic components, these may be
subtracted from the process, whereby a stationary random process is obtained. In most
cases the deterministic part of a process is found and a properly chosen curve is fitted
by the least square method (polynomial or trigonometric function). Deviations of the
time series from the deterministic part represent the random component of a process.
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—a RT)

Fig.2.15 — Autocorrelation functions
1, 2 - random process; 3 - process with
periodical part; 4 - process with a trend

2.5 METHODS OF MEASUREMENT IN PROCESS PLANTS

Once the target for a plant measurement has been formulated clearly, the
procedure can be broken down into the three following fundamental stages:
- planning and preparation of the measurement
- the plant measurement proper
- processing of measured data and interpretation of results.

It holds true that if valuable results are to be obtained, the above sequence of
activities must form a balanced entirety. Shortcomings in one stage can be eliminated
only partly or cannot be rectified at all in another stage. The individual stages cannot
be separated from one another, they have to be taken as inseparable parts of the
process of measuring covering the overall activities from planning of the
measurement 1o formulation of conclusions.

2.5.1 Problem formulation

The setting of the task, of which measurement forms part, is usually formulated with
some degrees of freedom. It holds that the less that is known about the solution of
the problem, the less concrete is also the setting of the target. The first step,
therefore, must be the formulation of the problem in technical terms.

The next step is the elaboration of a global conception of the measurement. If, for
instance, the problem can be formulated as the question of "How to raise the capacity
of the plant by 20%?", we have to decide, for example, upon
- which subsystems can be measured at an increased throughput - which apparatuses

can be analyzed with the aid of chemical engineering calculations;
- whether the interrelations with the adjoining plants have also to be examined.



‘Sec. 2.5] Methods of measurement in process plants 61

1t is necessary to specify the required precision and accuracy of the results of
measurement, process regimes during the plant measurements, etc. Last but not least,
the necessary capacities of the team responsible for the measurement must be
evaluated including the cooperation with specialized external groups. It is likely that
first-class solutions of a number of problems will be beyond the abilities of the team
attempting to solve the problem. What is meant is, for example
- chemical engineering calculations and consultations concerning less common unit

operations

- difficult mathematical problems
- corrosion and abrasion problems
- operational safety - '
- special measurement methods.

2.5.2 Measurement planning

In the next step we proceed to planning of measuremenis and experiments proper.
Considering the availability of time, which is always limited, it is necessary 1o
estimate the number of measurements and time needed for their execution. In addition
to the capacity of the problem solving team proper, the limitations inherent in the
particular plant have also to be taken into account. It is necessary to consider the
dates and duration of plant shut-downs that are often essential for preparing the
measurement (checking of existing measurement systems, installation of new
measuring instruments, efc.). _ -

Once it is decided when and under what conditions the individual measurements
will take place, it is possible to start with their detailed planning. This is, in the first
place, a matter of choosing the so-called measuring points. By this we do not have
in mind, for instance, a decision, whether the samples of a liquid should be taken at
a pump inlet or outlet (not forgetting, however, that sometimes even a detail like this
may markedly affect the final result), but the selection of direcily measured variables
from the set of all the measurable variables.

When selecting the measured quantities we are using as a basis the characteristics
of the available measuring instruments and analytical methods (in particular with
respect to precision and demands on time of the measuring methods) while, at the
same time, respecting the properties of the industrial system to be measured
(possibilities to calculate quantities from the equations of the mathematical model,
and the like). _

Following the decision on the directly measured quantities, it is necessary 10 carry
out, in particular,

- checking of existing systems of measurement
- installation of new measuring instruments
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- a complex evaluation of lhe problem of chemical analyses including also the
sampling.

During this phase it is necessary to proceed after careful deliberation since the
above activitics often use up the greater part of the total capacity available for the
solution of the given task.

The methods of measuring as they are routinely conducted in the plant,
particularly as far as process control is concerned, often do not fulfil the requirements
for a satisfactory solution of the given problem. Hence the demand for carrying out
measurements not conducted hitherto is justified, and to meet it, both the capacity of
the problem solving group and cooperation with the plant staff are required.

The probability of our success in this respect is inversely proportional o the extent
of our requirements. To achieve favourable results of our efforts, it is, therefore,
necessary 1o select rationally the variables to be measured, making sure that only
those measurements, which are really indispensable, are carried out. Such an approach
may be called optimization of the selection of measuring points.

After the measurement points have been chosen we proceed to a more detailed
planning of the measureemnt. It is necessary to decide various qucstions such as
- necessary duration of the measurement proper
- method of collecting the measured data (reading at predetenmned instants of time,

use of a data logging system elc.)
- detailed implementation of sampling.

In some cases even more detailed information about the plant is needed. It may
be mecessary to study dynamic properties of the system (extent of fluctuation of
process. variables), which demand, for example, an adequate frequency of readings
of discretely measured variables, or of sampling. Often problems of taking
representative  samples have to be solved (sampling of inhomogencous or
heterogeneous streams, liquids condensing from gaseous samples, and the like).

2.5.3 Plant measurement

The concrete implementation of measurement in process industries depends on the
facilities available 1o the problem solving group. Recently, the most common method
was manual collection of data, where the readings of measuring instruments were put
down in forms prepared beforehand. In cases when it was reasonable, these data
could be ascertained retrospectively by evaluating strip-charts of plant instruments.
A special case of manual data collection was taking of samples for chemical analysis.

The higher level of data collection, which is gaining importance nowadays, is
employing automatic measuring and data processing systems (data loggers,
measurement (ape recorders and process computers). When those modern technical
means are to be used, however, it is necessary to assess benefits obtained in the case
under consideration. The use of the up-to-date data  logging technology is
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advantageous particularly for measurements involving a great number of repetitions
or when dynamic models are to be built since in this way the data can be read at high
frequency and high precision of both the values and the instant of time of reading
(Vyborny et al. 1986). Of course, the situation is fairly simple if the plant is equipped
with a process computer.

For the final success of the measurement it is important that, in addition to the
measured variables proper, also the performance of the plant as the whole should be
respected. In this aspect there is an important function of a measurement - coordinator
who supervises the overall course of the measurement, investigates the possible
defects of measuring instruments, modifics the plan of measurement in accordance
with changes in the plant performance, and the like. |

2.5.4 Interpretation of measurement results

The processing of plant measurements usually proceeds at several levels.

In the course of so-called pre-processing of data the directly measured values have
to be checked for the occurrence of errors that may have arisen during the stage of
data collection. It may be a case, for example, of confusions among the column
forms, errors caused by defects of measuring instruments, and the like. During this
stage sometimes also those data that are obviously subject 10 gross errors are
eliminated, using statistical methods of detecting so-called outliers.

The step following after the elimination of obvious errors is so-called correciion
of measured values. The correction means a compensation of known errors (mostly
of a systematic nature) that were brought about by not following the conditions set
for individual measurement methods. The typical and most frequent cases in this
respect are the corrections of flowmeter readings for deviation of measured liquid
density from the value considered when the measuring system was designed.

Sometimes also primary data are reconciled in order not to be in contradiction
with laws goveming the specific measurement method. It -may be a case of, for
example, of normalization of the measured mass fractions whose sum must be equal
to unity, or of computation of an average value for variables measured simultaneously
by several different methods. A special case of data reconciliation is the smoothing
of time series - so-called data filtration.

In some cases it is necessary to evaluate a mcasured process with respect Lo its
stationarity (approach to the steady statc). We start from an analysis of the time
behaviour of the individual process variables, examining, for instance, the existence
of trends or of periodical fluctuations. The measured time series can be processed for
this purpose with the aid of methods based on the random processes theory.

In the next stage these pre-processed data are used in further calculations of
required results of the measurement. The methods of data processing differ mainly
in accordance with the extent of the mathematical modelling used.
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In the extreme case, when no theoretical concepts of relations among the measured
variables are available, the data processing is limited to the computation of mean
values of variables within the time interval of the measurement, to assessing of the
coefficients of empirical equations, and the like.

With the use of more advanced approaches to mathematical modelling (equations
of mass and energy balances, models of unit operations), more advanced methods of
data processing are used, both when assessing the quantities not directly measured,
or when redundant measurements are reconciled.

An integral part of a final result of measurement should be information about
potential errors of results. Most of questions that may arise in this respect can be
answered using the theory of errors.

The problems of eliminating gross and systematic measurement errors are more

problem statement (1)

mathematical model (2. 2}
model of errors (3.3}

giobal measurement plan {5.5)
measurement piacement | 5.4)

measur ement

ptanning

Iplon‘l measurement [ 2.5.3)}

no

; Yes / elimination of
data prepracessing {4.1) ‘———-(gmss errors ?l4A5.3D
caiculation of unmeasured

quantities (4.3}
recanciliation of
redundant dota (4.4 identification
of gross errors
[4.5.2)

processing

data

( detection of gross errors {4.5.1} \ yes

are gross errors present ? J

noQ

precision of estimates (3.2 4]

no

(is precision satisfactory ? }

yes

presentation of results

Fig.2.16 — Process plant performance assessment (numbers in parentheses refer o sections of the
book) :
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typical in process industries than elsewhere. It is true that it is the existence of these
errors that changes fairly simple questions into problems which are rather difficult to
solve. Even the most careful and well thought-out preparation of the measurement
does not prevent us from errors of this kind. It is, therefore, worthwhile to examine
the measured data from the standpoint of gross and large systematic errors. Once the
existence of such errors is proved, it is essential to eliminate the influence of gross
and systematic errors on the results (elimination of data that are corrupted by gross
errors, repeating or supplementing the measurements). :

It would be a mistake to think that the above discussed succession of activities
(planning and preparation of measurement, the measuring proper, and final processing
of measured data) represent a straightforward procedure, at the beginning of which
the problem is formulated and at the end it is successfully solved. More often it is
true that the process of measurement in operating plant has an iterative character.

So, for example, when planning the measurement, we start from certain ideas
about the extent of errors of measurement of individual quantities. Not until the
measurement proper, however, can we find 10 what extent our ideas have been
correct. It may happen that, because of the wrong assumptions during the planning
of measurement, the results do not satisfy the demands made on the measurement and
this has to be repeated.

Possible variants of measurements in process industries are presented in Fig.2.16,
where also references are given to those parts of this book, dealing with the
individual problems of plant mesurements. '

2.6 RECOMMENDED LITERATURE TO CHAPTER 2

There are several good books on mathematical modelling in chemical engineering
(Himmelblau & Bischoff 1968, Luyben 1973). In the first of them the system
approach is emphasized, while the second is oriented to process dynamics and
control. The application of graph theory to chemical enginecering problems is
described in a review paper by Mah (1983).

The problems of stochastic fluctuations are covered for example in books by
Bendat & Piersol (1966) or Omes & Enochson (1978).



3 Errors of measurement

Virtually all quantities obtained by measuring contain an error. Hence, the problem
of errors is an important part of the treatment and interpretation of measurement
results. These problems are dealt with by the theory of errors which can be divided
into general theory and special theory of errors. The general theory of errors studies
general laws governing the origin of errors, their propagation in the course of
measured data processing, and methods of acquiring information on errors on the
basis of the measurement proper. The special theory of errors applies to errors of
individual measuring methods, instruments and the like.

In this Chapter the theory of errors is presented which is essential to the
application of methods of measured data processing as discussed in the following
- chapters.

3.1 BASIC CONCEPTS AND CLASSIFICATION OF ERRORS

The absolute error of measurement e (henceforth referred to as error of measurement
only) is defined as : :

X=i+e 3.1)
where x* is a measured value and % is a real (true) one. The superscripts + and ~ will
be used for differentiating between the measured and real values.

For assessing the precision of results the so-called relative error e’ is suitable

e=elX : 3.2)

which is often expressed in percent

e=10¢e/% (3.3)
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In practice, it is not usually a case measuring a single quantity, but generally,
of measuring I quantities (temperatures, flow rates, etc.), and so we must refer to a
measured vector X. The measurement of individual quantitics may be either of a
continuous nature as in temperature and pressure or discrete as in the determination
of concentrations in collected samples. For the purpose of subsequent processing on
a digital computer, continuous measurements are converted to discrete ones usually
by reading a continuous signal at instants specified beforehand. -

Let us assume that the measurement of a vector X was made at instants #, ,
k=1,.2,..K. Thus IK values of x;; were obtained as the result of measuring with the
index ik denoting the measurement of ith quantity at time #, . The measured values
form a two-dimensional array. One dimension - that of time - is represented by
index k, and the other one, relating to space is represented by index i. In practice,
there are many more complex data systems. For our purposes, however, this simple
scheme is sufficient, and it will be referred o hereafter. A relation analogical to
Eqn.(3.1) applies to the measured values x :

Xp=Eu+ ey (3.4)

As regards their nature, it is usual to classify errors as random, systematic and
gross. The importance of such a classification lies in the fact that the processing of
measured data is different depending mainly on how the individual types of error
participate in the total error of a result of measurement.

3.1.1 Random errors

Random errors are those errors that may, under otherwise identical conditions of
measuring, acquire various magnitudes and different signs. Their likely values
oscillate around zero and their mean value is null. Taken individually, they do not
display any regularities and are mutually independent. The individual values are both
unpredictable and inexplicable. They are typical examples of random quantities.

The said properties of random errors may be expressed mathematically in terms
adopted for random quantities: '

Zero mean value n=E)=0 3.5)
zero correlation covie ,e)=E (e, e)=0 | (3.6)
Statistical independence of errors and their zero correlation are identical only in the
case of errors conforming to normal distribution (for more details see Appendix A.3).

In practice, however, the conditions (3.5) and (3.6) are generally accepted as the
properties of random errors.



68 Errors of measurement [Ch. 3

In view of the zero mean value of random errors, the mean value of a measured
quantity equals the respective real value:

L=E@G+e=x o | (3.7)

Random errors may be characterized in a similar way as random variables. In
agreement with the assumption, their mean value is null and their most important
characteristic is the variance defined (considering the null mean value) as

D (e) = E (&) = 6.2 (3.8)

Obviously the variance of a measured quantity is the same as the variance of its
random error and these two terms are sometimes confused. This holds true only in
such a case, however, when the real value does not change with time. It is, therefore,
necessary to differentiate the variance (e.g. fluctuating real values) from the variance
of a measurement error (see Subsection 3.3.5).

More complete information about random errors is offered by the probability
distribution of random error expressed by the probability density function. Of key
importance in this aspect is the well known law of normal distribution (see Appendix
A.3). The significance of nonmal distribution is clear for several reasons:

- it has been ascertained that it approximates well the behaviour of measurement in
natural sciences, particularly within the range p + 3 o,

- anerror is often the sum of a greater number of single, so-called elementary errors.
Under conditions altogether acceptable, in accordance with ‘the central limit
theorem, the distribution of such a sum limits to normal distribution,

- in the case that the distribution of errors is not known (which is a frequent case,
indeed), assuming normality of distribution, one is adding only minimum
information (which moreover need not be correct) 1o the problem,

- 1he theory of normal model of errors is well developed and well treatable
mathematically. The values of probability density and distribution functions of
standard normal distribution are readily available in tabulated form which facﬂltates
the solving of practical problems.

“Errors complying with the normal distribution are fully characterized by the
parameter of that distribution - the standard deviation - determining the measurement
precision. The smaller the standard deviation, the more precise is the measurement.
In the theory of errors also some other measures of accuracy have been adopted;
assuming a normal distribution of errors, however, these may be expressed as explicit
functions of standard deviation.

In earlier literature, the standard deviation is sometimes referred to as mean
quadratic error. Its double determines the so-called width of the Gaussian curve, i.e.
distance between the points of inflection of the curve,

Mean error ) is defined as a mean value of the absolute value of error
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A =E (le) | (3.9)
The following relation holds between A and o:
A=Q2/®)"”?0c=079800 - (3.10)

Probable error O is a value for which it holds that the absolute value of a half
of errors is larger than 8. It holds

8 = 0.6745 G @I -

Extremal error % is defined as the triple of o (in some papers as a-multiple of
6, n being dependent on the number of mesurements). It holds that 99.73 % of errors
lie within the interval (- , %)

Also the uniform (rectangular) distribution is of some importance in plant
measurements. A typical situation where errors with uniform distribution may be
observed is excessive rounding or digitization of continuous signals. This kind of
error is also characteristic of balancing volumes while the accumulation is neglected.

Random errors are the simplest model of an error, but in practice, significant
deviations from this model may occur particularly as the result of correlation among
eITorS.

3.1.2 Correlated random errors

The concept of a correlated random error can be arrived at by reasoning. Let us
assume that the errors of measurement of two quantities are formed by a sum of a
greater number of uncorrelated random errors (so-called elementary errors). In the
case in which no elementary error acts upon the formation of the total error of
measurement simultancously with both the quantities, then the total errors are also
uncorrelated. In the opposite case, however, eclementary efrors occurring
simultaneously in the measurement of the two quantities are responsible for the fact
that the resulting errors are already correlated.

For example, let the errors of measuring of the quantities A and B be given by
a sum of elementary uncorrelated errors ¢, , ¢, and ¢, with zero mean value and
standard deviations ¢, , G, and O; .

e, =€ +e € =€, + & : (3.12)
The covariance of the errors e, and e is then

covie, , eﬁ )=E (e, eg) = E [(e; + &) (e, + €3)] (3.13)
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After multiplying and rearrangement we obtain
coviey,e)=E(ep) +E(e,e)) +E(e,e) + E(e,e) =0, (3.14)

since the elementary errors are uncorrelated, and consequently, the latter three mean
values in Eqn.(3.14) are null. In this casc the covariance of errors e, and ¢ is equal
to the variance of error e, occuring simultaneously in both the total errors.

Let us first consider the spatial correlation of errors. This kind of errors
correlation is seldom met in so far as directly measured quantities are considered. The
spatial correlation is caused by the fact that individual measuring systems are not
independent. For example, when measuring temperature with the aid of
thermocouples, their reference ends are usually kept in a single thermostat. When the
iemperature in the termostat is not stabilized adequately, an elementary error thus
caused manifests itself in all the measured temperatures simultaneously. Similarly,
spatially correlated errors may result from fluctuations in the pressure of the air in the
pneumatic measurement and control system. In chemical analyses correlated errors
may be caused by taking a sample whose composition does not correspond to that of
the respective main stream. For example, when in a gas sample some of its
constituents condense in the sampling line, the determined concentrations of all the
remaining components will be higher than the actual values,

Spatial correlation of errors, however, is encountered most frequently when
calculating secondary quantities from quantities directly measured (primary).

Let us assume that the task is to measure the flow rates of substances A and B in
a certain stream of liquid. The flow rate of the liquid phase is measured, a sample is
taken, and in it the concentrations of the substances A and B are determined. The
flow rates of the individual substances are then obtained as products of the flow rate
and the respective concentrations. Although the errors of the primary quantities are
uncorrelated, the errors. of flow rates of the individual substances are already
correlated,

The spatial correlation of errors can be expressed quantitatively with the aid of a
covariance matrix of errors. If we have a vector of / measured quantities X to which
belongs a vector of errors e, the covariance matrix F of an [ x [ type has the
following elements

F;= cov (e;.¢)=E (e €) fori=j (3.15)

F,=D(e)=E (¢} (3.16)

The calculation of covariance matrices of errors, which belongs 10 the topics of
random errors propagation, will be dealt with in detail in Section 3.2.

Now let us give atiention to the time correlation of errors. Each error has its
objective cause and this, in turn, has a certain physical ground. Because of inertia,
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it is assumed that such a cause will persist for a certain period of time. It is,
therefore, only a question of the length of the time interval between two
measurements whether the measurement errors in two successive instants will be
dependent or almost independent. The time correlation of errors is a very frequent
phenomenon, particularly in connection with the ever more extensive use of
automatic measuring systems. It may be a case of measuring instruments errors
‘varying with time, errors that are due to fluctuating process variables, and the like.
The time correlation may be expressed quantitatively by an autocorrelation function
(see Appendix A.3). '

Example 3.1: Autocorelation function of a time series error _
Let us assume that a single quantity x is measured at instants of time f,,
k=1, ..,K, where t, - t,_, = A 1. Thus, a time series of K measured values x," is
obtained and these contain errors ¢, . As for the errors, we assume that they are
random variables with an equal standard deviation 6.2 . To suppress the influence of
random errors on the control of the process, we use so-called filtration of data. We
calculate the quantities '

+ +
2t = ’i_2”—1 i=2,3,..,K 3.17)
whereby a new time series comprising (K - 1) elements is formed. Obviously, it holds
for errors of the z;*

e, +e, '.1' :
= i i .1
€= —5— (3.18)

The covariances of errors of the adjacent quantities z; and z;, then are

(e, +e e re )1 |
covie, .e, )=E et (3.19)

4 ]

After rearrangements and considering that the errors e, are not correlated we obtain

covie e, )=E(’ /4=0'/4

Analogically, we could find that the errors of quantities z, and z,, are not any more
correlated. The autocorrelation function of the time series z;*  defined only for integer
multiples of the time interval A ¢, is shown in Fig.3.1.m
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By way of concluding this part devoted to dependent or correlated errors, we
should remark that this was a case of stochastic dependency, i.e.dependency holding
true among large sets of errors. The individual errors, however, still remained random
and unprediciable. Only very seldom do we find a deterministic dependency of errors
in the sense of dependency of vectors in linear algebra. In such a case, one or more

Fig.3.1 — Autocorrelation function of time
series

errors may be expressed exactly as a function of other errors, An attendant
phenomenon of deterministically dependent error is that their covariance matrix is
singular. This case represents a transition from random to systematic errors.

3.1.3 Systematic errors

Up to now, we have understood errors as random variables. These errors either were
changing quite randomly or were tied with one another stochastically. Under the
concept of systematic error we understand such an error whose value is constant with
time or whose behaviour is deterministic. It can be a case of an error which is due
to an imperfectly adjusted instrument (constant error), error that is linearly time
dependent as a result of instrument’s zero drift, error with periodical variation in
accordance with the daily course of ambient temperature, and the like.

Let us take notice of the relation between systematic and time correlated errors.
It was stated in connection with time correlated errors that it depends exclusively on
the length of the time interval between two measurements and on the dependence of
the error causing factor on time, whether the errors will be time correlated or not.
Reasoning in this way, we may arrive at the case when the error causing factors,
compared with the time of measuring, change but insignificantly. From this point of
view a constant systematic error may be considered the limit case of a time correlated
error. As a matter of fact, the boundary between these two kinds of errors is not
sharp, and frequently it cannot be found at all.
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Similar conclusions also apply to some space correlated errors. For instance in the
above example of space correlated errors of measuring temperatures with the aid of
thermocouples, the total errors of the measurement of individual temperatures were
the random ones since it was assumed that besides the imperfect thermostating some
other elementary factors were important as well. Provided that these other factors
- could be neglected, knowing the error of the measurement of only one temperature,
we would also be able to determine exactly the errors of the remaining temperatures
Then, the resulting error could be considered a systematic one.

Further, it is necessary to point out a random aspect of systematic errors. Let us
consider a set of measuring instruments of the same type, manufactured within:a
certain period. Using these instruments for measuring a certain constant quantity, we
would probably find that the instruments do not give absolutely identical results. The-
set of errors of the individual instruments form a sample space. If we select randomly
(e.g. by a purchase) a single instrument and use it for measuring, we are introducing
a constant systematic error into our measurements. The value of such an error,
however, may be considered a sample from the given sample space. In other cases,
the sample space may be hypothetical - it can be a case of a set of all the admissible
methods of measuring the flow rate with an orifice gauge, where the individual
methods are characterized primarily by the diameters of the pipe and the respective
orifice. Having chosen a certain variant and having this measuring element made, we
have made a random sample from a hypothetical sample space. .

The real value of the constant systematic crror is not known in the above
examples, and it can be considered realization of the random variable. Comprehension
of the relations between random and systematic errors is important in statistical
processing of measured data. As will be shown later, solving of practical problems
requires that the available information on random and systematic errors be respected
in parallel in a consistent way.

Concluding the discussion of the problems of systematic errors, it is necessary to
emphasize their importance in plant measurements. In the literature dealing with the
theory of measurement the problems of systematic errors are often resolved by a note
that systematic errors should be avoided. It is recommended that the instruments be
calibrated carefully, to use standards, and the like. This approach, however, which is
justified in a chemical or physical laboratory, does not solve the problem of
systematic errors of plant measurements. Even if all the possible measures are taken,
systematic errors will affect the final results of a measurement in a decisive way. It
is, therefore, necessary to respect the existence of systematic errors and to employ the
information on these errors in statistical processing of measured data as in the case
of random errors. :
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3.1.4 Gross errors

A gross error is considered to be a sporadic large error that arises out of inattention,
a fault in the measuring instrument, erroneous calculation, unforeseen events, and the
like. Owing to its size it does not fit in the rank of the other errors. Its emergence as
the realization of a random error would be highly unlikely. Unless its cause is
removed in time, it is repeated and a systematic gross error arises.

Whereas random and small systematic errors represent an inseparable constituent
of the measured values and measurements containing these errors are used when
presenting the results, those measurcments, containing a gross error, have to be
eliminated from further processing. Hence, an important aspect of obtaining good
resulis is an analysis of measured data orientated towards tracking down and
eliminating the masurements containing gross errors. These problems will be
discussed in detail in Chapter 4.

3.1.5 Precision and accuracy of measurement

In connection with the occurrence of random and systematic errors, two important
notions appear - precision and accuracy of measurement. Accuracy of a measurement
means agreement between the measured and real (true) values. Precision of a
" measurement expresses agreement among several repeated measurements of the same
single quantity. These two terms differ in that precision, contrary to accuracy, does
not take into account systematic errors of measurement. Precision (expressed e.g. as
the sample standard deviation assessed from repeated measurements) together with
the potential systematic error presents a suitable criterion for the accuracy of
measurement. “

Precision and accuracy are shown diagrammatically in Fig.3.2. Let us assume
that a single quantity x, whose real (accurate) value is %, is measured repeatedly.
When the result of each measurement is represented by plotting a circle to the
respective value on the x-axis, we may obtain the following characteristic cases.

In Fig.3.2a the measurement is well reproducible and the average value x is
close 10 the real value (sometimes a precise and accurate measurement is referred to
as reliable measurement). In Fig.3.2b again the measurement is well reproducible; the
obtained values, however, deviate systematically from the real one. Hence, the
measurement 15 precise but not accurate (the average value is not accurate). Shown
in Fig.3.2¢ is a case where the measurement is poorly reproducible, but the average
value obtained from a large number of measurements is close to the real value. In
such a case we speak about a non-precise measurement with an accurate mean (for
a large enough number of repeated measurements). The last and least desirable
variant is a non-precise and inaccurate measurement which is badly reproducible and
deviates systematically from the real value. It is obvious, however, that with this
given classification the boundary is rather a matter of opinion.
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Fig.3.2 — Precision and accuracy of measurement
a) precise and accurate; b) precise and inaccurate;
¢) imprecise with good average; d) imprecise and inaccurate

Comprehension of the problems of measurement precision and accuracy is
imporiant in the planning of experiments. Of course, a precise and accurate
measurement would be the best one but to achieve this may sometimes be difficult,
In some cases we can content ourselves with a measurement that is precise but less
accurate (e.g. when only comparing the values as obtained under various process
conditions - then a constant sysiematic error need not be important). In other cases
we require the measurement to be accurate, and a lower degree of precision of the
measuring method used may be set off by calculating the mean from a larger number
of repeated measurements.

3.2 PROPAGATION OF ERRORS

When evaluating the results of measurements, in most cases we do not confine

ourseleves to the directly measured (primary) quantities and their errors. We are

asking, what will be the effect of the primary quantitics errors upon those quantities
which are calculated from the primary quantities (so-called secondary quantities)?
Next we are going to concern ourselves with three types of problems:

- what will be the errors of the secondary quantities if we know the values of the
primary quantities errors?

- what will be the maximum errors of the secondary quantities if we know the

- maximum errors of the primary quantities?

- what probability characteristics (mean values, variances, distribution laws) will the
secondary quantities possess assuming that the probability laws of the primary
quantties errors are known {problems of random errors propagation)?

We shall assume that a secondary quantity z is a function of the vector of primary

quantities X = (x; , ... , x; )T
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z=f2 (3.21)

The equation holds generally and can be written both for the measured values
(designated by +) and real (true) values (designated by ~):

' =f(x) (3.22)
Z=f(X) (3.23)

The Equations (3.22) and (3.23) define the real value of a secondary quantity Z and
the "measured” value z*. Then the secondary quantity error is defined

e,=2"-Z=f(x)-f(X) (3.24)

3.2.1 Real value of the error of measured quantities function

Let us assume first that the function (3.21) is linear with respect to the primary
quantities:
I

zZ= CG + ;1 Ci I,- (3.25)

where ¢; are known constants.
Substituting (3.25) into (3.24), respecting at the same time, the definition relation
for an error (3.1), we obtain the following relation for the secondary quantity error:

e,= Lo, (3.26)

1t is worth mentioning that in (3.26) no true values (usually not known to us)
occur.

In the case of the relation (3.21) being nonlinear, various algebraic rearrangements
are adopted to express the error of a secondary quantity.

Example 3.2: Error in the determination of mass from measured volume and density
Let us consider a calculation of the mass m of a liquid from the measured volurne V
and density p acording to -

m=Vp (3.27)
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According to (3.24) it holds
e=Vp -Vp=FV+e)(P+e)-Vp

and after rearrangement
e.=Ve, +pey+e, e = . (3.28)
In the case of more complex nonlinear functions we are using approximate

methods based on the linearization of the function by the Taylor expansion,
rieglecting the second and higher order terms. It holds approximately -

i
PR LA (3.29)
i=l axi '

the derivatives being evaluated at the point X = X. The error e, is then approximately
equal to

1
Eaf(x)

e, =
i=1 d x;

z

e, (3.30)

i

thus to the total differential of the function where the differentials have been replaced
by the values of errors.

Example 3.3: Approximate error in the determination of mass from measured volume
and density _ f

Let us revert to Example 3.2. The error in the determination of mass is found by

linearization of Eqn.(3.27):

em = ey+

dm om -
_— = and ----—-—-—=V
ap P P

en=pey+Ve, _ (3.31)

The relation (3.31) differs from the exactly valid (3.28) in the term e, ¢, . E.g.
for the values p = 1000 kg m'* , V = 1000 m® and for positive errors of 5% of the



78 Errors of measurement {Ch. 3

real values (ie.e, = 50 kg m' > , ¢, = 50 m® ), the real value of the error
e, = 102 500 kg. The approximate value from (3.31) is 100 000 kg. Hence the errors
calculated according to the two methods differ by 2 500 kg which is roughly 2.5%
of the accurate value of the error. Considering the total mass at 10° kg, however, such
a difference will be negligible in most cases. =

3.2.2 Maximum error of the measured quantities functions

Another type of problem arises if we know the maximum errors e7* of a direct mea-
surement and are interested in what maximum errors may occur in the secondary
quantity.

Let the maximum errors €7, be defined so that the measured values x;" lie within
the intervals

&-e7 5 L+ el)

where x; are the real (accurate) values. We are considering again a secondary quantity
defined by (3.21). The maximum possible error of the quantity z is given by the
following relation

e = max 1f (0 -f (%) | 63

X e$S

The region S is the set of all the values that can be taken by the vector X. In our
case, to S belong all the vectors X whose coordinates satisfy

% - e’,’:"‘ <x <X + e‘;"‘:‘ (3.33)
In a general case, finding the maximum possible error of a secondary quantity means
to find the extreme of a function of more variables within a bounded region.

In some cases, however, the solution is simple. For example when a function
z = f(X) is lincar in the form of (3.25), then it holds for the maximum error of a
quantity z

= Lligl & (3.34)

The relation (3.34) differs from the similar one (3.26) only in that the coefficients of
the linear function for maximum errors are present in absolute value.

With a nonlinear function an approximate solution can be obtained analogically
to the preceding subsection by linearization of the function by the Taylor expansion,
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Thus obtained approximate solution is an analogy to (3.30) from which it differs by
absolute values of the derivatives:

&= % | I &= | (3.35)

Maximum possible errors are calculated in those cases where it is necessary to
make sure that the secondary quantity error will not be outside a certain region
determined beforehand (e.g. for safety reasons).

The calculation of maximum errors, however, is not convement for routine
measurements since the random character (and hence the possibility of their mutual
cancelling) is not considered and the results obtained are rather pessimistic. In the
cases of a greater number of primary quantities the probability that the maximum
error of a secondary quantity will occur is small. From the apprehension of errors as
realizations of random variables follows another type of tasks concerning. the
propagation of errors.

3.2.3 Propagation of random errors

‘From a practical point of view, the most important is the solution of the problem of
how the random errors of directly measured quantities are transformed in the course
of computations. In most cases, the actual values of random errors are not known,
therefore, the probability properties of a result (mean value, variance, distribution) are
determined provided that the probability properties of errors of the directly measured
quantities are known. Frequently we confine ourselves to estimating the variance of
a result or to some other measure of its precision. Based on thus obtained
information, we try to construct such intervals that will cover, with a chosen
probability, the real (unknown) values of results.

Mean value of the function of random variables

The mean value of the_functioh of a vector of random variables X is defined by
oo +oo
m=Erel =[] T poo ax ... ax (3.36)

where p (X) is the I-dimensional probability density of the vector X. When fX)is
linear [Egn.(3.25)], it can be derived from the definition equation (3.36) that the mean
value of the function will be obtained by substituting into the function for x; the mean
values
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p,=c0+2c,-E(xi)=co+Ec,-u,i (3.37)

In such a case, the mean value of a secondary quantity is equal to its real value. It
is important that the relation (3.37) holds true irrespective of the probability
distribution of the primary variables.

It holds, that the mean value of a constant is equal to the constant and that the
mean value of the product of the constant and a primary quantity is equal to the
product of the constant and the mean value of the primary quantity,

When the function f (X) is not linear, it is necessary to start from the definition
equation (3.36). As opposed to the preceding case, we cannnot assurne that the mean
value of a secondary quantity may be obtained by substituting the mean values of the
primary quantities into the function. This holds only in the case of linear functions,
with nonlinear functions the mean value need not be equal to the real value.

Example 3.4: Mean value of the equilibrium constans
Let us consider a calculation of the equilibrium constant K from the value of standard
free energy A G° at temperature 7" '

AG°)

T (3.38)

K =exp (—

Let us assume further that the sole source of error is A G° having a normal
distribution with the mean value i; and variance O’ . The task is to calculate the
mean value of K, '

In the case of an exponential function, it is comparatively easy to calculate the
exact mean value of the quantity K by integrating (3.36) (Park & Himmelblau 1980).
If we substitute into (3.36) for K from (3.38) and the probability density of normat
distribution, we obiain '

~ Q o pd
“K=jj°xP(' ﬁ ) (2;)“200 ‘”‘p[' Aiﬂ;v Hdm(’m)

After integration we obtain the exact expression for the mean value of K

oo L
ux—exp[ RT + > RT 3.39)

It is worth noting that p, depends on the variance o2 .
When substituting into (3.38) only the mean value, we obtain a different relation
that holds only approximately: '
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Lo

we=es (- o7

Thus'caused inaccuracy may be expressed by the ratio $ = p, '/ )t . In the following
particular case of SO, oxidation

SO, () +1/20,(g) =S80, (g
it holds for the temperature dependence of A G° within the range 500 - 1200 K

A G°=-23279.6 + 10.50 T - 0.002 302 T* + 28000 T + 4.659 T log (1)

Fig.3.3 — Ratio S as a function of
temperature (Example 3.4)

— TIK

Fig.3.3 demonstrates the dependence of the ratio § on temperature, the parameter
being the relative standard deviation y; = 65/ A G° . As may be seen, the error, we
would commit by simply substituting the mean value into the function, would be
considerable at low temperatures when v is greater than 5% .=

In some cases, it may be possible to arrange the function to a form enabling the
mean value 1o be found without an (often rather difficult) integration of (3.36).

Example 3.5: Mean value of the number of moles
The amount of a given substance (in moles) » is calculated as the product of the total
volume V and molar concentration of that substance ¢:

=V ' (3.40)

The task is to find the mean value of the number of moles of a substance on the
assumption that V and c are realizations of uncorrelated random variables with zero
mean value.
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Substituting into (3.40) the real values and errors of measurement
—(V+ev)(c+e )
we can, after a rearrangement, ﬁnd directly the mean value of the number of moles
Eu)=p,=E@e+ Ve +tey+eye, )=V (3.41)

We have made use of the fact that errors ¢, and e, have zero mean value and are
uncorrelated, so that the mean value of the latter three terms in the parentheses in
(3.41) is null. The mean value of the secondary quantity in this case equals the
product of the primary quantities,m

Variance of the function of random variables

Further, let us concentrate upon the variance of the function of random variables
z = f (X) which is defined by the integral

D[f(x)]=c£=ff°°...[f: FOO-112p (0 dr, ... dx, (3.42)

where p () is I-dimensional probability density function of the vector X, and j, is
the mean value of the function defined by Eqn.(3.36).

Provided that f (X} is linear [Eqn. (3 25)], it is possible to prove from the definition
‘equation (3.42) that the variance ¢, is given by

o, —E Ecco (3.43)
=l p=1 ’

where o;; = cov(x; , x; ). Obviously o;, = o/ are the variances of variables x; . Using
the correlauon coefﬁcxents p;; » the relation (3.43) may also be expressed as

1 H . .
= E E C; CJ' O; 0; pt'j (3.44)

L=l jel

where o, are the standard deviations of x;
If the primary quantities errors are uncorrelated the relation (3.43) is simplified

i
=% c?o? (3.45)
=1 '

With a nonlinear function, as in the case of the mean values, the problem becomes



Sec. 3.2] Propagation of errors 83

considerably more complex. In principle, there are three possible solutions at hand:
- integration of the definition equation (3.42),

- rearrangement of the function to a more suitable form,

- linearization of the function by Taylor expansion (approximate solution).

Example 3.6: Calculation of the variance of the equilibrium constant by integration
of definition equation

This is a case of the calculation of the equilibrium constant as defined in Example

3.4. There is only one quantity containing an error, and the definition equation (3. 42)

has the folowing form:

Difel=0’=] F®-wuFp® (3.46)

Substituting K from (3.38) for f (x) and the probability density of normal distribution
for p (x) we obtain (Park & Himmelblau 1980)

Jm[exp(-———- )] ﬁ;@ exp[-(:—a—“f)]d(am)

(3.47)
After integration

oieo- 3 o ] oo 2

In this case the variance of the secondary quantity (K) depends on the mean value of
the primary quantity (G°) - compare with (3.43).m

In certain cases, the function can be rearranged to a convenient form enabling the
variance to be found without a direct integration.

Example 3.7: Determination of the variance of rearranged function

The number of moles of a given substance is calculated as the product of the total
volume V of a mixture and concentration of the substance ¢ (see Example 3.5). The
variance is then defined by

DY =E(cV'-n, )
Substituﬁng from (3.41) for y, we obtain successively

DU =E{[(V+e,)(E+e)-VEP})=E[(Ve+Cey+epe)?]
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The exponentiation gives nine terms; the determination of their mean values will be
shown for four typical cases:

E(@e2)=VE(e®)=V'c> - (mean value of product of the
3 ) function and constant)

E(Vte,e )=VE E (eye )=0 (since e, and e, are uncorrelated)

E(Vele,)=VE@E*)E(e)=0 (since E (ey ) =0 )

E(e,>e?)=E(e*)E () =00}

The possibility of a simplification into a product of two terms in the latter two cases
follows from the definition equation (3.36) and from assumptions of uncorrelability
of e, and e, and of normal distribution of errors.

The final relation then becomes

6:=V¢c?+*cl+020} =

The methods presented hitherto are feasible only with simple functions. For
general nonlinear functions, a method of linearization of the function by Taylor
expansion is used [see (3.29)]. The problem is thus reduced to finding the variance
of a linear function of random variables. The variance is then given approximately
by the relations (3.43) or (3.44), where the coefficients are equal to partial derivatives
of the function with respect to the individual primary quantities

o] 22

J x; x=#

Example 3.8: Calculation of the equilibrium constant variance by linearization
The equilibrium constant (see Example 3.6) as defined by (3.38) is linearized at the
point A G° = l; to give

- .
K=K°'[F “I’('Tﬁ“)] ¢

where K, = exp[-lL; / (RT)] and ¢; is the error of the quantity A G° .
It is then a case of a linear function of a single primary quantity, and according
to (3.45) its variance is :

2

(G’x)’=[ 1(:'; exp(- —R“;—)] - (3.49)
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Now we can compare the accuracy of the approximate relation (3.49) with that of the
exact relation (3.48). We shall write the ratio of standard deviations as calculated
according to both relations

H =0,/ 0 : _ (3.50)

In Fig.3.4, this ratio is plotted for the SO, oxidation (see Example 3.4), tcmperature
being the independent variable, for different values of standard deviation of A G° .
Tt may be seen that if the standard deviation is larger than 5% of A G° the error due
1o linearization must not be neglected.w '

1200 Fig.3.4 — Ratio H as a function of
temperature (Example 3.8)

Example 3.9: Propagation of errors in flow rate measurement
Let’s consider the measurement of a flow rate F with the aid of an orifice gauge in
accordance with

(3.51)

Here the following quantitics contain errors:

k - orifice gauge constant

A p - pressure difference on the orifice

Po - pressure at the orifices inlet

T - thermodynamic temperature (K).

Errors of the quantities k, A p, p, and T are understood to be realizations of
independent random variables with zero mean values and known standard deviations.
The relative standard deviations of the primary quantities are, successively,



86 Errors of measurement [Ch. 3

% =0005 vy,,=001 %, = 001 v =0.005
The task is to find the relative standard deviation of the flow rate F.

The relation (3.51) is linearized to. the form of (3.25). The coefficients ¢, are
obtained by differentating the relation (3.51) with respect to the individual variables

C1_= C1=Aﬁmﬁ0wf-m=ﬁlz
&=Cap=kB? T AP 12=F[(2Ap)
c3=c, =k APPT ™ p; 12 =F [(2py)

C4=CT:_~'zAﬁmﬁomfan/2=’ﬁ/(2T)

Substituting the coefficients ¢, into (3.45) vields

) F* o Fo,} Fo, . Faf
GF = = + + —
K 44p* 4p? 4T

Considering that 6, / k¥ = ¥, and, analogically, with the other primary variables, we
obtain the final expression for the relative standard deviation of F:

2 2 12

Ya'p + ,szo + ¥r )
4 4 4

Tr = (th"‘

Substituting the respective numerical values gives

0.01? 0.01° 0.005>
+ +
4 4 4

Y = ( 0.005% + ) = 0.0090

Hence the relative standard deviation of the flow rate measurement is 0.0090,
i.e. 0,9% of the real value.m

Thanks to its simplicity and universality, the method of calculating the variance
of function of measured quantities by linearization is applied fairly often. The
relations for calculating the variance or standard deviation of the most frequent
functions are summarized in Table 3.1.
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Table 3.1 — Standard deviations of some functions
(for noncorrelated errors)

Function z Standard deviation o, Relative standard
deviation ¥,

n o
Tz, [Zo ] :
i i J
cx ¢ G, | Y

»

Yox [E ¢l ol ] %
i i z
cx™ =mcx™ o, = my,

2 1”2
cx™ L x =z [ Y mlo? x;z] = [E m? ]
c exp (k x) = k c exp (k x) O, =k O,

0 2 he 03
FGy s X)) z{):[ﬂ] oi,.} :
_ : ox, z

Systems of functions of measured guantities

In real problems we cannot manage with a single function of measured quantities. In
the case of a greater number of functions, in addition to the characteristics already
mentioned - mean values and variances - covariances among the individual functions
are also to be added. _ '

Let us assume that we have a vector of I directly measured quantities X from
which the requisite results have to be calculated - a vector of R secondary quantities

Z=(2;,..,2%)
Z=1(X _ (3.52)

The relation (3.52) may represent e.g. an explicit solution of a set of equations
with respect to Z, a numerical solution in the case of a system unsolvable explicitly
or reconciliation when there are redundant measurements (see Chapter 4).

First let us consider a case in which the individual equations have a linear form:
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2, =Co+Cyx + ...+ Cy, x
: (3.53)
Zp=Cor+Cpx + ..+ Ci, x5 ‘

which may be rewritten in the matrix form
Z2=¢,+ Cx

If the primary quantities X have a known covariance matrix F, , then it holds that the
covariance matrix of the secondary quantities vector F, is given by

F,=CF,CT (3.54)

from which one can derive the individual elements of F, {i.e. for the individual pairs
of quantities z; , z; ).

Frequently, we deal with nonlinear functions. In such a case, it is common to
linearize the function by the Taylor expansion. The covariance matrix F, is then
given approximately by the relation (3.54), where the elements of C are given by

2

Now let us present a practical example of the calculation of a covariance matrix. In
so doing, the resulis of linearization will be compared with the exact values obtained
from rearranged functional relations.

(3.55)

x=x

Example 3.10: Covariance in calculation of bilinear forms

In material balancing we often find that the balanced quantities (flows of individual
components) are computed as products of the measured flow rates and concentrations.
In a more general case, some quantities may be defined as bilinear forms of directly
measured quantities. For example, the rate of formation if ith substance in a chemical
reactor n, is defined at a steady state as

K

=X V,q, (3.56)

k=1

where V, is the flow rate of the kth stream connected with the reactor (positive in the
case of an outlet stream and negative for an inlet stream), ¢, ; is the concentration of
ith substance in kth stream.

For simpljcity, let us confine ourselves to a case of two substances and a single
stream:
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nl = VCI "-2 = VCz : (3-57)

The primary quantities will be arranged in a vector X = (V , ¢, , ¢, )" and the
secondary quantities will be arranged in a vecior Z = (n; , n, ). The partial
derivatives are

dn, on on
v =9 3 TV 5e, O
dn, _ In, dn,
2 o

Hence the linearized form of (3.57) is
no=n +c ¢r3,,+f'fec1
m=m+te+Ve,

Obviously the matrix C appearing in (3.54) is

c-[250)

c, 0V

The measurement errors are uncorrelated and the covariance matrix F, is diagonal
with variances on the diagonal

[ &> 0 O
F = { 0 o> 0 J
0 0 ol
2
On substituting into (3.54) we obtain a covariance matrix of n, and », :
t2 ol +V? o . b5/
F = -
¢, & 0 , &tot+V? crc’i

If we follow the exact procedure as described in Example 3.7, we obtain a covariance
matrix '

2

GREUEE R G AR X AN S '
F = .
& T, Oy , &Pof+VE cj; +0,” sz
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Both the covariance matrices differ only in the variances; the exact method yields
variances that are higher by the term 6,2 6.2 . A computation with concrete values
shows that for the standard deviations smaller than 5% of the respective true values,
the difference between the two methods is negligible.

For completeness, the covariance matrix of the vector N as defined by (3.56) is
presented as well:

72 o2, =2 2 2 2
F;;= §(Vk Uck""cuo'vk"'o'v Uct_ )

-, - 2 . .
= ?V’“‘CUG‘Q fori#] L
Analysis of random errors. propagation - matrices of shares

Now let us confine ourselves to a frequent case where the errors of directly
measured quantmes are uncoirelated. The covariance matrix F, is then diagonal with
vanances o/ on the diagonal. The variances for the individual secondary quantities
z, (r =1 ,.., R) can be expressed by a set of relations

6l=CHol+..+CL6 + .. + C ) 07 (3.58)

“for r =1, ..., R that follows from (3.45) and (3.53). This system of equations
informs us of how the precision (variances) of the individual measured quantities
influences the variance of secondary quantities. It can be seen here how a decrease
or increase in the variance of a particular directly measured quantity manifests itself
in the variance of secondary quantities.

Obviously, the described method of analysis of random errors propagation is of
significance in optimization of a process of measuring. It is advantageous, however,
if for these purposes the system (3.58) is further modified. After dividing each

2

equation of (3.58) by the variance ¢, and mukiplying by 100, we obtain for rth
secondary quantity the folowing equation:

100 = 100 C?, 0,%/ o,f +..+100 C? 6./ 02"" (3.59)

in which the individual terms on the right hand side represent the percent share of the
individual directly measured quantities in the rth secondary quantity variance. The
terms on the right hand side of (3.59) form a matrix H of the dimension [R x ] wnh
elements

H,;=100C>c?/62=100C% 6}/ X C* o} - (3.60)
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H is called the sharesmatrix since its elements H, ; represent the share of the ith
measured quantity i the rth secondary quantity variance.

The elements of a share matrix H can be interpreted in the following way: If the
variance of ith measured quantity changes (decreases or increases) by p% of its
original value, then the variance of the rth secondary quantity changes (decreases or
increases) by '

p H,;/100 % (3.61)

of its original value. In a special case, if the ith quantity is measured '_wir_hout any:
error (with zero variance, which means a decrease by 100%), the variance of the rth
secondary quantity will drop by H,; %. From this consideration also folows the
physical meaning of the elements of matrix H. .

Altogether, it is possible to summarize that a share matrix informs us about
measured quantities representing a bottleneck as far as the accuracy is concemed.
When improving the precision of direct measurements, it 1S necessary to concentrate
our attention upon those measured quantities which correspond to large values in the
respective columns of the share matrix.

Example 3.11: Calculation of the matrix of shares
Let a system of equations (3.53) have the form

7, = 2x, + 3x,
2, = 3x, - 5x,

and the vector of variances of tt.e directly measured quantities be 6° = (2,2,5)". Then
the secondary quantities variances are

G,zl = 40,2 + 9¢,°

ol = 90,2 + 250,

2

Now the matrix of shares H can be calculated from (3.60):

151 0 84.9
H =
0 126 874

It is obvious that the bottleneck of the precision of the whole measurement lies in the
quantity x, (the elements of the third column of the matrix H having the highest
values). If its variance could be reduced e.g. to a half, i.e. by 50%, the variance of
quantity z, would decrease by
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50 x87.4 /100 =43.7%

i.e. from the value 143 t0 80.5 .m

3.2.4 Intervals and regions of confidence

Until now, we have dealt with the calculations of basic characteristics of functions
of directly measured quantities (mean values, variances or, as the case may be,
covariances). Information of this kind may be presented in the form of confidence
intervals (for a single secondary quantity) or multidimensional confidence regions (for
a vector of secondary quantities). The confidence regions cover - at a specified
probability level given beforehand - the values that may be taken by the secondary
quantities. For constructing the confidence regions, knowledge of the secondary
quantities probability distributions is essential.

As regards the manner of how the distributions of primary (dlrectiy measured)
quantities are transformed in the course of calculating, it is possible to say briefly:
if a function of primary quantities is linear and the primary quantities are realizations
of random variables with a normal distribution, then the secondary quantitics will also
have a normal distribution. This fact is of fundamental importance in constructing the
confidence regions.

With nonlinear functions, a deformation of the distribution takes place in general,
and in most cases, it is rather difficult 1o find the law of distribution (an exception
being e.g. a logarithmic function transforming normal distribution into the well
known logarithmic normal distribution). Fortunately, errors usually are small, and
~ quite a number of functions may be viewed as approximately linear within this

. limited region.

In the case where the primary quantities distribution is not normal, the situation
is even more complicated. In most cases, the exact determination of the distribution
of a function of primary quantities with non-normal distribution is beyond
~ consideration. In such cases the approximate form of distribution may be assessed by
~ the Monte Carlo method so, that the whole process of measurement and calculation
of the secondary quantity is repeatedly simulated on a computer. Thus obtained
results are then presented in the form of a histogram simulating the true dlsmbunon
of the secondary quantity.

Tt will be assumed further that the primary quantities X have a normal distribution
N, (u, ,F, ) with a known covariance matrix F, , and that the vector of secondary
quantities Z is linear with respect to the primary quantities, i.e. it is in the form of
(3.53). Hence the mean values of both X and Z are equal to the actual (true) values.
The vector Z has a normal distribution N (i, ,F, ), where F, is given by (3.54).

Let us consider first one secondary quantity z with a mean value y, . On the
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assumption that the standard deviation ¢, is known (calculated), the errors of z will,
with a probability of (1-a), lie within the interval

<' Gz ul-aIZ s Gz ul—ulz ) (363)

where u, _,,, is 100(1 - &/ 2) percent quantile of the N(0,1) distribution. This
information can be interpreted in two ways.

When we know the mean value |, we may affirm that the measured value of a
secondary quantity z* will, with a probability (1 - &), be present in the interval

(H-;-O',ul.u,rz 2H=+G=u1.u;z) ' (364)

If the mean value is not known, but on the other hand the value of z* has been
obtained by measuring, then the interval -

(Z"- O, U qs2 3 2+ O, Uy.qs2) (3.65) -

covers, with a probability (1 - ¢, the (unknown) value of the secondary quantity. In
technical practice the value (1 - o) - coefficient of confidence - is taken mostly from
the interval (0.95 ; 0.995).

In the first case we were solving a classical problem of the theory of errors
propagation. In the second one we used the measured value z° to estimate the
respective true value and the interval (3.65) for specifying the region within which
the unknown true value with a chosen probability cccurs.

The above mentioned confidence intervals may be written not only for a single
quantity z but also for the individual elements of a vector z. It is necessary 10 be
aware of the fact that while the interval (3.63) covers, with a probability (1 - @), the
value of z, error, the same assertion relating to all the errors of the vector Z elements
simultaneously does not generally hold true. If we want to find a region S in which
the vector of errors @ lies with a probability (1 - @), it is necessary 1o proceed in a
different way.

Let us consider a vector of R secondary quantities Z whose errors @ have an

N, (0, F,) distribution and the covariance matrix F, is regular. Now we are searchig
for a region for which it holds that the probability of @ being there is equal to P. It
was shown in the Appendix A.3 [Eqn.(A.43)] that such a region lies within the ellipse
(ellipsoid) whose equation is

" F,' e = const = x2 (R) | ' (3.66)
where P = 1 - & and %2 (R) is the 100P-guantile of the ¥ distribution with R degrees

of freedom. It is the so called ellipse of errors having its centre in the origin of
coordinates. In the case of uncorrelated errors, the cllipse axes are parallel to the
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coordinate system. With correlated errors the cllipses axes contain non-zero angle
with the coordinate axes.

Analogically with the intervals of errors (3.63) the ellipses of errors can also be
interpreted in two ways. When the ellipse centre is situated in the point "F'we obtain
a region within which the measured vectors z* lie with a probability (1 - ). If the
ellipse centre is situated in the point Z*, we have a region that covers the true value
of the vector Z with a probability (1 - a).

Besides, let us note that when constructing the confidence regions, we assumed
regularity of the covariance matrix of secondary quantities. If, however, this is not
the case, the described method of finding a confidence region cannot be applied. In
such a case, the errors lie within a subspace of a lower dimension than is the number
of secondary quantities (e.g. with two quantities the errors lie on a straight line,
i.e. they are bound by a linear relation). This problem, however, is beyond the scope
of this book, and therefore it will not be discussed. We shall state only that even in
this case the above method can be used for finding the confidence region for a
selected subset of secondary quantities with a regular covariance matrix.

Example 3.12: Confidence region of mass balance residuals

Let us consider the steady state mass balance of two nodes incident with three
streams (Fig.3.5). The values of x, , x, and x, pertaining to streams 1, 2 and 3 resp.
arc measured. The following relations hold for the true values

- iz = 0
) (3.67)
5h-%=0
The balance equations residuals z are defined by
zt=xt - xt
Lo (3.68)

2+ =x2+ - x3+

1 2 3
: . . Fig.3.5 — Balance scheme (Example 3.12)

Let us assume that errors of flowmeters are realizations of random uncorrelated
variables with a vector of standard deviations o, = (1,2,1)". The task is to find a
region inside which will lie 95% of all the vectors of the residuals. It follows from
(3.67) and (3.68) that mean values of residuals are null. The covariance matrix of
residuals may be calculated from (3.54). The matrix C is
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) Y | 0
C =
0 1 -1
and the covariance matrix F, is diagonal with squares of the standard deviations lying
on the diagonal. Substituting into (3.54) yields

s 4 _1_1[54]
F“[Jf 5] F"T 4 5

According to (3.66) the equation of the confidence elipse is

e [ 3% 11 e
5 z1,2;) 4 5 7, =% (2

which may be rewritten for P = 0.95

5z, + 8z, z, + 5z,°
9

= 5.991 (3.69)

After that we are looking for the ellipse described by (3.69). This task, belonging to
the sphere of analytical geometry, is not solved at this point; only the results will be
presented here.

It is an ellipse in the centre of the coordinate system that is rotated through - 45°.
The length of the major and the minor semi-axis is 7.34 and 2.45, resp. The ellipse
is shown in Fig.3.6 together with ellipses for other values of the coefficient of
confidence P. In the case that we find in the measurements residuals lying outside
this ellipse, we ought to question the validity of our basic assumptions. Thus, we are
getling 1o the problem of detection of gross errors of measurement which will be
dealt with in Section 4.5.

n o
& a9
S

o o

Fig.3.6 — Confidence ellipse of residuals
(Example 3.12) '
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3.3 OBTAINING INFORMATION ON MEASUREMENT ERRORS

When solving the hitherto formulated problems one assumed that the probability
properties of the primary quantities errors were known. Gathering information in this
respect, however, is not an easy matter. Besides the rigorous statistical procedures,
it is necessary in many cases to estimate these data on the basis of theoretical
considerations, of analogy with similar cases, and the like.

Next, we shall present a general procedure for ascertaining the probability
properties of primary errors. First, it is necessary to define a set of primary variables,
and decompose their errors into elementary errors having, if possible, a single cause.
Then, it is necessary to find out the probability properties of the elementary errors.
One may take advantage of the fact that elementary errors are mostly space
uncorrelated. At the same time, it is necessary to judge whether this is a case of
random, time coirelated or systematic errors. Once such information has been
ascertained, it is possible, using the methods of errors propagation, 1o find the
probability properties of errors of secondary quantities..

Further, we will deal with the methods for obtaining information on elementary
errors. We shall concentrate upon assessing their variances the knowledge of which
is of utmost importance as far as the propagation of errors is concemed. There are
usually fewer opportunities for ascertaining the law of distribution (in most cases the
normal distribution law is assumed).

3.3.1 Theoretical analysis |

In some cases, good results may be obtained by analyzing the process causing the
errors. As an example may serve errors that are due to digitization or rounding of
continuous signals. On rounding a measured value in such a way that we are losing
‘significant digits, we are committing an error that reaches a maximum value equal
to half of the last valid digit order. The distribution of thus generated errors is
uniform (rectangular). Errors with uniform distribution are also characteristic of
balancing during which accumulation in storage tanks is neglected.

Example 3.13: Error with uniform distribution

.Let us consider an intermediate storage tank with the horizontal section area of 2 m*
from which a liquid is being withdrawn continuously for further processing. The tank
is refilled intermittently by a pump controlled by a two-position controller of liquid
level in the tank. The signal to pump is given when the liquid level in the tank
recedes 10 cm below the maximum value (when this maximum level is reached, the
pumping is stopped). Since there is no level indicator in the tank, when balancing,
we assume that the liquid level is maintained at 5 cm below the maximum value
(Fig.3.7a). Obviously, the maximum error in the determination of the liquid level is
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0.05 m, and the corresponding maximum error in the determination of volume will
be (2 x 0.05) = 0.1 m>. The error 4 has a rectangular distribution whose probability
density function in accordance with Eqn.(A.33) has the following form:

f{d)y=1/02=05 forde <-0.1;0.1>m
fd=0 in other cases

The distribution function of the error is shown in Fig.3.7b. The mean value -of the
error is null, and the variance according to (A.35) o2 = 0.2* / 12 = 0.0033 m°,
corresponding to the standard deviation of 0.058 m’. = -

Fid)

03 0 0’3 Fig.3.7 — Error in the liquid volume d (Example 3.13)
o 3 b a) storage tank; b) error distribution function

3.3.2 Random measurement errors

Let us assume that errors are realizations of random variables with zero mean value
and an unknown variance. On this assumption, the mean value of a measured quantity
is equal to the real (true) value. In the following, the methods for estimating the mean
value of a measured quantity and the variance of its error will be presented. These
methods provide consistent, unbiased and efficient estimates for errors governed by
the normal law of distribution. In principle, they may be applied to errors with other
(particularly symmetrical) distributions as well, but at the cost of a certain decline in
the estimate efficiency. |
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Estimation of the mean value

Let us assume that we have a number of measured values of a quantity
X" =(x*, ..., x,* ). The estimate of the mean value i, is the arithmetic mean ¥:

™M

1
l=%X= — Lx' (3.70)
n i=1

]

The use of the arithmetic mean is advantageous for other than normal, but
symmetrical, distributions as well. With small n, however, it is sensitive to
distribution asymmetry (we say that it is not too robust).

Therefore, it is recommended for small values of n to estimate the mean value
by means of the sample median which represents a value halving the set of
experimental results arranged in accordance with their magnitude. In the case of sets
with an odd number of elements the middle element is taken as the median, whereas
in sets with an even number of elements it is the aritmetic mean of the two middle
values.

Median is independent of the marginal values, so it is not sensitive to the
presence of outlying results (potential gross errors). As compared with a mean, in the
case of normally distributed errors the median is a less efficient estimate, its
efficiency decreasing with increasing n. Hence, it is recommended to compare median
with the mean; if the two values do not differ markedly, the distribution asymmetry
is not too significant and the arithmetic mean may be taken as the estimate of the
mean value. If they do differ considerably, however, the distribution probably is
asymmetrical and median is taken as the estimate of the mean value.

Estimating the standard deviation

An estimate of the standard deviation ¢ is so-called sample standard deviation,
calculated according to

: ]: 2 (xt _z)z }1/2
6=5= | - - (3.71)

n-1

where (n-1) is the number of degrees of freedom. This estimate is consistent and
unbiased. But it i1s only asympiotically efficient, and for a reliable estimate of the
standard deviation at least 15 measurements should be carried out.

But in practice such a large number of parallel measurements are usually not
available. Where chemical analyses are concerned, there are normally at our disposal
analyses of a large number of samples with a small number of parallel determinations
of each single sample. Let us carry out analysis of K samples having similar
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composition and n, parallel analyses of the kth sample. The arithmetic mean of the
values obtained by the kth sample analysis will be denoted as X, . The estimate of
the standard deviation, using all the measured values, is

1 K m - vz
G=s= [-— E(x,;-x,)z} - (3.72)
vV k=1 =1

where v is the number of the degrees of freedom, i.e.
K _
v=2X(n-1) : - (3.73)
k=1
For the frequent case of two parallel analyses Eqn.(3.72) is simplified to
1 K 2
6 = — E sz _ . (3.74)

where R, is so-called span, i.e. the difference between the two determined values of
the kth sample; R, = x,; - x,; . The number of degrees of freedom is equal to X.

Elimination of outliers

When repeating the measurementis of one quantity, one or more measured values may
be considerably smaller or larger than the other values. The statistical procedure
enabling judgement of whether this is a case of a measurement containing a gross
error is referred to as elimination of outliers.

Let us assume that the measured values are arranged according to their
magnitude:

The hypothesis H,, (all the measured values are a sample from normal distribution)
is tested against the H, hypothesis (the measurement with the highest value, i.e. x,’,
is a realization of a random variable with a mean value greater than that of the
remaining quantities). )

In the most frequent case, when the standard deviation is not known, a test
criterion z (Grubbs 1950) is calculated: )

2= n_ (3.75)
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where X is the arithmetic mean computed from all the values and s’ is an estimate
of the standard deviation

n + 2 172
5 = [z G- %) } | (3.76)

k=1 n

Table 3.2 — Quantiles (z") of distribution of quantity
z=x'-X)/s ;Plz<z 1=P

P
n .
0.99 0.975 0.95 0.90
3 1.414 1.414 1412 1.406
4 1.723 1.710 1.689 1.645
5 1.955 1.917 1.869 1.791
6 2.130 2.067 1.996 1.894
7 2.265 2.182 2.093 1.974
8 2.374 2.273 2.172 2.041 .
9 2.464 2.349 2.237 2.097
10 _ 2.540 2414 2.294 : 2.146
12 2.663 _ 2519 2387 . 2.229
14 2.759 2.602 2.461 ©2.297
16 2.837 2.670 2.523 2.354
18- 2.903 2.728 2.5717 2404
20 2.959 2.778 2.623 2.447
22 3.008 2.823 2.664 2.486
24 3.051 2.862 2701 2.520

For testing, we use Table 3.2 in which the critical values z* are presented for a
given number of measurements and significance level. In the case z° < z , the value
x," is eliminated as an outlying one.

A similar procedure would be taken with the smallest value x,*, when z is
calculated from
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3.3.3 Errors of chemical analyses

Chemical analyses represent an important part of information obtained in measuring
performance of chemical plants.

The analytical methods may be divided into absolute (mdependem) methods
wherein the result is computed from the measured value and the known weighed
amount of the sample, and comparative (dependent) methods, where a measured
quantity is compared with a standard. With the absolute methods (e.g. with the classic
gravimetric analysis) mostly good precision (reproducibility) is achieved; however,
the methods have to be checked with respect to the occurrence of systemaltic errors.
The dependent methods, among them a number of advanced instrumental methods,
are more prone to the emergence of random errors. One should not forget, moreover,
" the possibility of systematic errors as a result of improperly prepared standards.

A positive feature of analytical methods is that in many cases the method used
can be checked from the standpoint of systematic errors of measurement. That is to
say - by employing a rigorous method (although it may be more tedious) it is
generally possible to find the composition of a sample with an error that is negligible
or to prepare a model sample whose composition is exactly known. An essential
clement for obtaining satisfactory results is the whole range of problems associated
with random errors of measurement. Therefore, in the next part we shall confine
ourselves to the problems of random errors (o the topics of precision of analyses),
and to an evaluation of analyucal methods from the standpoint of the occurrence of
systematic errors.

The space that can be devoted to this important problem is limited and,
therefore, it will not be possible to discuss a number of aspects which deserve
attention. It is possible to recommend to readers the monograph by Doerffel &
Eckschlager (1981), devoted to these problems.

The reliability of an analytical method is characterized by two aspects: the
relation between the mean and real (true) values (question of the accuracy of the
method) and variance (question of precision of the method). The procedure of
assessing an analytical method should be roughly such as shown below.

Let us assume that we have a homogeneous sample whose composition is
accurately known (either a standard or a sample analyzed by a rigorous, standard
method). A number of parallel analyses is carried out with this sample. The data
obtained are used for computing the estimates of the mean value and variance. In the
next step, we use the statistical test for finding out whether the mean value is equal
to the real (accurate) value. If it is not so, the method is subject to a systematic error
and must be improved.

If there is no reason to presume the presence of a mgmﬁcam systematic error,
we shall consider whether the precision of the method as expressed by an estimate
of its variance satisfies our requirement. If the answer is "yes", the method can be
used and we may assume that it is subject only to random errors with approximately
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known variance. In most cases, too, we can take it for granted that the distribution
of errors is normal.

To estimate the mean value and variance, we use the relations presented in the
preceding Section. The variance of an analytical method is ascertained from the
values of parallel analyses as obtained cither during day-by-day regular analyses or
on the basis of a special measurement effected just for this purpose. It is necessary
to ascertain thal the analyses are subject o all errors which actually affect the result.

Random errors connected with sampling and pre-treatment of the sample are
often on a par with the error of the analytical method itself. It is not permissible to
assess the variance taking a single sample, pre-treat it as necessary and carry out a
number of "parallel" determinations with thus prepared homogeneous sample. It is
necessary (o take several samples, pre-treat them separately and then analyze thern.
Hence we obtain an estimate of variance that will be conclusive for us (and will often °
differ markedly from the variance of the analytical method itself).

- Comparing the mean with anticipated value

The accuracy of a method (i.e. absence of a systematic error) is evaluated by
comparing the mean with the value we believe is accurate. In most cases,
a hypothesis H, (i, = X) is tested against the hypothesis H, (L = ¥ + @) where a is a
systematic error. The testing is carried out with the aid of the Swudent ¢-test.

The value of statistic ¢ is calculated

= n ' 3.77)

where X and s are calculated according to (3.70) and (3.71). The statistic ¢ has a
t-distribution with (n-1) degrees of freedom (# is the number of paralle} analyses used
in the estimation of the standard deviation), Further, it is tested whether ¢ originatcs
from the given ¢-distribution. _

We choose the significance level of the test « that is equal to the probability of
a 1st kind error. The value of ¢ is then compared with the (1 - 0/2) percent quantile
of the distribution ¢ with (n-1) degrees of freedom. If it holds

< ¢, _:m (n-1) (3.78)

we reject the alternative hypothesis H, and furthcr assume that no systemetic error
is_present. In the opposite case, the method is most probably subject 10 a systemetic
ITOr.

When testing the significance of the difference between the mean and true
values we have to realize that the test can detect only systematic errors that are big
enough. In statistical tables (Himmelblau 1970) the power of the test curves of the
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t-test are presented indicating the probability of detecting a systematic error as a
function of its magnitude.

Comparing the precision of two methods

Sometimes it is necessary 10 decide which of the analytical methods A and B is more
precise or reproducible. In this case usually a hypothesis of equality of two vanances
[H, (6, = 652)] is lested using the so-called F-test. :

Let us assume that we have the estimates of variances of two analytical methods
computed from parallel analyses according to (3.71). The number of the parallel )
analyses n, and np need not necessarily be identical.

Now let the estimates of the variances be s,” and sz° , and let ‘it hold that
5,2 > 55 Statistics F, i.e. |

F=35.2/55 | @379

is the realization of a random variable with F-distribution with (#, - 1) and (nz - 1)
degrees of freedom. The value of F is compared with the (1-c) percent quantile of
the distribution F (n, - 1, ny - 1). If it holds

F<F,  (,-1,n5-1) (3.80)

the difference in the precision of the two methods is not significant. In the opposite
case we reject the hypothesis of variances equality and consider the method B more
precise than the method A.

3.3.4 Errors of measuring instruments

Similar to errors of analyses, errors of measuring instruments can be divided into
random and systematic. Contrary to the preceding case, however, here the problems
of systematic errors are of key importance which makes the application of the
methods of mathematical statistics difficult.

A fight against systematic errors is essential for mmlmlzmg errors of measuring
instruments. For this purpose we are using calibration, adjustment and correction of
measurement readings. The calibration is an empirical ascertaining of data as read
on the instrument. By measuring a series of standards we obtain a so-called
calibration curve (or table) which is then used for transforming the instruments
readings into accurate values. Adjustment (gauging) of an instrument means its
adjusting in such a way that the data on the scale corresponds with the reality. By
corrections (compensations) we mean such amendments to the instrument readings
that would compensate for not observing the prescribed measurement conditions. In
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spite of all the above provisions, in many important cases we are not able to
eliminate ali systematic errors substantially affecting the accuracy of the measurement
results.

Example 3.14: Correcting the readings of orifice gauges
Measuring of the flow rates of liquids is frequently effected by means of orifices. We
are often confronted with a problem of correcting the readings of a measuring
instrument situated in a control room. In the following, we shall confine ourselves to
correcting the reading of the orifice proper (after making sure that the signal
transmission to the control room is in order).

The mass flow rate through an orifice gauge F is given by the relation
{Benedict 1977)

F=ae %'f- D* (2p A py (381

where o is the overall flow rate coefficient, € - expansion coefficient, D - diameter
of orifice opening (m), A p - pressure difference on the orifice (Pa), p - density
before the orifice (kg m” ),

When deviations from the designed values of temperature, pressure or density
at standard conditions occur, their influence on the values o, ¢ and D may be
neglected in most cases, and these values may be considered constant, Then the
relation (3.81) can be simplified to give

If we are interested primarily in measuring the volume flow rate (when measuring gas
streams), it holds
F k
V, = =— (pAp” (3.83)
Pa Pn

where p, is the density at standard conditions (in practice so-called "normal
conditions”, i.e. £ = 0 °C and p = 101.3 kPa are being used almost exclusively),
V, - volume flow rate at standard conditions (m® s™*).

Let us assume that a measuring system is without any automatic correction. In
the project of the measuring system two quantities are considered - real density on
the orifice p and density under standard conditions P, - Usually both these values are
given in the project documents. A reading of the flow rate V, on the measuring
instrument, being a mere transformation of the pressure difference A P, 18 accurate
only if the true values of p, and p are in agreement with those given in the project
documeniation. When these values are different, however, a correction factor k, must
be introduced:
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U?' .
k=P ] P pros (3.84)

pproj pn

where the subscript proj designaties a value specified in the project documentation.
The correct value of a flow rate V, , is then obtained from

View=k1 Vs : (3.85)

The relation (3.84) represents a general form of correction and it incorporates
corrections for not observing the project values of temperature and pressure and for
changes in density due to changes in compositions. At the same time also an error
caused by an incorrect value of the project density can be corrected (i.e. when a gas
with a certain project value of standard density fails to reach the value of density on
the orifice at the project values of pressure and temperature). If the latter type of error
can be eliminated, for gases the relation (3.84) may be simplified to the less accurate
but more frequent form

: T . 17
k=| Premi P T | (3.86)
Ipn T pproj

Static and dynamic error

With instruments measuring continuously it is important to divide errors into static
and dynamic ones.

When measuring under steady state (static) conditions we assume that there
exists a certain dependence between the measured quantity (x,, ) and the measurement
output value x, . It is e.g. a case of the relationship between the pH value of a
solution and voltage on the measuring electrode or deflection on a voltmeter
measuring that voltage. At the same time, we assume that in the absence of
measuring errors we obtain an exactly valid, correct correlation between the input and
output quantities. We may come close to such a correct dependence if the whole
measurement 15 performed with particular attention (all disturbing effects are
eliminated). By the term static error of measurement, we mean the difference
between a dependence existing under current conditions of measuring and the correct
dependence. The magnitude of the static error depends on the conditions of the
measurement proper as well as on the value of the measured quantity (Fig.3.8).
Hence, a static error is defined as the difference between the measured value and the
respective true value.

A dynamic error is generaled when quantities varying in time are measured. It
originates as the result of the real relationship between the measured and output
quantities depending on the rate at which the measured quantity changes. The
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/ Fig.3.8 — Output of measuring instrument
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dynamic error is defined as the difference between the total and static errors. If the
conditions of a measurement are not specified in greater detail, it is assumed that the
measured value is changing at a constant rate.
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Fig.3.9 — Dynamic errors d
a) system of 1st order; b) system of 2nd order; c) time lag
measured quantity; - - - output of measuring instrument

Fig.3.9 shows some examples of the course of dynamic error. The first example
demonstrates a response o a jump in the measured quantity, while the output quantity
is changing in accordance with the transition curve of the first order systern The
dependence between the input and output can be expressed as

x,=1-exp{-1/7)

where [ is the time and 1 is so-called time constant of the transition process (its
numerical valuc is equal to the time during which the output quantity reads 63% of
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the steady state value). Roughly such is the course of readings of a thermometer
without the thermowell. The delay in the output behind the course of the ambient
temperature is caused by the thermal capacity of the thermometric sensor itself.

When the thermometer is placed in a well filled with a heat-conducting liquid,
the response of the thermometer reading to a temperature jump can be described by
the transition curve of the 2nd order system (Fig.3.9b).

Sometimes we meet with the occurrence of a transport delay which manifests
itself in a way as shown in Fig.3.9¢c (so-called time lag). Transport delay 1s typical
for the function of some automatic analyzers, particularly of process chromatographs.

We shall further concentrate our attention upon the problems of static errors. .

Causes of errors of measuring instruments

Errors of measuring instruments may be caused by a number of factors. Error of the
method is encountered in the case of indirect measurements and it is due to the fact
that not all of the quantities influencing the reading of a measuring instrument are
respected. In most cases these errors are systematic and since we can often calculate
their magnitude, they can be, at least in part, eliminated by a correction (e.g. errors
in weighing due to different buoyancy of air acting upon the weighed object). Those
variables which influence the instrument reading but themselves are not measured by
the instrument are referred to as influencing variables. '

Error of measuring instrument is caused by an imperfection of the measuring
mnstrument (unbalance of mechanical parts, friction, and the like). Certain elementary
errors have a random character and some have a systematic character. The maximum
error of a measuring instrument is guaranteed by the so-called class of accuracy of
the measuring instrument (see below).

Errors caused by interferences are due to the action of various interfering effects
within the measuring circuit. This may be a case of voltage fluctuations in the electric
network, pressure fluctuations in the pneumatic control system, influence of external
magnetic fields, and the like.

Errors of reading are caused by the operator who records the readings of a
measuring instrument. Most often it is a matter of an incorrect reading and
interpolations (particularly with multichannel recorders), errors resulting from not
observing the appointed time of reading on integrating meters, etc.

Errors in standards occur when incorrect standards are used for the calibration
of instruments (e.g. when adjusting gas analyzers by means of a calibration gas
mixturc).

As regards the dependence of an error ¢n the magmtude of the measured’
quantity, the above causes of errors show themselves in various ways. Some typical
dependences of the magnitude of a static error of measurement on the magnitude of
the respective measured quantity are shown in Fig.3.10,
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a) b) cl d) e}

Fig.3.10 — Output of measuring instrument x, as a function of measured quantity x_,
a) nonlinearity; b) low sensitivity; ¢) hysteresis; d) poor reproducibility; €) drift
correct output; - - - real output

Systematic deviations of the measuring instrument reading from the true value
are a typical example of an error of measuring method or of the measuring instrument
error. This may be a case of a moderate nonlinearity of the dependence between the
measured quantity and the measuring instrument reading which for various reasons
has not been respected by the manufacturer.

Error caused by low sensitivity 0f a measuring instrument has the character of
a constant deviation between the true and measured values,

Hysteresis shows itself as an error of different sign depending on whether the
measured quantity is increasing or decreasing. The reason may be e.g. excessive
friction in the measuring instrument mechanism. A trivial but still rather frequent
reason for this type of error can be the loosening of the writing tool of the plotter.

Zero shift (drift) with time usually is an accompanying phenomenon of
measuring with electronic instruments.

Poor reproducibility, i.e. prevailing influence of random errors of measurement.
This kind of error is not typical of measuring instruments. If such a case occurs, the
whole measuring chain has to be checked and the fault identified (defect of a sensor,
etc.).

Assessing the maximum possible error of a measuring instrument

The maximum possible error of a measuring instrument is best assessed from the
class of accuracy of the instrument. Class of accuracy (CA) is defined as the ratio (in
~ percent) of the maximum permissible error of an instrument to its measuring range.
The maximum absolute error of a measuring instrument e, is given by the relation
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X
S .87
T CA (3.87)

where X most frequently is the measuring range of the instrument. In some cases
(presented below) either the measured value or length of the instrument scale is
substituted for X in (3.87). When the instrument scale does not begin with zero
(instruments with suppressed zero), sometimes the scale range, i.e. difference between
the maximum and minimum values on the scale, is substituted for X into (3.87). The
maximum error of a measuring instrument, as calculated from the class of accuracy,
is sometimes called the tolerance of the instrument.

Example 3.15: Maximal error of a measuring instrument

Let us consider a measurement of electric current with an ammeter whose class of
accuracy is 1.5 and the measuring range 10A. The measured value is 8A. The
maximum possible error e, is

10 .
Com = 100 x 1.5 = 0.15A

The maximum relative error of measurement for the value of the measured quantity
at 8A is 0.15 x 100/8 = 1.875%. If we measured the current at 2A, the maximum
relative error now would be 0.15 x 100/2 = 7.5% of the measured value. Hence in
practice we try to select an instrument so that the reading is in the last third of its
measuring range.® '

The class of accuracy represents a guarantee by the manufacturer that the
absolute error of measurement under specified conditions will not exceed the
maximum error as calculated from (3.87) in any instrument and over the whole
measuring range.

The conditions of measuring (so-called reference conditions) are given by the
manufacturer of the instrument in the form of permissible values of influencing
quantities. Among these belong the values (or ranges of values) of ambient
temperature, air pressure and moisture, voltage and frequency in electric wiring,
position (angle of inclination) and, as the case may be, also other values. The
maximum error as expressed by the class of accuracy incorporates both systematic
and random errors. Therefore, the reproducibility of a measuring instrument usually
is better than that corresponding to the given class of accuracy. Unfortunately, in
most cases the share of a sysiematic error on the class of accuracy is not known,
Some producers may give a higher value of the class accuracy deliberately to avoid
possible claims. On the other hand, sometimes the reverse is the case, e.g. with
unique instruments when the user cannot be certain of the guaranteed class of
accuracy.
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An important term is the additional (supplementary) error. In some cases the
manufacturers give the magnitude of additional errors generaled as a result of the
differences between the actual and prescribed conditions of the measurement.
Sometimes corrections are given, corresponding to a certain change in the influencing
variable (e.g. change in the instrument reading due-to a 10 °C rise in ambient
temperature). In such a case a correction of the instrument reading can be done, thus
eliminating the measuring error caused by a change in the influencing variable.
Sometimes only the absolute value of additional error is given without the respective
sign. Such information serves only for increasing the tolerance that follows from the
class of accuracy of the measuring instrument. In some cases both a correction and
increase of the tolerance are put into effect.

The class of accuracy concept is well elaborated in the measuring of electrical
variables, for which also the respective standards have been drawn up. The situation
is less clear, however, in the case of non-electrical variables which is rather common
in process industries. With some instruments the manufacturers give the maximum
relative errors that have the character of maximum errors as calculated from the class
of accuracy according to (3.87). But it is not always clear, whether the maximum
error is related to the instrument range or to the measured value.

Many times we meet with the task of assessing the maximum error of measuring
a flow rate with standard throttle devices (centric orifice, nozzle, Venturi tube). The
question of the maximum error of measurement is solved in the respective standards
‘by employing the tolerance by which the maximum error is understood. The standard
presents, on the one hand, the basic tolerances for flow rate measurements if ali the
conditions as prescribed by the Standard are satisfied and, on the other hand,
additional tolerances for not observing some of the prescribed conditions. Also, a
method for calculating an overall tolerance from partial tolerances is given here.

~ Errors of complex measuring systems (chains of instruments)

So far, we have been concerned with errors of individual instruments which can be
largely delimitated by the class of accuracy of the respective instrument. With the
development of the measuring technique, the instruments are becoming more
* sophisticated, and they are designed as a more or less complex kit built-up from
lower elements and subsystems. Therefore, the manufacturer is not always able to
- give the class of accuracy of the whole measuring system since such a system is most
frequently created by the designer of the measuring and control system. Shown as an
example in Fig.3.11 is the block diagram of a balancing gas flowmeter fitted with
corrections for the deviations of gas temperature, pressure and density [see also the
correction equation (3.86)]. _ '

If we want 10 assess the total error of a more complex measuring system we
may, in principle, start from findings of the errors propagation theory. From the block
diagram of the instrument we lecarn in which way errors are generated in the
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individual elements, how they propagate and how they ultimately manifest themselves
in the result of measurement.

Finally, we face a problem of how to calculate the total error from elementary
errors. In practice we sometimes meet with so-called method of guaranteed
tolerances, giving the total maximum error as a sum of elementary maximum errors.
This method guarantees that the real error will be smaller than the calculated error
even if the tolerances of the individual elements of the measuring system are utilized
(the most pessimistic case). It is obvious, however, that the tolerances of all the
elemenis of the measuring system usually are not fully utilized provided that - the
prescribed conditions of the measurement have been satisfied. Also, errors may occur
with a different sign so that their compensation takes place. For the above reasons,
the method of guaranteed tolerances gives rather pessimistic results.

Q T p Ap
y \ V v
N Fig.3.11 — Block diagram of balance measurement

p - density; T - temperature; p - pressure;
A p pressure drop; V - transmitier;

N D N - multiplicator; D - divider;

I - square rooting and integration

It is more plausible 1o see errors of measuring instruments as realizations of
random variables. It has been known that a number of errors of measuring
instruments fluctuate around zero and have a random character. To these errors
belong e.g. unknown drift, error in the amplifiers gain, and in some cases, error due
to fluctuations of the voltage. Almost non-random are those of errors which exhibit
the property of hysteresis (the sign of the error depends on the direction of the
measured variable change), nonlinearity and dynamic errors. In many cases errors of
this type can be corrected.

For practical purposes, a method for the calculation of the total maximum errors,
presented below, may be recon)fnended With errors having a random character the
total error is calculated using the random errors propagation method (see Section 3.2).
Then absolute values of non-random errors (unless Lhey have been eliminated by a
correction) are added to this total error.

There is one more question 10 be answered: how (0 carry out the calculation of.-
random errors propagation (for which the knowledge of variances is required) when
classes of accuracy (or tolerances) of the individual instruments are known? To be
able 1o ascribe explicitly a variance or standard deviation to a maximum error, the
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knowledge of the law of the measuring instrument errors distribution would be
necessary. Unfortunately, in this respect the information available is rather scanty. For
example, the distribution of the time and temperature drift of an operational amplifier
was investigated (Sula 1971). It was stated that the distribution of the drift was
normal but approximately. Moreover, it is usually not known (o what extent the
manufacturer utilized the permissible range as given by the class of accuracy of the
respective instrument. It is plausible, however, to agree with the author’s
recommendation to take the standard deviation at one third to one half of the
maximum error as calculated from the class of accuracy. This procedure is roughly
satisfactory in the case of errors governed by the normal law of distribution (with the
coefficient of confidence 0.95 - 0.95).

3.3.5 Errors of measurement of fluctuating variables

If a measured variable fluctuates and we try to measure it$ mean value, an error
originating in the fluctuation proper appears in addition to the errors of the measuring
instrument. Such an error is caused by the limited time of measuring (averaging) of
the fluctuating variable. The problem of measuring the mean value of a fluctuating
variable may be regarded as one of assessing the mean value of a stationary random
process (Livshic & Pugatschev 1963, Kharybin 1957), see Sections A.3.6 and 2.4.

Let us assume that a variable z(s) ﬂuCtuating with time is measured for a period
of time ¢ . The estimate of the mean value of variable z, i.c. L, is its mean integral
value m,

+eo

_,lf O d: (3.88
mz-.—tm- z (1) : .88)

-0

'In the case that z(1) is a realization of an ergodic stationary process, the following
relation can be derived (Livshic & Pugatschev 1963) for the variance of the
_quantity m, :

— m

5.2 = :Ii. Jm[ 1- ti ]R’(r)dr (3.89)

where R’(f) is a centered autocorrelation function of a random process (see
Section 2.4). For certain forms of the autocorrelation function Eqn.(3.89) can be
integrated analytically. E.g. for a frequent case of the autocorrelation function as
given by

R'(t) = o® exp(-a. ltl) cos(P ©) (3.90)

we then obtain after substituting R’(f) into (3.89) and integrating, the relaticn
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&‘2 ! {1 - 1—[l-exp (-Atm)}} + i {1 -

1
62 - fl—fm Afm Btm Oy {l-exp ('Btm)]} (391)

Bi,

where A = oo+ Bj ; B = o - Bj (j being the imaginary unit for which it holds j* = -1).

In so doing, we obtain the result as a ratio of the variance ¢,,> and variance of
the fluctuating variable proper 6% If we measure the value of the fluctuating variable
at a certain instant of time, this value is realization of a random variable with
variance 6°, which is the physical meaning of the parameter ¢ in (3.90). The longer
the fluctuating variable is averaged, the smaller the variance of thus obtained estimate -
of the mean value will be. Therefore, the ratio 6,%c” always is smaller than 1.
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Fig.3.12 — The ratio o, 0’ as a function of measurement

interval £, and of parameters o and B

In Fig.3.12 is demonstrated the dependence of the ratio 6,°/c” on the quantity
o, for different values of the ratio of parameters p/c. The following conclusions
may be arrived at from Fig.3.12: the standard deviation ¢, is decreasing while
increasing the time of measuring ¢, and the value of frequency B. For small values
of the ratio £ /o the value of ¢ is equal approximately to the standard deviation of
a random process q. For £, — e the ratio 6_/c tends 10 be zero.

In (Kharybin 1957) an even more general case is being solved, 1.e. when the
autocorrelation function has the form

2

R() = a + E g—i cos(m, ) + ¢ exp(-d 1t1) cos(B ¢) - (3.92)

where a, , ¢ and ®, are parameters of the random process. It is necessary to point out
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that this case is not a purely random process since the autocorrelation function (3.92)
describes a process which represents the superposition of a random and deterministic
polyharmonic process. Hence the given procedure may also be applied to the
measurement of the mean value of a deterministically fluctuating variable. Here the
randomness of the determination of a mean value lies in the fact that we do not know
the phase of harmonic fluctuation in advance.

Example 3.16: Error of the determination of concentration in a mixture with
fluctuating composition

The statistical properties of fluctuations in the flow of ammonia were examined in

Example 2.4. The following autocorrelation function of fluctuation around the mean

value 1298 m® h' was found there:

R’(1) = 7.93% exp(-0.2831) c0s(0.2671) (3.93)

In the next step the stream of ammonia is mixed with air and fed into an oxidation
reactor. The air flow rate virtually does not fluctuate; its value is 9930 m® h*. During
the mixing of the gases, backmixing may be neglected causing direct fluctuations in
the gas mixture composition.

The mixture is analyzed by taking a sample into a flask and by subsequent
chemical analysis. The standard deviation of the determination proper is 0.043 vol.%.
This value was found on the basis of a greater number of parallel determinations of
a prepared gas mixture. It is necessary to specify the time interval of taking a sample
in the flask so that the standard deviation due to fluctuation is less than one half of
the standard deviation of the chemical analysis proper (i.e. 0.0215 vol.%).

Let us denote the volume flow rate of ammonia by subscript 1 and volume flow
rate of air by subscript 2. The volume fraction (almost equal to mole fraction) of
ammonia in the obtained mixture @, is given by

v,

_— 394
V, +.V, (354)

¢ =

where V, are the respective volume flow rates. For the deviation of ¢, from the mean
value the following relation holds approximately

Ag = =t AV, (3.95)

where A V| is the deviation of V, from the mean value. The partial derivative of the
function (3.94) is expressed numerically for the mean value of V, . On substituting
(3.94) into (3.95) we obtain
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v,

Ag = AV,=790x10°AV, (3.96)

Vv, + V)

Fluctuation of the flow rate V, is thus transformed roughly linearly into fluctuation
of the concentration ¢, . As a result, the autocorrelation function of fluctuation in
concentration ¢, differs from the autocorrelation function (3.93) only in the standard
deviation. It holds for the paramecter ¢ in Eqn.(3.90) or (3.93) for the individual
fluctuating variables '

o, =7.90 x 10° 6, =7.90 x 10° x 7.93 = 6.26 x 10”

Thus the centered autocorrelation function of fluctuation of ammonia concentration
is : ‘

R’(1) = 6.26* x 10™® exp(-0.283¢) cos(0.2671) ~ 3.97)

It is a case of the model (3.90) with parameters

o = 6.26 X 10°*
o = 0.283 5!
B = 0.267 s

Now the problem can be solved with the aid of Fig.3.12. According to the problem
statement the value of the standard deviation must be less than 0.0215 vol. % . The
ratio 6,/c is then 2.15 x 10%/6.26 x 10* = 0.343, the ratio f/a = 0.267/0.283 =
0.94. From Fig.3.12 ez, = 7.55 is found, the corresponding value of ¢, being 27s.

In conclusion, it may be stated that if we want the standard deviation of the
error in the determination of the mean value of concentration as caused by fluctuation
1o be less than a half of the standard deviation of the chemical analysis proper, the
gas sampling must take at least 27 seconds.m

Another important problem that may be solved with the aid of the theory of
stationary random processes is assessing the precision of the determination of the
mean value of a fluctuating variable from values as measured in a series of equally
distant instants of time. This task may be formulated as an estimation of the standard
deviation of determination of a time series mean value (Livshic & Pugatschev 1963).

Let us assume that a fluctuating variable z(¢f) is not measured continuously, but
only at instants of time f, , 2!, ,..., nf, , and thus the values z,* , z," ..., z,” are
obtained. Obviously it holds among the interval of sampling ¢, , total time of
measuring ¢, and the number of measured values » that ¢, = nt, . The estimate of the
mean value |, is the arithmetic mean m, :
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h=m= 5 L (3.98)
=l n

Now let us concern ourselves with the variance 62 of the mean value as estimated
in this way. The variance ¢, will depend on the interval of sampling ¢, , total time
of measurning ¢, , the number of measured values » and on the form of the
autocorrelation function of the random process in question. We feel intuitively that
the precision of a mean value estimated on the basis of discrete measurement will be
lower than the mean integral value (3.88) of continuous measurement over the same
period of time £ .

A quantitative relation has been derived (Livshic & Pugatschev 1963) for the
dependence of 6,2 on the values £, and n, and on the centered autocorrelation
function R,’(f):

o, = +
n

R; (0) AN | 2 nl
— LR (K)- — X IR; (k) (3.99)
n k= n k=1

The relation (3.99) is an analogy of (3.89) from which it would be obtained by using
summation instead of integration. The importance of Eqns (3.89) and (3.99) lies in
the possibility in comparing the precision of two aliernative methods for measuring

the mean values of fluctuating variables - mtf:grauon of a continuous signal or
summation of values of discrete readings. For the case of the autocorrelation function

R(r) = o 2exp (-a ) (3.100)
Eqn.(3.99) may be rearranged (o give
1 2 2exp (A)[1 - exp (B)]
On' [ 0" = 7 n [exp (A) - 17 n [exp (A) - 1T (3.101)

where A=ou, and B = o, .

Fig.3.13 shows the dependence of 6, / 6 on a1, , o, being the parameter. For
low values of the parameter o, (high density of sampling), the dependence comes
near to that in Fig.3.12 for B/o = 0. As may be expected, the precision of the mean
value measurement for a constant o is increasing with rising ¢, and decreasing ¢,
(except for the regions with low values of oz, and oz, , where o is limiting to ©).

Obviously the dependences in Fig.3.13 have significance only with natural n.
The condition n > 1 also sets a limit to the range of the dependencies in the diagram.

It 1s instructive to observe the ratio of the precision of measuring by integration
of continuous signal and by averaging of discreie readings (further distinguished by
second indexes s and d, respectively). In Fig.3.14 is demonstrated the dependence of
the 0, /o, ratio on oz, , the parameter being oz, . The dependence was obtained
by combining (3.99) and (3.101). It can be seen here that, in the given region and at
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Fig.3.13 — Dependence of the ratio 0,4 / 6 on the time interval of mesurement £, ,
interval of sampling f, and the parameter o :
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Fig.3.14 — Dependence of the raiio G, / G, on the time interval of mesurement £, ,
interval of sampling ¢, and the parameter o



118 Errors of measurement [Ch. 3

a constant value of «, the two measuring methods differ particularly in dependence
on the value of 1, , whereas the dependence on ¢, is considerably less pronounced.

Example 3.17: Measuring losses of ammonia in waste waters

When seiting up a material balance of a nitrogenous fertilizer plant it is necessary to
measure the mean concentration of ammonia in the stream of waste water leaving the
plant. Ammonia concentration in the waste water is fluctuating considerably; as found
by preliminary measurements, the standard deviation of fluctuation in concentration
was 55 g NH; m?® at the mean value of 130 g m® The fluctuation can be
characterized by the autocorrelation function

R’(t) = 55% exp(-0.0427 11l ) (3.102)
which is the model (3.100) with parameiers |

6 = 55 g NH, m” |

o = 0.0427 h! |

According to the plan of measurement it is assumed that samples of the waste water
will be taken at eight hour intervals and analyzed in a laboratory. It is necessary to
fix the requisite time of measurement, so that the standard deviation of the error as
caused by fluctuation in concentration would not be higher than the standard
deviation of the respective analytical method, which is 10 g m>. Further, it is
necessary to consider, whether it would not be possible to shorten substantially the
time of measurement by more frequent sampling (e.g. to use 4-hour interval) or by
using a continuous automatic analyzer. The problem is solved with the aid of the
diagram 3.13. The required standard deviation of the error in assessing the mean
value as arithmetic mean of discrete readings o 4 is 10 and log(c,,, / 0) = log(10/55)
=-0.740 a. 1, = 0.0427 x 8 = 0.34. Now we can read in Fig.3.13 for the above values
log(a I, ) = 1B from which it follows 1, = 1478 h. Hence we came to a
comparatively long time of measuring over a period of roughly two months.

Besides, it follows from Fig.3.13 that the time of measuring cannot be reduced
by more frequent sampling since e.g. with £, = 4 h « t, becomes (.17 but the
necessary time of measuring £, remains virtally the same (the curves for os, = 0.1
and 1 in Fig.3.13 practically coincide). On the other hand, a less frequent sampling
might be considered, e.g. one in 24 h, as this would not entail a considerably longer
time of measurement.

Fig.3.14 enables us to evaluate also the potential contribution of a continuous
analyzer. For the value oz, = 0.34 we find that 6, / G, is only slightly higher than
1 (the lines for oz, = 0.1 and 1 almost coincide with the line of the equation
Opna / Gy, = 1). Hence, employing a continuous analyzer in this case does not present
any advantage as regards shortening of the time of measuring the mean value of
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concentration. It may be seen that if continuous measuring should be advantageous.
the value of a, would have to be roughly at least five.

In conclusion it may be stated that neither the application of a continuous
analyzer nor shortening of the sampling interval will reduce the length of the time of
measurement that is needed for attaining the required precision. Here the reason is
a low value of the parameter o whose reciprocal value gives a so-called time constant
of the random process - 23.4 hours. The second reason is the relatively stringent
demand on precision which may be considered excessive with a measurement of this

type. The above example is typical of the assessment of mean emissions frorn a
number of chemical plants.m

In this Subsection a systematic approach to the evaluation of precision of
measuring the mean value of fluctuating variables is described. This is a typical
problem encountered in measurements in operating plants.  The methods described
can be applied both in the optimum planning of measuring and for estimating the
precision of measurements already executed. These methods are not t0o complicated,
and with the use of the above diagrams, their application is fairly prompt. The most
tedious part of a solution is acquiring the data on a given process and its processing
(calculation of the variances and autocorrelation function). Further, it has to be
emphasized that in all the methods a stationary character of the respective process
was assumed (see Section 2.4). Also attention was focused only upon errors
originating in the fluctuation of the measured variables. When dealing with real
problems, it is necessary to consider also the other types of errors influencing the
process of measuring (random and systematic errors of the measuring methods
proper) and taking part in the calculation of the overall accuracy.

3.4 RECOMMENDED LITERATURE TO CHAPTER 3

The general theory of random measurement errors is treated in many books on
measurement and applied statistics. The approach used in this book is based on the
book by Bohm & Radouch (1978). Interesting discussions, particularly on systematic
errors, may be found in some articles (Grubbs 1973, Youden 1961 and 1962).

Gathering of information about random errors of measurement is discussed in
most books on applied statistics (Himmelblau 1970). Less common are the various
aspects of errors in measuring fluctuating quantities; this subject is examined in
sufficient extent by Livshic & Pugatschev (1963) and Kharybin (1957).

In this Chapter we have dealt lar_gefly with the general theory of errors. The
problems of errors of concrete measurements (individual analytical methods,
measurement of temperature, pressure, flow rate, etc.) were touched only in the
Examples. The sound estimation of measuring errors requires some knowledge of
individual measurement methods used in process industries. Problems of measurement
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of the most important quantities in process industries (including precision of
individual methods) are treated in sufficient depth in some monographs
(Benedict 1977, Hengstenberg, Sturm & Winkler 1980, Gaizmanga et al. 1973).
Another valuable source of information about measurement errors are Standards
(ASME, ISA). '

Errors of chains (systems) of measuring instruments are treated thoroughly in
papers by Merz (1972), Sula (1971a, 1971b) and Toman (1971).



4 Processing of measured data

The number of measured data is usually substantial, particularly when more extensive
systems are measured (it can normally amount to tens of thousands). The processing
of more extensive sets of data consists essentially in "condensing” the information
contained in the measured data. The objective is to obtain from the data as complete
information as possible as is relevant with respect 10 the task to be solved. We
endeavour to obtain as concise results as possible but which, at the same time, will
answer all the questions asked .prior to the measurement. Hence the procedure of
measured data processing is not simple and it is usually implemented at several
levels. '

4.1 PREPROCESSING OF DATA

The preprocessing.of data involves, in particular:

- preliminary checking of data and their presentation in a suitable form,

- computation of the fundamental statistical characteristics of measured data (means,
variances) or, as the case may be, assessing the probability distributions of random
variables,

- examining the obtained time series (calculation of the autocorrelation functions,
checking the stationarity),

- analysis from the viewpoint of the presence of gross measurement errors,

- corrections of measured values.

When evaluating raw data it is necessary, in the first place, to identify possible
errors that could originate in the course of data collection. It may be a case of
confusing the columns in a form, errors in the order, etc. Special attention must be
given to data obtained with the aid of automatic measuring systems. The data must
be adjusted to a suitable form, depending on the method of their further processing.
If the data are to be processed completely on a computer, the transfer of data from
different sources (results of chemical analyses, data from data logging systems etc.)
to the computer must be ensured.

The next step is usually the computation of the fundamental statistical
characteristics. The calculation of arithmetic mean and sample variance is conducted
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in accordance with the relations presented in Subsection 3.3.2. In the case where a
greater number of measurements of on¢ quantity is available (for instance more than
100), we can attempt to find the probability density of fluctuations of that quantity.

When a measurement is taking place for a sufficiently long interval of time, it
is possible to examine the statistical properties of the obtained time series. In most
cases one begins with checking the stationarity of the measured process (detection of
the trend and harmonic component of fluctuations - see Section 2.4). A good picture
of the character of fluctuations can be obtained by calculating the auntocorrelation
function of the time series, as described in Section 2.4.A more detailed information
can offer the calculation of so-called spectral density, which is suitable particularly
for detecting the harmonic components of fluctuation. More about this special
problem can be found in (Bendat & Piersol 1966).

At all levels of data processing attention must be paid 1o the detection and
elimination of gross errors of measurement. The problem of finding the so-called
outlying values (or outliers) was examined in Subsection 3.3.2. At this stage of data
processing we confine ourselves 10 checking the results of parallel measurements
(repeated analyses, parallel measuring by several instruments). In this case we may
rightly assume that a single value has been measured and that significant deviations
between the parallel results are probably due to errors in measuring, sampling, or to
other mistakes. '

Sometimes there is a tendency to apply the methods of eliminating outlying
observations to the values of time series. Besides measurement errors, the variability
of results can be brought about also by the objectively existing larger fluctuations of
measured variables. Elimination of so originated values is not. justifiable as it cau
affect adversely the estimation of the mean value of a fluctuating quantity. It may be
said generally that the ¢limination of outliers is a double-edged weapon. It is,
therefore, recommended not to apply the tests of outlying values directly (that is not
. to eliminate the outliers immediately) but rather to make use of them in a detailed
examination of their possible causes. :

Corrections of the measured data are made in order to reduce to the least
possible degree the influence of systematic measuring errors. It is a matter of
. principle that any detectable factor influencing the results of a measurement should
- be taken into account. In most cases this is a matter of correction of deviations of the
~ real conditions from reference conditions when measuring instruments are used. These
problems are discussed in detail in Subsection 3.3.4. Experience shows that when a
computer is employed, implementing of corrections is very effective ( the amount of
work needed for programming the correction relations usually is considerably smaller
than that needed for improving the precision and accuracy of the measuring
instruments and methods proper).
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4.2 TYPES OF MEASURED DATA PROCESSING AND CLASSIFICATION
OF YARIABLES

Let us assume that we are dealing with preprocessed data. During a measurement
taking place under stationary or quasi-stationary conditions these are the estimates of
mean values within the measured period. With measurements in non-stationary state
(for example in the case of batch operations) the data may be the integral values of
quantities characterizing inputs and outputs, accumulation, etc. _ _

Further, a mathematical model is known, represented by a system of linearly
independent equations, in which appear quantities measured directly, directly
unmeasured, and those known exactly in advance (constants). Let us assume first that
the mathematical model is linear with respect to individual variables, i.e.it can be
written in the form

Ax+By+a=0 | (4.1)

where X is the vector of directly measured quantities, y - vector of unmeasured
quantities, and the matrices A and B as well as the vector @ are exactly known
beforehand. Hereafter in this Chapter the following notation will be used:

I - number of directly measured quantities (vector X) '

J - number of unmeasured quantities (vector )

K - number of equations of the mathematical model.

Example 4.1: Mass balance
Fig.4.1 represents a simple balance_scheme consisting of six nodes (node number
7 - environment - is not shown in the diagram) and twelwe streams, out of which six

Fig.4.1 — Balance scheme
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are measured (the flows are denoted x), three unmeasured streams (denoted by y), and
three streams with flow rates that are exactly known (denoted f), which have the
character of constants. It is necessary to remark at this point that it is not typical to
regard flow rates as constants, i.e. as- quantities that are not subjected to errors (in
practice we should hardly find a method enabling us to measure the flow rate with
only a negligible error). We have introduced such flow rates here, so that later we
might use this simple example for demonstrating the role of constants in the
processing of measured data.

We shall write 7 balance equations around the individual nodes (the seventh
equation being the balance around the environment).

Yi-Yi-X - X =0

ity v+ x =0

Yo +x,+x,+f, =0
x5+ f =0 (4.2)
-h-5 = '

.x5+f3 =

X +Xx-X-f; =0

The system (4.2) can be written in the matrix form (4.1), where

— - — - — -

1000 0-1 10 -1 0

001000 111 0

000101 0-1 0 £,
A=1] 0-1-1000 B-= 00 0 a= | f

000010 00 0 3

000010 00 0 7

. 1 10-1 00 | . 00 0| LA

The elements of matrices A and B are, at the same time, coefficients in balance
~equations and the elements of the vector & are sums of the exactly known flow
raics.m '

First we shall examine the most important variants that can occur in the course

- of data processing. We shall use as the basis the mathematical model (4.1), which
will be converted into canonical form by elementary matrix rearrangements (see
Appendix A.2.4). It will be assumed that the reader is conversant with the Gauss~
Jordan elimination method for transforming matrices to a form having the unit
submatrix in the upper left-hand corner of the original matrix (s¢e Appendix A.2.4).
Let us form a composed matrix (further denoted as macro-matrix) M from the
matrices A and B and from the column vector & according to the scheme presented
in Fig.4.2a. It is obvious that the first J columns of the macro-matrix M correspond
to the unmeasured quantities, the next 7 columns to the measured ones, and the last
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column is formed by the vector 8 Now let us apply to the matrix M the Gauss -
Jordan elimination, using for pivoting, first,only the columns belonging to the
unmeasured quantities. After completing the elimination we obtain the matrix shown
in Fig.4.2b. It might happen that during the elimination an interchange in the order
of the unmeasured quantities or equations in the macro-matrix could take place
(interchanging of the matrix columns or rows). It is also obvious that the submatrix
in the intersection of the first horizontal and second vertical bands need not have
been formed.

In the next phasc we apply the ¢limination to the submatrix formed by the
horizontal band 2 in Fig.4.2b, The matrix resulting after this second eliminaticn step
is shown in Fig.4.2c. Further we shall try to create zero fields in the submatrices
M,,, M,, and M, by rearranging the rows and columns of the macro-matrix, The
final (canonical) form of the macro-matrix M is shown in Fig. 4.2d.

It is important t0 realize that, from the viewpoint of data processing, the
canonical form is equivalent to the original form, and the conclusions arrived at from
the canonical form hold true for the original form of the matrix, or for the model
{4.1) as well. '

Let us take note of the horizontal band 3 first. If it contains non-zero clements
in the last column, it means that the task is not solvable since the mathematical model
contains contradictory equations (of the type non-zero constant = zero), regardless of
the values of variables. We shall not concem ourselves with this case any more.

When the horizontal band does not contain non-zero elements, the equations in
this band are lincarly dependent on the remaining equations and may be ignored
further without influencing the results. In the case in which the horizontal band 3 is
not formed during the macro-matrix elimination, the mathematical model consists of
a set of linearly independent equations. Since such a form can always be arrived at
by leaving out the dependent equations, further in this Chapter we shall confine
ourselves to just such a type of model.

If in the course of elimination the vertical band 2 is formed, there are
nonobservable unmeasured quantities present (those that can not be calculated
unambiguously from the model). The nonobservable variables belong to columns n
the vertical bands 1b and 2. With a view to having the task fully solvable, a certain
number of unmeasured variables would have to be measured additonally (the simplest
way would be to measure variables that belong to the vertical band 2). When,
however, the additional measurement is not possible, there is no other possibility but
to efiminate from the problem those equations which correspond to the horizontal
band 1b, along with the nonobservable unmeasured variables. Then only observable
unmeasured variables from the vertical band 1a remain -in the problem solved. The
way how to calculate them is obvious.

- Now let us pay attention 10 the horizonial band 2 in which only measured
quantities occur. If this band has been formed, there are so-called redundant measured
quantities present in the problem (for example, the variables belonging to the vertical
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band 3 can be calculated from remaining measured quantities - their measurement
was not indispensible).

Since the measured quantities are subject to measurement efrors, it is almost
certain that the sct of equations belonging to the horizontal band 2 will not be
satisfied exactly. The means of solving this problem is the adjustment (so-called
reconciliation) of measured values, so that the set of equations might be sausfied
exactly. This problem will be dealt with in detail in Subsection 4.4.1. Redundancy,
however, does not concern those measured quantities that belong tq the vertical band
4b, since these quantities are not present in equations of the horizontal band 2. These
measured quantities are nonredundant (or just determined), in contrast with redundant
variables in vertical bands 3 and 4a. _ :

The case presented in Fig.4.2a represents the so-called general linear model.
involving all the variants that may be met with in data processing. It is also useful
to discern certain special cases. When no redundant quantities are present in. a
problem, we speak about calculating the unmeasured quantities from a system bf
equations (formed by the horizontal band 1a). This case is dealt with in Section 4.3.
When unmeasured quantities are not present, it is a question of reconciling the
directly measured quantities, which is discussed in Subsection 4.4.1. A general linear
model is handled in Subsection 4.4.3. The canonical form of the macro-matrix in
Fig.4.2d further poinis to certain important relations among the measured and
unmeasured quantities. If we include an unmeasured nonobservable quantity with the
measured ones, the resulting measured guantity is always nonredundant, and vice
versa. On the other hand, if a redundant measured quaniity is included among
unmeasured quantities, this 1s always observable.

The necessary and sufficient conditions for the solvability of equations,
observability and redundancy can be expressed also by means of the rank of matrices
A, B and of the vector a, and of matrices composed thereof.

Condition of solvability:

rank (A, B) = rank (A, B, a) {4.3)
Linear independence of the model equations:

rank (A, B) =K | G
Observability of all the unmeasured quantities:

rank (B) = J | ' (4.5)
Presence of redundant quantities: |

rank (B) < rank (A, B) - (46)
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The rearrangement of the macro-matrix M to a canonical form represents the
decomposition of the whole problem into two comparatively independent
subproblems: '

1. Reconciliation of redundant measurements using a subset of equations
corresponding to the horizontal band 2 in Fig.4.2d.

2. Computation of the values of observable unmeasured quantities from equations
corresponding to the horizontal band 1a, into which the reconciled values obtained
in the preceding step are substituted. This second step is the so-called cooptation.

The conversion of a system of equations of a mathematical model into the canonical
form thus represents not only a method for classifying the quantities but also a way
of transforming this problem to a uniform and readily solvable form. In addition the
historical development as well as the special form of some types of frequently used
mathematical models have given rise to some other approaches that will be dealt with
in a greater detail in the next two Sections. The classification of quantities is depicted
in Fig.4.3.

I guacntities ]
| medsured —I I unmeasured —I lfixed lconstants) I
lnonredundon’r | I redundant I Lobservcbte —l Iunobservcble _i

Fig.4.3 — Classification of quantities

Example 4.2: Conversion of a system of equations 1o a canonical form

Let us revert to the system of equations describing a mass balance, which was created
in Example 4.1. The fundamental macro-matrix of the system is presenied in Fig.4.4a
(see matrices- A, B and vector @ in Example 4.1). Note that zero elements of the
matrix M are not printed here for simplicity.

It was first partly converted into the canonical form, using only the unmeasured
quantities (the result is shown in Fig.4.4b). In the next step the columns
corresponding 10 the measured quantities were used (Fig.4.4¢). Let us note here that
1l was necessary to exchange the columns corresponding o measured streams Nos.3
and 5.
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Fig.4.4 —- Macro-matrix M (Example 4.2)

129

unmeas. _ measured fixed
Equation 1 2 3 1 2 3 4 §5 6
1. - -1 -1
2 - 1 1 1
3 -1 1 1 f
4 -1 -1 ho
5 1 i 6
6 -1 5
7 11 -1 -
Fig.4.4a — Original macromatrix M
unmeas, measured ' fixed
Equation | I 2 3 1 2 3 4 5 6
1 1 -1 -1 -1
2 1 -1 1 -1 '
3 -1 1 1 f
4 -1 -1 f
5 1 ‘fx T2
6 -1 fs
7 1 1 -1 -f5
Fig.4.4b — M after elimination of unmeasured quantities
unmeas, measured fixed
Equation - 1 2 3 12 5 4 3 6
1 1 -1 -1 -1
2 1 -1 1 -1
3 1 "1 ‘1 i)
4 1 1 -fi
y 1 +
6 a4
7 i+

Fig.4.4c — M after elimination of measured quantities
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unmeasured measured fixed
Equation 1 2 4 3 1 2 5 4 3 6
1 1 -1 -1 -1
2 1 -1 1 -1
6 1 fi £
3 1 -1 -1 -f,
4 1 | -fi
5 1 £ £
7

Fig.4.4d — M after setting f as unmeasured No.4 and making all eliminations

unmeasured | measured fixed
Equation 2 4 1 3 1 2 5 4 3 6
2 1 0 -1 b -1
6 1 0 -fi
1 1 -1 -1 -1 -1
3 1 110 £
4 1 1 0 -fi
5 1 0 f] -5
7 0O 0 0 0 0O 0 0 0 0 0

Fig.4.4e — M after final rearrangements

Before we proceed to further rearrangements of the matrix in Fig.4.4c, we shall
pay heed to its last two rows. These rows mean that certain linear combinations of
constants equals zero. That is to say - if these constants are chosen independently,
then in the course of solving we shall arrive at contradictory equations of the form
non-zero constant equal zero. Hence there would be no solution of the system. Such
a situation can be handled in two ways. Either we shall, before the solution proper,
ask that the values of constant flow rates should satisfy the relations of the
mathematical model, i.e.

fith-£=0

or we can include some of the constant flow rates among the unmeasured quantities,
whereby the relations among constant flow rates will be respected automatically in
the course of the solution. When the constant flow rate £, is included among the
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unmeasured quantitics and designated as y, , we obtain, after converting the new
system into the canonical form, the macro-matrix presented in Fig.4.4d.

And now we can carry out the final rearrangements and analyze the problem. The
result is demonstrated in Fig.4.4e. Three zero submatrices have been created here,
marked by zeros. The conclusions are then as follows:

1. The equation 7 is linearly dependent on the remaining equations and need not be
further considered (this fact is obvious to those experienced in balancing since the
equation of the balance of environment always is linearly dependent on the system
of balance equations around the individual nodes). :

2. There are two unmeasured unobservable quantities y, and y, in the system, the
other quantities are observable.

3. The directly measured quantity x, is nonredundant, the remaining quammes are
redundant. =

Before we proceed to the individual estimation methods, we shall set out the
assumptions, concerning the errors of directly measured quantities. In this Chapter we
shall assume that errors are realizations of random variables with zero mean values

and with a regular covariance matrix F,_ for whose elements it holds
Fij=covie, &)= E(e,e) (4.8)

In most cases the assumption of the matrix F, regularity can be accepted (in
principle it means that there does not exist any exactly valid deterministic dependence
among errors). We assume further that we know either the matrix F, or at least a
matrix W, proportional to it according to

F=*W | | (4.9)

where ¢” is an unknown coefficient. With the matrix W the most common case is
that we know the ratios of precision of the individual measurcments.

When the measuring errors are uncorrelated (this being the most frequent case in
the processing of primary quantities), the matrix F, is diagonal with squares of
standard deviations of errors on the diagonal. In the case that all the measurements
are equally precise and the errors are uncorrelated, W is a unit matrix.

In some cases (particularly when assessing the confidence intervals of results) it
is necessary (0 know the probability distribution of random errors of measurement.
We shall further assume that the errors have an I-dimensional normal distribution
N, (O.F)).
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Further we shall discuss the most important methods of measured data
processing. We shall always present the method of point estimation of both the
directly measured and unmeasured quantities, including the calculation of the
covariance matrix of estimates (which is sufficient for estimation of confidence
intervals of results). The confidence regions (ellipsoids) will be described only for
vectors with a regular covariance matrix.

Two variants will always be considered - we know either the covariance matrix
F, or a matrix W that is proportional to it according to Eq.(4.9). In the latter case
also the estimate of the unknown parameter 6> will be given. The matrix F, will be
then estimated in accordance with

F.=6W (4.10)

We shall use consistently the superscript + for a measured value, the sign ~
above a symbol for a true value, and the sign A above a symbol for estimates
(reconciled values). _

The remaining part of Chapter 4 has been drawn up with regard to practical
problem solving. Considering the extent of the studied problems, however, it has not
been possible to include here the derivations or proofs of the relations presented
further. The literature dealing with the data processing problems is quite extensive.
It has not been possible to describe all the published methods and approaches. The
survey of recommended literature at the end of this Chapter can serve the interested
readers for further studies.

4.3 DIRECT CALCULATION OF UNMEASURED QUANTITIES

In the following Section we shall deal with the case when a system of equations of
a mathematical model is just sufficient for calculating the quantities directly
unmeasured. This means that the number of unmeasured quantities in the general
lincar model (4.1) is equal to the number of equations and, at the same time, to the
rank of matrix B. We shall rearrange the model (4.1) into the form

By=-Ax- a (4.11)

Since B is a square and regular matrix, we obtain the solution by multiplying the
Equation (4.11) by the matrix B~ from the left hand side. :

y=-B7'Ax*-B'a (4.12)

This form could be arrived at also by converting the system (4.11) into the canonical
form using the elimination as described in the Section 4.2. Since the vector @ is
known exactly, it holds for the errors of vector y
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ey = - B_l Ae, (4.13)

where @, is the vector of errors of directly measured quantities. It is a case of errors
propagation during a linear transformation of a random vector, and it holds for the
covariance matrix of vector ¥ [see Eqgs (3.54) and (A.4)]:

F,= B AF A" (B | 4.14)

Eq.(4.12) gives the point estimates of unmeasured quantities. On assumption that the
distribution of errors @, is normal, errors €, have the distribution N, (0, F,) and we
can construct the interval estimates for the l:rue values of unmeasured quantities. The
confidence intervals, within which the truc values ¥; occur with the probablhty
(1 - o), are

G- thon S 5 Ity ) (4.15)

where u,_o, is the 100(1 - a/2) percentile of the standardized normal distribution, and
0, = (F;, Y2,

The intervals (4.15) hold for the components ¥; individually but do not hold for
the whole vector ¥ (see Subsection 3.2.3). When F; is regular, we can construct the
confidence ellipsoid whose equation is

Y-V Fy-D=2.D (4.16)

where 3. () is the 100(1 - o) percentile of the distribution ¥* with J degrees of
freedom. When there is the sign < instead of = in Eq.(4.16), the true vector ¥ occurs
inside the confidence ellipsoid with probability (1 - a).

The confidence ellipsoid can be used when solving the question, whether or not
the results of a measurement differ considerably from the previous assumptions. If,
prior to the measurement, we considered that thc truec value of y was ¥
(hypothesis H,), after the measurement we substitute into (4.16) y for y. If the left
hand side is greater than the right hand side, the hypothesis H, is rejected and we say
that the results of the measurement differ from the presumption. In the opposite case
we state that, at the chosen significance level, there is no reason to think that the
result differs from the assumption.

When the matrix F, is not known but we know the matrix W from Eq.(4.9), the
estimation is made according to Eq.(4.12). In this case, however, neither the intervals
nor the ellipsoid of confidence can be constructed.

Example 4.3: Calculation of unmeasured quantities of the fermentation process
A mathematical model of the material balance of the process of manufacturing
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biomass from cthanol was presented in Example 2.2 [see Eq.(2.14) and Table 2.1].
Let us assume that the three following quantitics were measured: the main product -
biomass, the ethanol consumed, and the acetic acid formed. Additional five
unmeasured quantities should be calculated, i.e. amounts of further produced and
consumed substances.

The substances are numbered as follows:
- measured substances: biomass 1, ethanol 2, acetic acid 3;
- unmeasured substances: oxygen 1, carbon dioxide 2, ammonia 3, water 4, mineral
nutrients 5.

The balance equations (2.14) can be written for changes in the amounts of measured
substances (vector f1, ) and unmeasured substances (vector n )

E"n+E"n=0

where E, and E, are the atom matrices of the measured and unmeasured, resp.,
substances. When we aller the notation E," —» A, E," - B, n, > xand n, - y, we
obtain the model (4.1) where the vector @ is the zero vector. The solution of the
problem is then given by (4.12).

The columns of the matrices A and B from Eq.(4.12) are formed by selecting
those columns of the matrix presented in Table 2.1 that belong to the measured and
unmeasured quantitics in the above indicated order. Hence the matrices A and B are

383 2 2 [ 0 1 0 o0 o]
700 6 1 0 0 3 2 o0
A=| 1941 2 B=/ 2 2 0 1 o0
064 0 0 ¢ 0 1 0 o0

L 700 0 0 _ L 0 0 0 0 1

The measured values published by Madron, Veverka & Vanecek (1977) will be
~used as input data. It was found here that the increments in the amount of measured
~ substances are for the biomass, ethanol and acetic acid, respectively, x* = 350,
X =-1 089, x* = 3.2 kmol. Also, using the errors propagation method, also the

- covariance matrix of the measured quantities errors was assessed (Madron, Veverka
& Vanecek 1977).

F, =

x

0 397 0

[ 299 0 0.0277 ]
00277 0 0.00131

Qn substituting A, B and X* into (4.12) we obtain the vector of estimates of
increments of the amount of components during fermentation:
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¥ =(-1815;831;-224 ;2372 ; -2 450)" kmol

The order of elements of the vector corresponds to the numbering of the unmeasured
substances (i.e. oxygen, carbon dioxide, ammonia, water, and mineral nutrients).

We obtain the covariance matrix of computed quantities errors by substituting 4,
B and F, into (4.14): :

868 -712 -79 -671 -865
712 598 73 529 802
F,= -79 73 12 49 134
671 5290 49 550 532
865 802 134 532 1465

For example the interval estimate for substance amount of the generated oxygen is
obtained by substituting $, = -1 815 kmol and g, = 868" = 29.5 kmol into (4.15).
When we choose a = 0.05 , uy45 = 1.96. The confidence interval for the oxygen
formed is

(-1 815-295x196; -1 815+ 29.5 x 1.96)
that is
Py, €(1873;-1757)kmol] =095 =

In Subsection 3.2.3 we have introduced the concept of share matrices. The share
matrices are convenient for the analysis of how the random measuring errors manifest
themselves in the calculation [according to Eq.(4.12)] of unmeasured quantities. When
calculating the share matrix Eq.(3.60) is used, where it holds for the matrix C :

C=-B' A (4.17)

We often meet with a case when the mathematical model is nonlinear with respect
to the quantities occurring in it. The unmeasured quantities cannot be calculated
simply according 10 Eq.(4.12) but a proper numerical method has to be used. Most
frequently the Newton-Raphson method is adopted, in which the sysiem of nonlinear
equations is lincarized by expansion into Taylor series while neglecting the second
and higher order terms. Thus linearized it has the form of Eq(4.11) and for the
solution the procedure described earlier can be used. This range of problems will be
discussed in detail in Subsection 4.4.5 in connection with the identification of the
nonlinear model parameters in the presence of redundant measurements.
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4.4 DATA PROCESSING IN THE PRESENCE OF REDUNDANT
MEASUREMENTS

By reconciliation of redundant measurements we have in mind their adjustment in
such a way that they do not contradict with the mathematical model. The
reconciliation of redundant measurements in the processing of measured data obtained
in process plants has a dual sense.

Firstly, the reconciliation of data enables the complete information that is available
to be utilized. In the case in which we excluded the redundant data from further data
treatment and confined ourselves to direct computation of unmeasured quantities as
discussed in the preceding Section, we would lose the information contained in the
redundant data. In the course of processing, the data become more precise, which
manifests itself by lowering the standard deviation of the reconciled quantity when
compared with the measured ones.

The second, and perharps even more important advantage of redundant data
processing, consists in the fact that, owing to measuring errors, the redundant data
are, 10 a certain extent, inconsistent with the presumed mathematical model. A
detailed analysis of this inconsistency enables one to judge, whether a mathematical
model including the assumed model of errors is in order (i.e. whether the existing
inconsistency between the measured values and the model can be explained within
the framework of the assumed measuring errors). The latter problem will be dealt
with in detail in Section 4.5.

Despite the mentioned importance of redundant data reconciliation we do not meet
with it often in practice. The reason may be that in most cases reconciliation - when
compared with direct calculation of unmeasured quantities - is more demanding as
regards numerical computations. It is true, however, that, particularly in modern
plants usually well equipped with measuring instruments, redundant measurements
are often available., :

- The reconciliation of redundant measurements means, in principle, finding adjusted
values of the measured quantities and, at the same time, also the calculation of
directly unmeasured quantities when these are present. The adjusted values X are
defined as

R=X+V (4.18)

where the elements of the vector v (so-called adjustments) possess the following

properties:

1. the equations of the mathematical model are fulfilled exactly with the adjusted
values,

2. the adjusted values differ from the measured ones "as litile as possible”, i.e. the
magnitude of adjustments is, in a certain way, minimal.
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In practice there are two approaches adopted most frequently for reconcilation --
the least squares method and the principle of maximum likelihood. 1t 1s esential that,
in the case of normal distribution of errors, both the principles are equivalent as far
as the results are concerned.

The criterion of adjustments minimization is the quadratic form Q

Q=v'Flvy - (4.19)

where F, is the covariance matrix of measurement errors. Those adjustments, with
which the value of Q takes a minimum (Q_;) - while with thus adjusted values the
equations of a mathematical model are satisfied exactly - represent the solution of the
problem of redundant data reconciliation (so-called general method of least squares).
Hence, it is a case of minimizing the quadratic function (4.19), when the varlables
have to satisfy the mathematical model.
We shall assume further that (see Section 4.2)
1. all the unmeasured quantities are observable, i.e. the selection of the measured
quantitics enables estimation of all unmeasured quantities,
2. at least some of the measured quantities are redundant. The conditions of satisfying
the assumptions 1 and 2 will be examined with individual types of mathematical
models.

4.4.1 Reconciliation of directly measured quantities

The task is the estimation of a vector X = (x, ,..., ;) , whose elements are measured
directly, but they have to satisfy X equations. Unmeasured quantities are not present
and, in this case, the general linear model (4.1) has the following form:

a+Ax=0 (4.20)

Let it hold for the rank of the matrix A (K x [) that rank A = K < /. If the matrix A
had not a full rank, i.e. it would hold rank A < X, the lincarly dependent rows of the
matrix would be eliminated from the mathematical model.

On the above assumptions it holds for adjustments

v=-F, A" (AF, A" (@ + AxY) (4.21)

where v has the distribution N, (0, F,), and F, = F_ A" (AF, A")™' AF, has the rank
K (is singular).

The quantity Q,,;, calculated from the relation (4.19) is, on the assumption of
normal distribution of errors, a realization of a random variable with x> distribution
with K degrees of freedom.
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Substituting the vector of adjustments into (4.18) gives .
X=x*+v=-F, A" (AF, Ay a+[l- F A" (AF, A")" A] x* (4.22)

where I is unit matrix. The vector £ calculated from (4.22) is an unbiased estimate
of the vector X. Its elements are realizations of random variables with distribution
N; (X, F,), where

F,=F,-F, A" (AF, A" AF, (4.23)

has the rank (/ - X), what means that it is singular. It is possible to form the
confidence intervals covering, at a chosen probability, the real values, i.e. elements
of the vector X. It holds that the intervals

(i;'ul.mo_':,.; X+ qp Gy ) _ (4.24)

where Oy, = (Fy Y, cover real values %, with the probability (1 - o).

So far we have assumed that the covariance matrix F, is known. When we know
only the matrix W from Eq.(4.9) but not the value of the coefficient 6% , we proceed
in the following way: o” is estimated from

& =vT W' vk (4.25)

The estimatc of the covariance matrix F, is then given by Eq.(4.10). After
substituting F instead of F, into (4.23) we obtain also an estimate of the covariance
matrix of adjusted values F' Estimates of the variances of reconciled values are on
the matrix F diagonal and we can use them for the .construction of confidence
intervals for individual elements of the vector ¥. The interval

&b KSR+ (K)G; ) (4.26)

where 8; = (F, ) and 1, _,, (K) is the 100 (1 - 0/2) percentile of ¢ (Student)

distribution with K degrees of freedom, covers the real values with a probability
(1-o).

Example 4.4: Reconciliation of a mass balance (F, is known)

Fig4.5 shows a flowsheet of residual oil flow. The oil is pumped from the distillation
column into two storage tanks, A and B (streams 1 and 2). The oil from the tanks is
pumped further into a mixer (streams 3 and 4). In addition, oil is also pumped from
the storage tank B to black water treatment plant (stream 5). From the mixer the oil
is fed into a residual oil gasification unit (streams 6 through 10). Accumulations in
the tanks are shown in the flowsheet as the fictitious streams 11 and 12.
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The flow rates of all the above streams are measured. The task is to reconcile the
measured values so that they should satisfy the balance equations around the
individual nodes. Since the residual oil density is constant, the balance may be set up
on the volume basis (integrals of flow rates and accumulation).

environment

_ | resid oil black water{ resid. oit
plant accumulation | treatment | gasification

}

1) [@%_ ®
2 @
@O 7] ®

Fig.4.5 — Measurement of residual oil flows (Example 4.4)

A total of three independent equations among the measured quantities can be
written - around the storage tank A (node 1°), tank B (node 2’), and the mixer
{node 3°). The balance is written for the elements of the vector X, for whose elements
it holds x; = V, , where V, is the volume flow of the ith stream during the balance
interval.

X -x%-%,=0
Xy -Xg-Xs-X;3=0 (4.27)
Xyh Xy - Xg Xy oKy - Xg - Xyo =0
.The balance around the node 4’ (environment) would already be dependent on the
above three balance equations.

The equations (4.27) can be written in the form of the model (4.20), while & = 0.
The matrix A is
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as |

It is possible to make certain here that A is a reduced incidence matrix of the graph
presented in Fig.4.5 (the environment being the reference node).

-1t 00 000 O0O0-10
0-1-1 00000 0-1
11 0-1-1-1-1-100290

OO
S

Table 4.1 — Input data and results to Example 4.4

i X; O, F,, V; X; G, a;
1 3849 19.24 370.3 1483 3864 9.87 0.49
2 1848 0.24 85.3 -1451 1833 5.87 0.36
3 3825 19.12 365.7 9.45 3816 9.40 0.51
4 1362 6.81 46.3 8.54 1371 5.39 0.21
5 359 3.59 12.8 2.19 362 3.42 0.05
6 1022 5.11 26.1 037 1022 492 0.04
7 1021 5.11 26.1 037 1021 491 0.04
8 1033 5.17 26.7 0.38 1033 497 0.04
9 1048 5.24 27.5 0.39 1048 5.03 0.04
10 1064 5.32 28.3 040 1064 5.10 0.04
11 49 420 17.6 071 48.3 4.13 0.02

12 101 210 4.41 0.75 101.8 2.07 0.02

The values measured in the course of 96 h balance period are shown in the first
column of Table 4.1. The streams 1 through 10 are integrals of the flow rates of
~ individual streams over the whole time period, the values x;} and x;} are
~ accumulations, i.e. volume differences in the storage tanks at the end and beginning
of the balance period. '

First the standard deviations of the individual measurements are assessed. The flow
rates of the streams 1 through 4 and 6 through 10 were measured with positive
- displacement flowmeters whose standard deviation is equal o 0.5 per cent of the
measured value (a half of the maximum measurement error). The stream § is
- measured by an orifice gauge with the standard deviation equal to 1 per cent of the
measured value. In the case of accumulations the standard deviations in assessing the
volume increments were 4.2 and 2.1 m’ in the tanks A and B, resp. The errors of
measurement are uncorrelated, so that the covariance matrix F, is diagonal with
squares of the standard deviations of the measurement errors on the diagonal. The
standard deviations o, +as well as the matrix F, diagonal are presented in Table 4.1.

Substituting A, F, and x* into (4.21) and (4.22) yielded the adjustments ¥ and
reconciled values X. Besides, the covariance matrix of reconciled quantities F, was
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calculated according to Eq.(4.23). The adjustments, reconciled values and roots of the
diagonal elements of the matrix F, , representing the standard deviations of reconciled
values o, , are presented in the section of results of Table 4.1.

Shown in the last column of the Table are the expressions

al'= 1 ‘Ggilox‘:

which are a measure of improving the precision of measured values in the course of
reconciliation (a is so-called adjustability). If the improvement in precision is
significant, the adjustability approaches 1, in the opposite case the adjustability is
near zero. In other words, the adjustability represents the improvement of precision
caused by reconciliation, and can be expressed in percent.

A considerable improvement in precision was accomplished only with the
quantities 1 through 4, which exhibit the highest standard deviations of measuremems
as well.=m

Example 4.5: Reconciliation of concentrations in streams incident with a chemical
reactor (F, is unknown)

Let us consider a continuous flow reactor for methane chlorination. Fed into the

reactor are Cl, , CH, , CH,Cl , CH,Cl, and CHC], . In addition 10 these substances

also HCI and CCl are present at the reactor outlet; their concentration at the inlet is

almost zero (Fig.4.6).

Ct,i1) Ci, (8]

CHL(2) CH 71

SHgtta) CH,CI8)

CHCLIA) CH,Ci,19)

CHCI, (5) | CHCLN0!

— reactor W Fig.4.6 — A chlorination reactor
HCL (12) (Examnple 4.5)

Steady state concentrations {molar fractions) of the substances are measured at the
reactor inlet and outlet, i.e. a total of 12 quantities, whose numbering is obvious from
Fig.4.6, are measured. In the chlorination reactor the number of moles is conserved,
and, therefore, the molar flow rates at the inlet and outlet are equal. Also, the
conservation law holds for the three chemical elements : C(1), H(2) and CI(3). Our
task is the reconciliation of measured concentrations to satisfy the following
conditions:

- the reconciled values satisfy the law of chemical elements conservation,
- the sum of molar fractions in both streams equals 1
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Let us form a vector of the measured quantities X in such a way that the first five
elements of the vector will consist of molar fractions of the substances 1 through 5§
at the reactor inlet, the other seven elements then will be the concentrations of the
substances 6 through 12 at the outlet. The elements conservation law can be
writien as

LA;x=0 i=123 (4.28)

because the total number of moles remains constant.

The absolute values of the coefficients A, ; are equal to the number of atoms of the
ith element in the formula of the substance of jth measured concentration. The signs
of the elements A, j are plus for j < 5 (inlet stream) and minus for j > 5 (outlet
stream),

Equations (4.28) are further complemented by conditions for the sums of molar
fractions:

p x-1=0 (4.29)
12
Xx-1=0 (4.30)

The system of equations (4.28) - (4.30) can be written schematically as
Ax+a=0 ' (4.31)

where the matrix A and vector @ are

011 11 0-1-1-1-1-1 0
- 0432 104-3-2-1 0-1 |
A= 201 2 3-20--23-4- (4.32)
| 11111000000 0
0000O0T11T11T1T1]1

a=(0,0,0-1-1)

By a more detailed examination we find that the matrix A does not have the full
rank, rank A = 4. Therefore. we eliminate the condition (4.30), which is linearly
dependent on the preceding equations. The mathematical model is then formed by
Eq.(4.31) where the matrix A contains only four rows of the matrix defined by
Eq.(4.32), and the vector @ = (0, 0, 0,-1)".
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So much about the mathematical model whose form is (4.20). As regards the
measuring errors, we assume that they are uncorrclated, and that their standard
deviations are directly proportional to the measured value (hence the concentrations
are measured with the same relative precision). Then the covariance matrix of the
measured quantities errors can be written in the form of Eq.(4.10). The matrix Wis
diagonal with squares of measured values on the diagonal:

W,=0 forizj andW, =) (4.33)

Now we can proceed to the reconciliation proper. The measured values of
concentrations x;* are in the first column of Table 4.2, the matrix W diagonal is in
the second column. The reconciliation is carried out according to (4.21) and (4.22),
where the the matrix W is substituted for the covariance matrix F,. The results of the
reconciliation - the vectors of adjustments v and of reconciled values X - are also
demonstrated in Table 4.2.

Table 4.2 — Input data and results to Example 4.5

i x5 W,, Vi X Oy G, a;

1 0.621 3.85E-1 -8.53E-3 0.612 6.35E-3 4.76E4 092
2 0269  7.23E-2 -6.65E4 0.268 275E-3 7.61E4 072
3 0.108 1.16E-2  -3.09E4  0.108 1.10E-3 1.05E-3 0.05
4 0.00775 6.00E-5 -2.63E-6 000775 7.93E-5 7.92E-5 0.00
5 0.00376 141E-5  -8.63E-7 0.00376 3.84E-5 3.84E-5 0.00
6 0.0155 240E4 6.86E-6  0.0155 1.58E4 1.58E4 0.00
7 0.0157 2.46E4 38SE-6 0.0157 1.60E-4 1.60E4 0.00
8 0.0683 4.66E-3 1.54E4 0.0685  698E4 685E4 0.02
9 0.248 6.15E-2 3.09E-3 0.251 2.53E-3 8.38E4  0.67
10 - 0.0482  2.32E-3 1.S7E4  0.0484 493E4 476E4 0.03
11 0.593 3.51E-1 3.96E-3  0.597 6.06E-3 485E4 0.92
12 0.00393 1.54E-5 1.31E-6 0.00393 4.02E-5 4.01E-5 000

To evaluate the precision of the reconciled values we substitute the vector v into
(4.25) and thus we obtain an estimate of the proportionality constant from Eq.(4.10):
&” = 1.048 x 10°* . Substituting ¢ into Eq.(4.10) yields an estimate of the covariance
matrix of the measurement F . The roots of the matrix F diagonal elements,
representing an estimate of standard deviations of the directly measured quantities
errors J; , are also presented in Table 4.2.

The covariance matrix of reconciled values F, is estimated by substituting F for
F, into (4.23). The roots of matrix F diagonal elements (denoted &; ) represent the
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estimates of standard deviations of the reconciled values. In the last column of Table
4.2 is the adjustability of the measured values (see Example 4.4). It can be seen here
that all the quantities are adjustable but only in four of them (quantities 1,29 and 11)
the adjustability is significantly greater than zero.m

4.4.2 Estimation of unmeasured quantities from redundant measurements

A vector of quantities ¥ = (y, , ... , ¥ )" that are not measured directly is to be
estlmated These quantities, however, are related to directly measured quantities
= (%, » .. , X )" through K independent linear equations

By=x (4.34)

This is the special case of the general lincar model (4.1), where the vector & is the
zero vector and' A is the negative unit matrix. This special form of 2 model is met
with very often in practice (polynomial regression of quantities X on parameters y).

We assume that J = K and rank B = J < I. Supposing that it held rank B < J, the
vector ¥ would be nonobservable. A case when 7 = J would be that of the direct
calculation of unmeasured quantities, which was dealt with in Section 4.3.

The objective of data processing in this case is, on the one hand to estimate the
values of vector ¥, and, on the other hand, to carry out the reconciliation of the
dircctly measured values Xx*. Let us assume first that the covariance matrix of the .
measured quantities F, is known,

The estimate ¥ is calculated by solving a system of so-called normal equations

B"F,'By=B"F,x* | (4.35)
| which can Be wrilten

y=(B"F,'By'B"F ' x* (4.36)
 the distribution of ¥ being N (¥, F; ), where the regular matrix

F,= (s’j.T F.lB)! (4.37)

Further we can form confidence intervals for individual elements of the vector ¥.
The intervals
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where o, = (Fy )7 cover the true values §; with the probability (1 - @).
The confidence ellipsoid whose equation is

y-9)'BTF'By-9)=x..() (4.39)

covers the true vector ¥ with the probability (1 - o).
The vector of reconciled values of the measured quantities X is obtained when y
is substituted into (4.34):

2=By=BB"F.'B)'BTF,'x* . | (4.40)
X has the distribution N, (X, F, ), where the singular matrix

F,=B(B"F,'B"'B" (4.41)
Obviously, the vector of adjustments is V= £ - X* . The value @, , defined by
Eq.(4.19), is, assuming a normal distribution of errors, a realization of a random
variable with the distribution %* and (/ - J) degrees of freedom.

When the covariance matrix of the measuring errors F; is not known but we know

the matrix W from Eq.(4.9), ¥ and X can be calculated according to Eqs (4.36) and
(4.40), substituting W for F, . The unknown coefficient ¢* is estimated according to

2=V W'l'v/u-0 (4.42)
The estimate of the vector ¥ covariance matrix is
"5’= &2 (BT w-! B)—l (4.43)

The confidence intervals for individual elements of the vector ¥ covering the
values ¥, with the probability (1 - ) are

;- 8y Jrrann-J) 5 3;+85 tiap2 a-n» (4.44)
where &, = (FP .

The confidence ellipsoid, covering the vector of true values ¥, with probability
1 - o has the equation

y-W' B F'By-9I/J=F 0 1-7) | (4.45)

where F, _, (J,I-J) is 100 (1 - o) percentile of the di‘st'.ribu.ti(_)n . F with J and
(I - J) degrees of freedom. o :
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So far we have not concerned ourselves with assessing the confidence intervals and
regions for quantities X. We shall meet with them now when solving a more general
problem. Let us consider a vector A of the dimension (m x 1), which is a linear
transformation of a vector .

A= Gy (4.46)

where G is a known matrix of dimension (m x J). The vector h is called parametric

function,

The estimate of the vector A is the vector A defined

h=Gy=G(B"F," B B"F," x* (4.47)
where R is an unbiased estimate of A ; the covariance matrix of t.ile vector A is

Fo,=G(B"F B! G" (4.48)

In the case in which we do not know the matrix F, but do know the matrix W and
the estimate of the coefficient o2 from Eq.(4.9), the covariance matrix Fj is estimated -
according to '

Fi=6>G@B"W'B* G (4.49)

Similarly, f is estimated according to Eq.(4.47) where W is substituted for F, .
The confidence intervals covering the true values #; with the probability (1 - o),
are

(EJ""I-&IZ Grj » flj'*‘ul-a;z i ;) (4.50)
where o, ; = (Fp;f when the matrix F, is known, and

(';1;' “8 Lo U0 j;j + 85 Lo -T)) (4.51)
where 83, = (Fo¥? when only the matrix W is known in advance.

When constructing the confidence ellipsoids we shall confine ourselves to a case
of the matrix Fj or its estimate being regular. The necessary condition of the matrix
F;; regularity is that it should hold rank G = m < J. This means that the number of
the vector A elements must not be higher than the number of parameters ¥ and, in
addition, G must have the full rank. Since we assume that it holds for the number of
directly measured quantities / = K > J , the covariance matrix F, is singular and the
confidence ellipsoid cannot be constructed simply (see Subsection 3.2.4).
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On condition that the covariance matrix of the paranletric function is regular, the
confidence ellipsoid covering the vector of true values h with the probability (1 - a)
has the following form:

(h- B Fgt (h-By=3, (m) | (4.52)
in the case that F, is known beforehand, and

th-BF'th-b/m=F, _m I-)) - (4.53)
when only the matrix Wis known beforehand.

Example 4.6: Reconciliation of the material balance of fermentation (F, is known)
The process for the manufacture of biomass from ethanol was described in Example
2.2 (Subsection 2.2.4). Steady state rates of formation in the fermenter of the
following substances were measured: biomass (substance 1), ethanol (2), acetic acid
(3), oxygen (4), and carbon dioxide (5). Some of the measurements are redundant and
the task is to reconcile the measured values so that the reconciled values should
satisfy the material balance. ,

In the same Example was described the balance model, in which the microbial
conversion was expressed by the system of three stoichiometric equations:

1. 1.917 C,H,OH + 1.618 O, + 0.643 NH, +7 Ah -
- CS.SSHT.mOI.NNO.MAh?.m - 3.214 Hzo =0

2.CHOH+30,-2C0,-3H,0=0 - (4.54)
3. C,H,OH + O, - CH,COOH - H,0 =0

When we denote the number of moles of the substance as n, , where the index i
corresponds to the numbering of substances as given previously, and the extents of

chemical reactions as &, , where the index j cormresponds to the number of the
reaction, we can write the component balances by the following system of equations:

n = E.»l
n,= - 1917 gx - éz - §3
ny = & : ' - (4.55)

ng=-1618¢, - 3t - &,

n-s = + 2(52
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or in the matrix form

n=B¢
where
1 0 0
-1.917 -1 -1
B= 0 0 1
-1.618 -3 -1
0 2 0

It is possible to make certain that -B is a submatrix of the transpose of the matrix of
stoichiometric coefficients, which was defined in Subsection 2.2.4. The columns of
the matrix B are formed by stoichiometric coefficients of the substances appearing
in the individual equations (positive in the case of products and negative for the
starting substances).

The following number of moles of the substances formed were measured:

n* = (0.3500, -1.0890, 0.0032, -1.7712, 0.7857)"

Besides, the covariance matrix of errors of the vector n* is known (Madron, Veverka
& Vanecek 1977): '

299x10° 0 2.77x10% 0 0
0 © 397x10° 0 0 0
F,=| 271x10° 0 1.31x10° 0 0
0 0 0 0.60x102  5.30x10*
0 0 0 530x10*  1.61x10"

- When we change notation (7 — X and & — ), we obtain the model (4.34). The
following calculation will be done with the original notation, i.e. with vectors 1 a &,
The vector of the chemical reactions rates is estimated according to Eq.(4.36):

&= (B"F,"B)'B"F,'n* (4.56)
and the reconciled vector A according to (4.40)

A=Bt | 4.57)

We are further interested in the variances of the reconciled values A. Their covariance
matrix is obtained from Eq.(4.41):

F,=B(B"F,” B)"' B" (4.58)
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The matrix F, diagonal, i.e. the vector G, , is
0, =(22x10%°,36%x10°,13x10%,58%x10*,3.9x10*)f

Comparing the matrices F, and F, diagonals we can judge on the change of the
higher precision brought about by reconciliation.w

Example 4.7: Linear regression (F, is not known)

The dependence of an electrolyzer voltage on current intensity was measured . The
values of current intensity (), in kA, and voltage (1)), in volt, measured at ten steady
states, are presented in Table 4.3. The task is to assess the values of the parameters
of linear dependence between the current and voltage.

Table 4.3 — Input data and results to Example 4.7

i / u? 0, %, A
1 2.701 4.305 4.297 0.00375 0.00865
2 2.808 4.341 4.346 0.00242 0.00559
3 2.905 4.390 4.390 0.00207 - 0.00477
4 3.002 4433 4.435 0.00287 0.00662
h] 3.052 4464 4458 0.00352 0.00813
6 3.006 4.446 4437 0.00292 0.00673
7 2.907 4.391 4.391 0.00207 0.00479
8 2.803 - 4.341 4.344 0.00247 0.00570
9 2.7104 4.300 4.298 0.00370 0.00855
10 2,955 4.403 4413 0.00237 0.00547

We assume that only the voliage measurement is subject t0 a substantial error
caused by fluctuations in the process variables (elecirode gap, electrolyte
composition); this is where the main error is concentrated. We assume further that the
errors are independent, with a constant (unknown) variance.

The mathematical model is

U=by+b 1 _ (4.59)

where b, and b, are unknown coefficients. Eq.(4.59) can be written for the individual
measured regimes

U=by+b 1, j=1,..,10 (4.60)
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or in the matrix form
U= 8Bb (4.61)

where matrix B is of dimension (10x2), its jth row equals (1 , 1;), and the vector of
parameters b= (b, , b, )". If we change the notation (b — y and U X) in Eq.(4.61),
we have the model (4.34). In the subsequent calculations the notation U will be used
for the measured quantities and b for parameters.

Estimates of the parameters will be obtained from (4.36) by substituting the matrix
W for F, . In this case the covariance matrix of measuring errors can be expressed
in the form

F=cdW=0c1 (4.62)

where Iis unit matrix. Since Wis unit matrix, Eq.(4.36) can be rewritten in a simpler
form

= (B" B)" B U* (4.63)

where U* obviously is a vector of the measured values of voltage. Then the estimates
of the parameters are

b, = 3.059 kA
X (4.64)
b =04584kA V" |

The covariance matrix of parameters estimates is assessed from (4.43). First we
calculate reconciled values from Eq.(4.40), whose form in this case is

U=B(B"B)'B"U* | (4.65)

- The reconciled values of voltage are presented in Table 4.3. The vector of
~ adjustments v = U - U” is calculated next. The proportionality constant o2 is
estimated from Eq.(4.42), which can be rearranged to

' 2
a2 VYV _ T 4.165 x 10~
d- (10 - 2)

(where 7 is the number of directly measured quantities, i.e. the number of measured
steady states).

According to Eq.(4.43) the estimate of the covariance matrix of the parameters
estirnates is
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Table 4.4 — Input data and results to Example 4.8

i X' o, V; x; Gy a;
1 1001 1.0 -0.942 99.2 0.60 0.40
2 41.1 0.8 0.000 41.1 0.80 0.00
3 79.0 0.8 0.349 79.4 060 = 025
4 30.6 0.4 -0.063 30.5 039 002
5 1083 20 1.590 109.9 0.69 065
6 19.8 0.1 0.009 19.8 0.10 0.00

. 58.989 -20.417
F; =6°(B"B)'=4.164x10°
20417 7.079

The confidence intervals for the parameters b, and b, for (1 - «) = 0.95 are,
according to Eq.(4.44):

by = 3.059 £ (4.165 x 10 % x 58.989)"* x 2.306

by € (2.945, 3.173)

b' = 0.458 4 + (4.165 x 10°° x 7.079)* x 2.306

b, € (0.418 8, 0.498 0)

since

83, = (F3,)"
&, = (Fy )"
and

toors (8) = 2.306

Further, we shall find the confidence ellipse covering the vector of true values of
parameters b with probability 0.95. According to (4.45) the ellipse equation is

(b-H"B"B(b-b=20>F (2.8
since

F5= G-ZBT B
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10.000 28.843 }

oo |
28.843  88.333

and, after the matrix operations, we obtain the ellipse equation in the form
1062 + 2 x 28.843b", b", + 88.3335"% = 3.714 x 104 (4.66)

In so doing we made the substitution b - B = b’, whereby the origin of coordinates
was shifted into the ellipse centre. For details of an analysis of Eq.(4.66) the reader
is referred to textbooks of analytical geometry, here only the results will be presented.
Tt is a case of an ellipse rotated in the coordinate system through an angle -19.09°.
The length of the major and minor semiaxes is 0.1566 and 1.995 x 1073, resp. The
ellipse is plotted in Fig.4.7, where dashed lines mark the confidence intervals for the
individual parameters (here the intervals create bands that are symmetrical around the
individual coordinates). The ellipse area (given as the product ab , where a and b
stands for the semiaxes lengths) is 9.82 x 10

1o Fig.4.7 — The confidence
: ellipse (Example 4.7)

The area of the confidence ellipse is considerably smaller than the area of a
rectangle formed as the intersection of the bands corresponding to the individual
reliability intervals. It is obvious, too, that the reliability coefficient for that rectangle
is smaller than the reliability coefficient for the individual bands and ellipse, i.e. 0.95.
It is, therefore, convenient to use the reliability regions (ellipsoids) for a greater
number of variables.

Further, let us note the elongated shape of the ellipse. Together with the ellipse
inclination it means that the estimates are strongly correlated. It is important that the
whole set of pairs of the parameters values, centred around the ellipse major axis, is
in good agreement with the measured values. Otherwise, it means that the parameters
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carmot be precisely assessed separately but only in combination with one another. Of
course, this is undesirable from the viewpoint of estimating the individual parameters.
The whole problem, however, is not caused by the precision of the measurement
itself but by an improper choice of the values of current intensity at which the
measurement was carried out. We shall concern ourselves with this problem once
again in Chapter 5, dealing with optimum planning of measurement.

In conclusion let us discuss the question of the precision of calculating the value
of voltage for a given current intensity from the regression equatmn (4.59). Let the
Eq.(4.59) be written m a matrix form:

B :
0=q,Dn [ ; ] (4.67)

1

This is the case of a parametric function (4.46), so that (4.51) can be used for the
construction of the confidence interval. The estimate of the variance of an assessed
value of the voltage U is obtained from Eq.(4.49), where the matrix F';, has a single
element equal to the variance of the calculated volhage

. |
=621 ,I)(BTB)“[ ; } (4.68)

where & ? is given by (4.42).
The confidence interval is obtained by substituting &, into (4.51). The interval
covering the true value of voltage with the probability of 0.95 is

(U - 8 togrs 8) 3 U+ 8p togs B | (4.69)

The calculation was made for the individual measured values of current intensity.
Hence, for example for the first measurement I, = 2.701 kA the value of
{/ = 4297 V. Substituting into (4.68) we obtain 8, = 3.751x10 * V and the
confidence interval is

(4.297 - 3.751 x 107 x 2.306 ; 4.297 - 3.751 X 10 % x 2.306)
that is
{4288 ; 4.306)

where 2.300 is £ (8).

The results arc presented in the last column of Table 4.3 in the form of
A = 8y tygs (8) values, these being the half-widths of the confidence intervals. In
Fig.4.8 the confidence intervals are presented as the two curves marking off a region
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in the regression line vicinity. The confidence band in Fig.4.8 can be interpreted as
follows: if we choose a value of current intensity within the measuring range (for
instance [, ) we obtain, after substituting into the regression equation, the vatue U
which obviously lies on the regression line. The true (unknown) value of U, lies, with
the probability of 75%, on the line segment intercepted by the confidence band on
the straight line . = J, .=

’
Fd
4451 confidence band
Zn
ZA ST
siodl 7%
=
>
4,35
4304
4
27 28 29 3,6 2 Fig.4.8 — Regression of voltage IJ
—n {JkA on current mtensity / (Example 4.7)

4.4.3 General linear model

The hitherto discussed two types of mathematical models enable a number of
important practical problems to be solved but they are not applicable in all cases. An
“important generalization is represented by the general linear model

a+ Ax+ By=0 (4.70)

whose . ‘mplification gives the models presented earlier.
~ Let us assume that all the quantities are observable and at least some of the
measured quantities are redundant. These assumptions are equivalent to the validity
of the following relations:

rank (A, B) =K
rank B=J 4.71)
I>K-J>0
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where / is the mumber of measured quantities, J is the number of unmeasured
quantities, X being the number of equations of the mathematical model. Obviously,
the matrices types are A (K x I) and B (K x J).

Estimates % and § are obiained by solving the system of equations

AF AT , B k a+ Ax’ _
+ =0 - 472
BT , 0 y 0
v=F A"k (4.73)
X=Xx"+v 4.74)
where K is the vector of Lagrange’s multipliers.
First, Eq.(4.72) is solved with respect to k and ¥-
k AF_AT , B |! a+ Ax* _
_ . (4.75)
y BT , 0 0
The partitioned matrix in (4.75) is divided into blocks G
AF. AT , B |! Q . Q
[ | } B { ) ) | :‘ (4.76)
BT , 0 Q, . Q,

The individual blocks are of the types @, (K x K), Q, (K X J), @y, (/ x K) and
Q,, (J x J). The solution is then

k=-Q, @+ Ax") (477
y=-Q, @+ AX;) (4.78)
v=F AT k=-F, AT Q, (@a+ Ax") (4.79)
R=Xx"4+V (4.80)

¥y is a random vector with N, (¥ , Fy) distribution, where
F=-Q, (4.81)

The matrix F, rank is J at the most. When it holds, besides the conditions (4.71), that
I>K =rank A, the matrix F, rank is just equal to J, and this matrix is regular.
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The intervals
G- a2 Gy, > 5’;+u1.a12°'9j) (4.82)

where oy, = (Fy) 2 | cover the true values with the probability (1 - o).
For the regular matrix F, , the ellipsoid

V-P)"Fy-9)<sd. ) | - (4.83)

covers the vector of the true values with the probability (1 - o).

The vector of adjustments Vv, expressed by Eq.(4.79), has the distribution
N; (O, F, ), where the singular matrix F, = F, A" Q,, AF, . Assuming the normal
distribution of errors, the value Qni, defined by (4.19) is a realization of random
variable with ¢ distribution with (K - J) degrees of freedom. The vector of reconciled
values X given by Eq.(4.80) has the distribution N, (%, F,), where the singular matrix

Fl = Fx - Fx AT ol] AF.\' . (484)
has the rank {7 - (K - ).

The intervals .

G-t o203 Etuy ), S, ,) (4.85)

where Oy = (F,ﬁ)‘” » Cover the real values with the probability (1 - o).

When the covariance matrix of measuring errors F, is not known but the matrix W

is known, we shall present the results for a frequent case when it holds rank
A = K < I The estimates ® and ¥ are calculated according to (4.78) and (4.80),
substituting W for F, . The unknown coefficient 62 from (4.9) is estimated from

_VWly

2
6 K-J

(4.86)

The covariance matrix of measured quantities F, is estimated according to (4.10).
The estimates of the vectors X and J covariance matrices are

' FF =-82 022 . (4.87)
F,=6%(W-WAT Q, AW) | . (4.88)

The confidence intervals for the individual elements of the vector ¥ are’
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OG-0 tias -1 5 5+8 fian K-D) (4.89)
where 8, = (ﬁ',,}_ji‘)”2
The equation of confidence ellipsoid is

(y-9)"F'(y-9)/J=F _,U.K-D - (4.90)
The confidence intervals for the individual elements of the vector X are

& -6 f.as2 (K-J) y X+ O fie K-N) (4.91)

where 6‘2‘_ = (ﬁ‘, ﬁ)”’ . The confidence intervals (4.89) and (4.91) correspond to the
probability (1 - a). - :

Improving the precision of measured quantities as the result of recongciliation

Let us examine Eq.(4.84) in detail. The second term on the right-hand side of the
equation represents the covariance matrix of adjustments F, . Then (4.84) can be
rewritten

F,=F,+F, | @92
from which it follows

6’=¢, +90/ (4.93)
These important relations follow from statistical independence of the vectors X and
v (Kubitek & P4zman 1979). An important inequality between the variances of
measured and reconciled values follows from (4.93):

ol 20 (4.94)

Then it is obvious that the precision of a quantity cannot become worse as the result
of reconciliation. In the limiting case, when the precision remains unchanged, i.e.
when it holds 67 = 6,” , the variance of the adjustment must be zero. Since it holds,

at the same time, that the mean value of the adjustment is null, the value of the
adjustment must be nuil as well, irrespective of measured values. Such quantitics are
called nonadjustable. If the errors of measurement are independent (diagonal
covariance matrix), the nonadjustable quantities are identical with nonredundant (just
determined) quantities. '
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The expression
4=1-0, /0, a;€ (0;1) (4.95)

has already been referred to as the adjustability (see Example 4.4). The adjustability
of nonadjustable quantities is equal to zero, the adjustability of significantly
adjustable quantities limits to one (the precision of those quantities is significantly
influenced by the measurement of other variables). The observable unmeasured
quantities can be understood as fully adjustable (g, = 1).

Example 4.8: A mass balance (F, is known)

The diagram of a single-component balance is presented in Fig.4.9 (for the sake of
clarity the node representing environment is not shown). There are four nodes and
eight streams, out of which only six are measured. The measured flow rates,
including their standard deviations, are in the first part of Table 4.4, The task is to
assess the values of the unmeasured flows and, besides, to reconcile the measured
ones.

Table 4.4 — Input data and resulis to Example 4.8

i x; oz v, x s, a;

1 100.1 1.0 -0.942 99.2 0.60 0.40

2 41.1 0.8 0.000 41.1 0.80 0.00

3 790 0.8 0.349 794 0.60 0.25

4 30.6 04 -0.063 30.5 0.39 0.02

5 108.3 _ 2.0 -~ 1.590 109.9 0.69 0.65
6 . 19:8 0.1 0.009 198 0.10 0.00

When the ith measured quantity is denoted as X; and the jth unmeasured quantity
as y; , the balance equations around the individual nodes are

—h
S
-
[N

4 Fig.4.9 — Mass balance
—— measured streams; - - - unmeasured streams
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X b X - X | =

or, in the matrix form

Ax+ By=20
where
1 -1 0O 0 0 0O -1 0
A= 00 ¢ O 0 4 B= 1 -1
01 -1 0 0 O 0 1
0 O i 1 -1 0 0 0

We point out that A and B are reduced incidence matrices of the graphs of measured
and unmeasured streams.

This is a case of the model (4.70) where the vector @ = 0. The problem solution
is: vectors ¥ and K are calculated from Eqs.(4.77) and (4.78).

¥ = (58.06 , 38.25)"
k = (-0.9416 , 0.9416 , -0.3964 , -0.9416)"

After substituting K into (4.79) and (4.80) we obtain the vector of adjustments v and
vector of reconciled values X. The vectors v and X are presented in Tab.4.4.

The covariance matrices of the vectors X and ¥ are assessed from Eqs (4.81) and
(4.84). The vector of standard deviations of ¥ (roots of the matrix F; diagonal) is
o, = (1.032 ; 1.013)". Standard deviations of the reconciled quantities X; (roots of the
matrix F, diagonal elements) are shown in Table 4.4. The adjustability & is in the
right hand side of the Table. The measured stream 2 has the adjustability equal to
zero (see also the zero value of its adjustment). In this case of the nonredundant
variable the reconciliation does not lead to a higher precision when compared with
direct measurement.m

4.4.4 Reducing the dimension of the problem
When solving the problems of reconciliating redundant measurements, in practice we

may often meet with the case when the dimension of the problem to be solved
(number of equations and variables) exceeds the capacity of the computer which is
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available. With the growing dimension of a task also the demands on computer time
are growing, and even problems of numerical nature may be encountered (stability
of the solution of large systems of equations). One of the possibilities of how to
avoid these difficulties lies in dividing the problem into several smaller ones and
solving them separately. A drawback of this approach, however, is that those
quantities appearing in more subproblems simultaneously acquire different values, so
that the resuliant solution is not consistent. There exist, however, other possibilities
of reducing the dimension of a problem solved.

The fundamental problem usually is the solution of the system (4.72), where the
inverse of matrix whose dimension is (J + K) x (J + K) occurs. But the problem
need not be solved globally. In Section 4.2 the decomposition by transforming a
system of equations to the canonical form was described. In that case reconciliation
can be carried out using the method described in Subsection 4.4.1, where the
matrix A appearing in Eq.(4.20) is identical with the matrix formed as the intersection
of the horizontal band 2 and vertical bands 3 and 4 in Fig.4.2d.

Let us introduce the following notation for the submatrices from Fig.4.2d (the
submatrices indices stand for the numbers of the horizontal and vertical bands in
Fig.4.2d).

A=M ;. .,
a==mum,;

B= ﬂ""14|,(3+4)
b= A"’1.-,5

The results of reconciliation, including the information about errors propagation, are
then expressed by Eqs (4.21) and (4.26).

Calculation of the observable unmeasured quantities ¥y and of their covariance
malrices is conducted according to

yj=-B%-b
(4.96)
F,= BF, BT

With the decomposition made in the way described in Section 4.2, the simplification
of the numerical side of the solution is obvious.

In Example 4.2 the decomposition of the mathematical model of a mass balance
was done. Then it follows from Fig.4.4e that

710 0 -1 -1 0 -4
A= 01 0 0 1 o a-= -
00

1 0 0 0 -h -5
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S N |

There are also other possibilitics of reducing the dimension of the problem. If the
matrix A in the model (4.70) satisfies the conditions (quite frequent in practice) / 2 K
and rank [ = KX, it is possible to make use of the existence of the null submatrix in
Eq.(4.76) and carry out decomposition of the system. Then the submatrices Q; from
(4.76) can be obtained by means of inversion of the (J x J) and (K x K) dimension
matrices (Kubacek & Pazman 1979, Knepper & Gorman 1980).

Q, = - (B" G B)" | @97y
Q,=-G'BQ, (4.98)

@,=G'-Q,B"G" B CX )

where G = AF, AT

Another way of reducing the dimension of a problem is the elimination of
unmeasured variables from the equations of a mathematical model. Let us assume that
we wanl to climinate P unmeasured variables from a general linear model (let us
suppose, for example, that we are not interested in the values of these variables) The
system (4.70) is written so, that the matrices A, B and the vector a are properly
divided into submatrices '

S R - NI N -3 U

where the vector y, of dimension (P x 1) contains unmeasured variables we want to
eliminate, We assume that the matrix B, has the full rank, i.e rank B,, = P. Thus the
system (4.100) is decomposed into two systems of equations

AXx+B,y+B,y,+a =0 _ (4.101)

AXxX+B,y,+B,y,+a=0 . (4.102)
From the system (4.101) the vector y, can be expressed

yi=-B;' (A x, + B, y, + a) _ - (4.103)

and substituted back into the system (4.102). Rearranging we obtain the syslem of
equations that does not contain the vector y, .

AX+By+a=0 o @4004)
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The following relations hold among the original and new matrices

=A,-B, B} A
=B, - B, Blil,Blz
@=a-B,Bj; a

When doing reconciliation with the new model (4.104) according to (4.72) to (4.74),
the matrix (4.76) dimension is reduced from the original value {(J + K) x (J + K)]
to [(/ + K - 2P) X (J + K - 2P)]. With each eliminated parameter the number of rows
and columns of the inverted matrix (4.76) is reduced by two.

The above procedure is particularly advantageous when some of the parameters
appearing in the mathematical model are not needed. But even if some or all the
eliminated variables are needed, they may be calculated from the system (4.103) after
the reconciliation has been done.

Sometimes the elimination of unmeasured variables is referred to as reduction of
a mathematical model, and the model (4.104) is called a reduced model. In this case
it is essential that the reduction does not mean a loss of generality of the model, and
that it does not cause any loss of information. Reduction is widely used in the cases
of extensive problems as encountered, for instance, when carrying out balancing of
complex plants. The principle to be observed here is: to reconcile redundant data
with the aid of the reduced model first, and only then calculate the observable
unmeasured variables.

4.4.5 Nonlinear models

In many practical cases we cannot limit ourselves to models discussed hitherto, which
are linear with respect to both the measured and unmeasured quantities.

- It is necessary to state beforehand that the measured data, obeying nonlinear
models, cannot be processed rigorously. It is caused, in the first place, by problems
associated with random errors propagation in nonlinear functions, dealt with in
-Subsection 3.2.3. In most cases it is possible, however, to find a solution suitable for
technical purposes by introducing the concept of so-called quasilinear model.

It would be possible to introduce the quasilinear form of the model for all the
types of models discussed so far. Because of the limited extent of this Chapter we
shall limit ourselves further to so-called general quasilinear model corresponding to
the general linear model solved in the Subsection 4.4.3. The quas1hnear forms of
other types of models would be created analogically.

We shall call a model general quasilinear model (henceforth simply quasilinear
model) when it differs from a linear model so, that instcad of the set of equauons
(4.70) there are K equations :
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fx,y)=0 (4.105)

where the elements of the column vector Ff of dimension (KX x 1) generally are

nonlinear functions of vectors X and y elements. We assume further:

1. The functions f, (x, ¥) ; k=1, ..., K have continuous second partial derivatives
with respect to x; and y; .

2. We know vectors X, and ¥, which are so close to the true vectors X and § that
in the Taylor expansion

X, N=10¢,¥)+CAX+DAYy+....... (4.106)

where f=x0+'Ax, Y=VYotAYy
C=[C,;1=004/dx ]
D= [Dy;1= [aft/d)';]

the second and higher order terms can be neglected (the matrices C and D are
evaluated at the points X, and ¥, ). If we introduce the notation

a=f(%,y%), A=C B=D | (4.107)

and write in Eq.(4.106) X and y instead of A X and A y, resp., Eq.(4.106) becomes
identical with (4.70).
The processing of all the data proceeds as follows:

. first guesses of X, and y, are assessed; obviously X, = x™,
. vector @ and matrices A and B defined by (4.106) and (4.107) are calculated,
. reconciliation in accordance with Egs (4.72) 1o (4.74) is carried out,
. vectors X, and ¥, are assngncd the values acording to
X+ X X, - :
YotV Yo
5. the sequence of the steps 2 to 4 is repeated so long as there are in the individual
- cycles significant increments A X or A y, or the residuals of equations f(X, , ¥, ),
which should limit 10 null vectors.

LD B

The general task of reconciling measured values is, in its quasilinear form, of
considerable importance when solving the problems encountered in the course of
processing plant data. In most cases the limitations imposed on the equations of a
mathematical model are acceptable.

Example 4.9: Reconciling the material balance of an absorber
Let us consider an absorption unit shown schematically in Fig.4.10, where also the
directly measured (primary) variables are presented. The inlet gas stream 1,
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[ {e6

(%) 202020
2 1
@ e @ @ Fig4.10 — Measurement of an absorber
(Example 4.9)

containing besides inerts two substances to be absorbed, is contacted with a pure
absorption liquid (stream 4). The concentration of absorbent vapours in the gaseous
phase may be neglected.

Ten primary quantitics are measured:

X; i=1,2j=1, 3, where x;; is the molar fraction of ith substance in jth
stream,

&;; i = 1, 2, where c,, is ith substance concentration in stream 2 (kmol/m® ),

v, flow rate of stream 2 (m*/h)

Ap pressure difference on the gas flow measuring orifice (Pa)

T temperature ai the measuring orifice (K)

p gas pressure at the measuring orifice (Pa).

The orifice coefficient k can be considered another primary quantity (as it has its
own error). The molar flow rate of the stream 1, denoted n, is given by the
expression

m=k@App,' T (4.108)

where p, is the stream 1 density under standard conditions (101.3 kPa, 273 K). The
density is given as a function of substances 1,2 and inerts (substance 3) densities
under standard conditions.

Pa=138x,+127x, +1.29x, | (4.109)

There are four unmeasured quantities appearing in the problem: Ry, N, x5 and x;; -
- that is molar flow rates and molar fractions of the inerts in streams ! and 3.

A total of six independent equations satisfying the conditions of the model (4. 105)
can be written among the measured and unmeasured quantities:
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Table 4.5a — Material balance of an absorber - Example 4.9
(the course of calculation)
i var. 1, x* P x*? by
1 xn 0.03 3.120E-2 3.2288E-2 3.2262E-2 3.2262E-2
2 Xy 0.03 5.600E-3 5.5154E-3 5.5178E-3 5.5178E-2
3 X3 0.04 1.800E-2 1.7355E-2 1.7371E-2 1.7371E-2
4 Xy 0.04 6.000E4 6.0172E-4 6.0167E-4 6.0167E4
5 Cy 0.02 4,113EH0  4.0809E+0 4.0817E+0 4 BITEHD
6 Cxn 0.02 1.312E+0 1.3200E+0 1.3198E+0 13198E40
7 v, 0.02 3.100E-1 3.0948E-1 3.0949E-1 3.0949E-1
8 Ap 0.03 2.000E+3  2.0013E+3 2.0013E+3 2.0013E+3
9 T 0.02 2.810E+2  2.8091E+2 2.8091E+2 2 8001E+2
10 P 0.02 9.730E+4  9.7329E+4 9.7328E+4 9.7328E+4
11 k 0.01 1.131E-1 1.1311E-1 1.1311E-1 1.1311E-1
12 n, - 8.000E+1 8.2885E+1 8.2883E+1 8.2883E+1
13 n, - 8.000E+1 8.1206E+1 8.1212E+1 8.1206E+1
14 X3 - 9.600E-1 -+ 9.6219E-1 9.6222E-1 9.6222E-1
15 X3 - 9.800E-1 9.8204E-1 9.8202E-1 9.8202E-1
- Q - - 2.6664E+0 2.5359E+) 25359E+0
- o, - - . 2.6664E+0 1.6400E-3 331ME-16
- Q, - 1.133E+1 3.0335E-5 2.9132E-15 7 359E-2X0)
1. Expressing the stream 1 flow rate w1th the aid of Eq.(4.108)
2. balance of the substance 1:
ny Xy, - Vz. Cpp =~ My X3 =0 (4-110»)/
3. balance of the substance 2: |
nxy-Vocy-nxy=0 4.111)
4. equation for stream 1 molar fractions:
Xyptxy +x,-1=0 (4.112)
5. equation for stream 3 molar fractions:
X3+ Xy +x5-1=0 (4.113)
6. balance of inerts:
By Xy - Ny X33 =0

(4.114)
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Table 4.5b — Material balance of an absorber - Example 4.9
(results)

i var. Y: x; X O, . a;
1 X5, 0.03 3.120E-2 3.2262E-2 6.2847E4 0.33
2 Xy 0.03 5.600E-3 5.5178E-2 1.2038E-4 0.28
3 X5 0.04 1.800E-2 1.7371E-2 5.9717E-4 0.17
4 Xy 0.04 6.000E-4 6.0167E-4 2.3885E-5 0.00
5 Cpy 0.02 4113E+0 4.0817E+0 7.9872E-2 0.03
6 Cn 0.02 1.312E+0 1.3198E+0 2.3970E-2 0.07
7 v, 0.02 3.100E-1 3.0949E-1 5.6073E-3 0.10
8 Ap 0.03 2000E+3  2.0013E+3 5.6860E+1 0.05
9 T 0.02 2.810E+2  2.8091E+2 5.4909E+0 0.02
10 P 0.02 9.730E+4  9.7328E+4 1.9013E+3 0.02
11 k 0.01 1.131E-1 1.1311E-1 1.1050E-3 0.02
12 n, - 8.000E+1 8.2883E+1 1.6574E+0 -
13 n, - 8.000E+1 8.1206E+1 1.6471E+0 -
14 X3 - 9.600E-1 9.6222E-1 6.6632E-4 -
15 Xa - 9.800E-1 9.8202E-1 5.9798E-4 -

The balance of the absorbent is not presented here as its flow belongs among
unobservable quantities.

The process of calculation is presented in Table 4.5. The relative standard
deviations of the dircctly measured quantities x,, through & are in the column ¥, . The
- values of the ith quantity in jth iteration are presented in the columns denoted x& .
. For the zero iteration these are the values of directly measured values obtained by
measuring, and initial guesses of unmeasured quantities. In each of the iterations the
values of @, O, and Q, were calculated. Q is the value of the quadratic form (4.19).
@, is the sum of squares of the measured quantities increments divided by the
~ respective variances of the measurements. 0, is the sum of squares of the residuals
of mathematical model equations.

The calculation was terminated when the difference of Q in two consecutive
iterations dropped below 0.001 (iteration No.3). In the next column of the Table there
are standard deviations of the reconciled values C,,,and the adjustability g; of

measured quantitics.m

Reconciliation of measured data with the aid of the quasilinear model has an
advantage in operating with directly measured quantities without having to modify
the mathematical model considerably to achieve the linearity. It may happen in some
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cases, however, that the process of iteration is diverging, which manifests itself by

increasing residuals of mathematical model equations in the course of iterations. This

problem can often be overcome by reducing the x and y increments in an iteration
step (e.g. by a half) for so long as the decrease in the sum of squares of the
mathematical model residuals is attained.

A further drawback of the iteration method may be its demand on computing time
(which may be a limiting factor in on-line applications). Therefore, in Subsection
4.4.6 we shall concern ourselves with the possibility of converting a nonlinear model
to a linear one by proper transformations of variables. Before doing so, however, we
shall add a few concluding remarks about the problems of processing data governed
by nonlinear mathematical models.

As already stated in the opening of this Subsection, working with nonlinear models
brings about, in addition to numerical problems, serious theoretical problems as well.
Virtually all the statistical methods available in the literature are based on the
assumption of the mathematical model linearity. In that case the measuring errors
with normal distribution are transformed into random variables whose distribution is
normal, too, which facilitates the problem markedly. The nonlinearity of a problem
can impair this assumption considerably. Problems may arise in the following
spheres:

1. The method based on linearization of a mathematical model, as described in
general terms so far, does not lead to reaching the minimum of the least squares
function, in spite of the fact that the process of iteration has been completed and
all the conditions of its termination have been satisfied.

2. Even if the minimum value of the least squares function is reached (e.g. by some
nonlinear programming method), the unbiasedness of the estimates is not reached
(the mean values of estimates differ from true values). This is analogous to the
case dealt with in Example 3.4.

3. All the other methods of advanced data processing (confidence intervals and
regions, ¢ic.) are only approximate.

The question to what extent the model nonlinearity devaluates the conclusions,
resulting from the processing of data, cannot be answered in a general way. Important
factors here are, in particular, the degree of the model nonlinearity and magnitude of
measuring errors. These problems are dealt with in a case study in Section 6.4.

4.4.6 Transforming a model to linear form

Linearizing a mathematical model by expansion in Taylor series we alter the model
character fundamentally. In some cases it is possible, however, to linearize a model
using a less drastic method. For example, it is possible to make use of the fact that
often we are not interested in primary quantities but in their functions. So, for
instance, measuring of temperature, pressure and pressure drop is only a means for
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the determination of a flow rate. Another equation can be linearized by introducing
new variables, for example z = In(x), x being a primary quantity.

With multicomponent balances nonlinearities of the type of two quantities product
occur frequently (for instance n; x,, where n; is the molar flow rate of the jth stream
and x;; is the molar fraction of ith substance in Jjth stream). Such nonlinearities can
be eliminated by introducing an appropriate system of secondary variables (for
example n; = n; x; , where n,; is the flow rate of ith substance in Jth stream). Both
ways of balancing (nonlinear and linearized) were compared by Serth, Weart &
Heenan (1989) with finding the superiority of nonlinear approach with primary
variables (total flow rates and compositions) used in reconciliation. The use of
secondary variables for reconciliation can affect the gross errors detection adversely.

‘It is true that the above transformations make a mathematical model simpler but,
on the other hand, they bring about complications as far as the model of errors is
concerned. While the primary quantities errors are usually independent, this is no
more true with secondary quantities. Then the data processing procedure must include
also calculation of the covariance matrix of transformed quantities from the primary
quantities standard deviations.

The demands on computing time usually are smaller with a linearized model than
with a nonlinear one, the ratio of the computing time depending on the rate of the
iteration process convergence.

- Demands on computer memory cannot be assessed explicitly since in some cases
certain saving achieved with a linearized model may be offset by the necessity of
storing a nondiagonal covariance matrix. .

Linearization of mathematical models by means of suitable transformations of
variables used to be applied particularly before the advent of computers, when it was
often the necessary condition for solving a problem. With the advance of computers,
however, its importance is declining and a trend towards nonlinear models can be
seen.

4.4.7 Share matrices *

With all the models discussed hitherto, share matrices, introduced in Subsection 3.2.3,
can be calculated readily; they enable a detailed analysis of the imprecision of the
measurement results. Share mairices elements are calculated according to (3.60),
where it holds for the matrix € for the individual models:

Reconciliation of directly measured quantities (4.22)

C.=1-F. AT (AF, A" A | | | (4.115)

Estimation of unmeasured quantities from redundant measurements
a) unmeasured quantities (4.36) )
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C,=(B"F,"B)'B"F,"! (4.116)
b) reconciled values (4.40)
C,=B(BTF,'B)'B"F," 4.117)

General linear model
a) unmeasured quaniities (4.78)

G =~021 AT - (4.118)
b) reconciled values (4.79) and (4.80)
C,=1-F,LATQ, A (4.119)

In all these cases, however, there is a certain change in the interpretation when
compared with the case described in Subsection 3.2.3. It still holds that a share matrix
informs us about the share of individual measured variables in the variance of
measurement results. It does not hold true, however, that there exists a direct
proportionality between the decrease of the variance of directly measured quantities
on the one hand, and of a secondary quantity (observable unmeasured or reconciled)
on the other hand.

The reason is that a change in the measured quantity variance entails a change in
the matrix transforming the measured values into secondary quantities. It is a case of
matrices whose elements are not constants, and depend on the variances of measured
quantities. Now the simple reasoning presented in Subsection 3.2.3 is not valid any
fonger. It is possible to prove, however, the validity of the following statement:

If the variance of the ith measured quantity decreases by p% of its original value,
the variance of the rth secondary quantity decreases at least by

pH.. [/ 100 % (4.120)

of its original value.
(H in (4.120) is an element of the share matrix belonging to ith measured and rth
secondary quantity.)

Example 4.10: Matrices of shares
Let us continue with Exampie 4.8 dealing with the mass balance. The share matrices
of measured and unmeasured variables are as follows (F; is the flow of ith stream):
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F, F, F, F, F, F,
F, 36 0 54 0 8 1
F, 0 100 0 0 0 0
F, 35 0 56 - 0 8 0
F, 0 0 0 96 3 0
F, 24 0 38 25 12 0
F 0 0 0 0 0 99
F, 14 64 20 1 3 1
F, 13 65 21 1 3 1

It can be observed here, that in the case of directly measured flows, the bottleneck
of their precision is mostly their direct measurement (especially in the case of F,
which is nonredundant and its precision is given solely by its direct measmement)
The exceptions are F; and F; whose precision can be improved preferably by other
directly measured flows (F3, Fyand F, ). As far as unmeasured flows F, and F, are
concerned, the key variable in their determination is the flow F, .

Let us study further the possibilities of improving the precision of results. If we
are, for example, interested especially in the vaule of flow F, , we could focus
attention on the measurement of F; and F, . If the standard deviation of F,* is cut by
50% (i.e. to 0.4), the standard deviation of F is lowered from 0.60 10 0.38. On the
other hand, if the standard deviation of F,* is cut by 50%, the standard deviation of
F| is 0.42, which corresponds well with Ihe share mairix of reconciled quantities.

The best way of improving the precision of unmeasured flows F, and F; lies in
improving the measurement of flow F, . If its standard deviation is cut by S0%, the
standard deviations of both F, and F, are lowered from 1.00 to 0.72. On the other
hand, if the standard devia[ion of F is cut by 50%, the improvement of precision of

F; and F is negligible (standard deviations 0.97 and 0.96, resp.).m

4.5 ELIMINATION OF GROSS AND SYSTEMATIC ERRORS

In the preceding Section it was pointed out that reconciliation brings about higher
. precision of the reconciled values when compared with the measured ones. This
statement holds true, however, only if both the mathematical model and the model
of errors are in agreement with the reality. On the other hand, if this is not the case,
reconciliation may lead to the deterioration of precision of reconciled values and
unmeasured parameters. This occurs particularly in those cases when the data contain
one or more gross errors. In the process of reconciliation gross errors are dispersed
among a great number of reconciled values and thus even a smgle gross error can
devaluate the results of the measurement.
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So if we use reconciliation during data processing, the data should be analyzed
with respect to the presence of gross and systematic errors. If these errors have been
detected, it is necessary to find out what are their causes and to eliminate them from .
the process of measurement.

The elimination of gross errors can be divided into three stages. In the first stage
(detection of gross errors) we are ascertaining, whether gross errors are present. If
yes, the causes of these errors are looked for (identification of gross errors), which
means that probable sources of errors are found out. Then follows the elimination of
gross errors proper. :

4.5.1 Detection of gross and systemetic errors

This process begins with comparing the measured data with the available information
about the examined problem. Calculations based on the measured data may give such
values of parameters that are considered either improbable or impossible (for example
extremal values of a transfer coefficient, negative values of concentrations).

The occurrence of an unreal value need not necessarilly be a proof of the presence
of a gross error. For instance, if the calculated value of mass fraction (that should lie
within the interval (0, 1)) has the confidence interval (-0.5, 0.7), the unrealistic
value of concentration in the interval (-0.5, 0) can be attributed fully to random
errors of measurement.

In the analysis of measured data the most important method concerning the
occurrence of gross and systematic errors is the confrontation of data with exactly
valid mathematical models. By this term we mean balance equations; exceptionally
it may refer to reliable thermodynamic data (phase equilibria) and, as the case may
be, other information as well.

Further we shall confine ourselves to those cases when the model is represented
by a system of algebraic and transcendental equations. It is necessary to point out
here that, when processing measured data, we start not only at the mathematical
model proper but also at the model of measuring errors. Considering this, errors may
be divided into two groups.

Included in the first group are errors of the mathematical model. Most frequently
the reasons lie in our imperfect knowledge of the measured process (the model does
not describe the reality adequately). It may be a case of leakage of subsiances (the
leaking stream is not considered in the model), unknown byproducts are formed in
the course of chemical reactions, and the like.

In the second group there are errors in the model of errors. We assume that
measuring errors are realizations of random variables with multidimensional normal
distribution and with a given covariance matrix. The existence of a large gross error
is inconsistent with this model. Such a type of error occurs most frequently, and
when we speak about gross and systematic errors without a more detailed
specification, we mean just these deviations from the assumed model of errors.
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Before we proceed to the method of eliminating errors itself, let us formulate two
more assumptions we shall use further. The first one is the assumption that the model
of errors is known. It will be assumed further that the errors are uncorrelated and
have a normal distribution with zero mean values and known variances. The
assumption of the knowledge of errors variances may seem to be too demanding.
Unless we have an idea about random measurement errors, however, it is virtually
impossible to define what the gross errors are, and their detection is meaningless.

The second assumption will be that in the mathematical model a certain part of
measured data is redundant.

Residuals of equations and adjustments in the presence of random errors only
Let us assume a mathematical model expressed by the system of equations
Ax+By+a=0 (4.121)

discussed in a greater detail in Subsection 4.4.3 [Eq.(4.70)]. In Section 4.2 we
described the decomposition of the system (4.121) yielding a subsystem of equations
among directly measured quantities only. From the viewpoint of the redundant
measurements analysis it is, therefore, possible to confine ourselves to the case of
processing directly measured quantities described in Subsection 4.4.1. In this case the
mathematical model is

Ax+a=0 4.122)

where the matrix A and vector @ in (4.122) are not identical with the matrices in
(4.121) but originated from them in the process of decomposition from the matrices
appearing in Eq.(4.121).

- Substituting directly measured values into (4.122) we obtain the vector of residuals
of the system of equations r: '

r=A’+a (4.123)

It is obvious: that if errorless values were substituted into (4.123), the vector of
residuals would be null. With the growing magnitude of errors also a growth of the
residuals absolute values can be expected. :

Now let us assume that the measured data were reconciled by the method
described in Subsection 4.4.1 whereby we obtained the vectors of adjustments v and
of reconciled values X. Considering that with the reconciled values the sysiem (4.122)
is satisfied exactly

AZ+a=0 | (4.124)
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after Subtracting (4.124) from (4.123) we obtain the relation between the vectors I
and v

r=AX*-%=-Av (4.125)

The adjustments and residuals are functions of measured values and, therefore, they
are realizations of random variables with zero mean values. When they are examined
it is useful to know their. covariance matrices. As set out in Subsection 4.4.1, the
covariance matrix of the vector v is given by

F,=F, A" (AF, A" AF, o @a26)

From (4.125) and (4.126), and considering (3.54), it follows for the covariance matrix
of residuals

F.= AF, A" . (4127

The same result would be arrived at if we used as the basis the definition equation
of residuals (4.123).
The hitherto discussed properties of the random vectors v and r can be summed
up as follows:
1. they are vectors with zero mean values and known covariance matrices,
2. on the assumption of normal distribution of measuring errors, the vectors v and r
will have normal distribution as well,
3. vector I is a function of vector V. Hence any information contained in the vector
v is contained in the vector 7 (the opposite statement does not hold true).
An important function of the vector of adjustments is the quadratic function Q,;,
defined by

Qun=V' F,'V o | (4.128)

The quantity 0, has the % distribution with the number of degrees of freedom equal
to the number of the matrix A rows (i.c. number of independent equations). In a
similar way we can write the quadratic function of residuals

Q,=r"F’r (4.129)
It can be shown, however, that the random quantities Q_;, and ¢, are identical.
Presence of gross errors

The characteristics of the vectors ¥ and r discussed so far hold true provided that the
measurement errors are realizations of random variables with zero mean values and
normal distribution. This model of errors can be written as Eq.(3.1). Now let us
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assume that the model (3.1) is not valid - that a gross error of the constant magnitude
d is present:

X*=X+d+e _ (4.130)

Such a gross error (particularly when it is a large one) will result in changes in the
properties of the veciors v and r and of the quantity QOnin - It can be expected
intuitively that their values will rise with raising the gross error magnitude. Hence
these quantities are suitable indicators of the presence of a gross error.

The procedure for detecting a gross error belong to the sphere of testing statistical
hypotheses (see Appendix A.4.2). The null hypothesis H, is: no gross error is
present, expressed mathematically

da=0 4.131)
The alternative hypdthesis H, has the form
d#0 ‘ (4.132)

The hypothesis H, is then rejected or not in accordance with the value of the statistics
(in our case the quantity Q_. or elements of the and v vectors).

In the case of the quantity Q_.. the H, hypothesis is rejected if the value of Qi
exceeds the critical value of the % distribution for the givén number of degrees of
freedom v

Qi > %1% V) | (4.133)

If the inequality (4.133) is satisfied, the presence of a gross error has been detected.
Let us mention here that when testing the hypothesis we can commit errors of the
first and second kind. In our case these errors can be defined as follows:

Error of the Ist kind: the presénce of a gross error has been detected though actually
this does not exist

Error of the IInd kind: an existing gross error has not been detected

The probability of the Ist kind error is equal to the significance level of the test @ in
Eq.(4.133). The probability of the error of IInd kind depends on the magnitude of the
gross error and it will be discussed later.

But first let us concern ourselves with the case when we want to use elements of
the vectors v or rinstead of Q_, for the testing. It should be stated beforehand,
however, that in this case the testing is considerably more difficult than with the
quantity Q,,;, . The problem will be demonstrated by an ¢xample when we try 1o test
the magnitude of the vector v elements. '
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Let us assume that we are carrying out a test at the significance level a, and no
gross error is present. Since the adjustments v; are normally distributed, the
standardized adjustments v; / G, have standardized normal distribution. This distri-
bution is symmetrical; therefore, individual adjustments will li¢, with the probability
1 - o, within the interval

iy qy2 s Ui.qr2) ' (4-134)

It is thus possible to assume that, even in the absence of a gross error, on the average
1000% of standardized adjustments will be outside the interval (4.134). If we
consider a real casc involving hundreds of directly measured quantities, and ¢ = 5%,
- we find that a number of standardized adjustments will lic always outside the interval
(4.134).

It follows from the above that, in this case, the probability of an error of the Ist
kind is considerably higher than 5%. To satisfy the overall significance level of 5%,
we have to choose for the testing the critical value greater than that corresponding
to the required probability of the Ist kind error a.. The null hypothesis is rejected, if
it holds - '

W /G, oax > Uy op2 (4.135)

The term on the left hand side of (4.135) is the standardized adjustment with the
maximum absolute value. There is the problem, ho_wevcr, how to assess the value
of . It holds approximately (Mah 1990)

a=1-0-¥ (4.136)

where § is the number of adjustable variables with diffcrent adjustments [if there
exists a group of two or more variables with identical adjustments (irrespective of the
sign), such a group is considered a single variable].

It should be mentioned, however, that this test is only an approximate one, and
that the probability of the Ist kind error is lower than the value of a in Eq.(4.136);
we say the test is conservative. If the above problems are taken into account, the
testing based on Q. (so-called global test) seems to be more advantageous than
testing the maximum adjustment or residual. '

We have considered so far that the mathematical model is linear and that
decomposition has been made, so that no unmeasured quantities occur in the problem.
It is true, however, that the decomposition is not necessary. 11 is essential to know the
values of adjustments, of their standard deviations , and the Q,;, quantity including
the number of degrees of freedom (see, for example, Subsection 4.4.3 in the case of
the general linear model). In this case, however, we cannot use for the detection of
gross errors the residuals of the equations since they are defined only when all the
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variables are measured (the analysis of residuals is important particularly in the case
of balance models, where the residuals possess a clear physical ‘meaning).
Furthermore, it is necessary to realize that, in the discussed case, nonadjustable
quantities occur and these are not subject to analysis of adjustments (the adjustments
arc null and so are their standard deviations, and the standardized adjustments are not
defined). _ '

In the matter of nonlinear models a complete decomposition is ofien not possible,
so that the residuals cannot be analyzed. It is further necessary to realize in this case
that testing for the presence of gross errors is only approximate (see the discussion
in Subsection 4.4.5). .

Example 4.11: Detection of the presence of a gross error
This Example is the continuation of Example 4.8, in which reconciliation of measured
data was carried out. It was the case with 2 degrees of freedom (4 equations and 2
unmeasured quantities). Presented in the second column of Table 4.6 are the values
of @, = 1.74 and the maximum absolute value of the standardized adjustment 1.18.
Now let us test the hypothesis of the absence of a gross error at the significance
level a = 0.05. The critical value of the ¥ distribution with 2 degres of freedom Xo'ss
(2) = 5.99. Since

1.74 < 5.99

we state that no gross error was detected [see the inequality (4.133)]. Next we shall
test the maximum absolute value of the standardized adjustment. There are five
redundant measured quantities (streams 1, 3, 4, 5, 6) appearing in the problem. Also,
it was found that the absolute values of standardized adjustments of the streams 1
and 4 are identical with the same quantities belonging to the streams 6 and 5, resp.
Hence three independent adjustments occur in the problem, and § in Eq.(4.136)
equals 3. After substituting S and o into (4.136) we obtain o’ = 0.01695, the
corresponding value of u; ., being 2.39. Again, no presence of a gross error was
~detected, since

1.18 < 2.39

In the next step the detection of gross errors in the individual quantities was
studied. A gross error equal to tenfold the standard deviation of the respective
measurement. was added in turn to the measured values presented in Table 4.4 and
the data were reconciled. The assessed values of O and of the maximum
standardized adjustments are presented in Table 4.6 (index { indicates the number of
the stream corrupted by the gross error). It can be seen from the results that the
presence of a gross error was detected correctly in the cases of flows 1, 3, 4 and 5,
and that by testing both Q. and the maximum standardized adjustments,
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Table 4.6 — Detection of gross error (Example 4.11)

i 1 2 3 4 5 6

d, 0 10 3 8 4 20 1

2, 118 917  -1.18 436  -160 095  -0.38
2, 0 0 0 0 0 0o 0

2, 066 733 066 -598 001 390  -0.01
., 085 266 08 314 272 853  -0.66 .
2 085 266 085 304 272 853 066
2, 118 917 118 436 160 095 038
Q0. 174 845 174 371 843 738 049

12, 118 9.17 1.18 5.98 272 8.53 0.66

On the other hand, with streams 2 and 6 the detection of a gross error was not
successful. In the case of stream 2 this is logical, since it is not redundant (its value
does not affect the values of tested quantities). In the case of stream 6 the values of
both 0, and the standardized adjustments even decreased. This can be explained in,
that the gross error is offset by random errors of the other quantitics.m

As may be seen from the above example, the chance of detecting a gross error
depends not only on its magnitude but also on the variable that is subjected to the
gross error. It is, therefore, useful to concern ourselves with the power of testing the
presence of gross error in individual quantities.

Power of the test for gross errors detection

When we try to analyze data with respect to the occurrence of gross errors, we should
realize, what is the power of the test we use. In other words - how small can a gross
error be, so that the test still might protect us against it.

Let us consider the general linear mathematical model (4.121). Let us consider
further that only a single gross error, affecting the jth-quantity, is present. Hence, the
form of the model of errors is

xt=%+d +e d=0 for j#j ‘ (4.137)
We shall limit our attention to the case in which the global test based on Q,, is used.

The key problem of the following analysis is finding the distribution of @, in the
presence of a gross error. This problem was solved by Madron (1985a) and those
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interested in more details are referred to this paper. Here -only the information
necessary for understanding the practical procedure will be presented.

In the presence of a gross error the Q,;, does not have the usual (central) x’
distribution but the noncentral one (see Appendix A.3.5). Then the non-centrality
parameter 8 is a simple function of the gross error

§=do, /0’=¢q0, /0 | (4.138)
where the dimensionless gross error g; was introduced:
g;=4d/o (4.139)

Let us denote the probability of the IInd kind error by v and the power of the test
by B. Obviously it holds

P=1-v
Now let us devote ourselves to the construction of the power characteristics of the

test, i.e. to the dependence of the test power on the gross error magnitude (see
Fig.4.11).
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Fig.4.11 — Construction of the power characteristics
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In the g; - B coordinates the power characteristics run through three important
points.

For g;= 0 (absence of a gross error) obviously B = a. The coordinates of the other
two points are (g; s > 0.5) and (g; o ; 0.9). Here ¢; 5 and g; 3, 7are such values of a
dimensionless gross error that the power of the test is 50 and 90% resp These values
are then easily calculated from

s0= 85 G/ 07, | | (4.140)
=8, G/ 0, | | @14

The only unknowns in Eqs (4.140) and (4.141) are the constants 8, and Jy, . These
values are functions of the number of degrees of freedom v and significance level .
Fora=005andv=1,2,.., 20 these constants were tabulated in (Madron 1985a)
and are presented in Table 4.7. For the computer implementation the following
empirical relation can be adopted for calculation of &, (v , 0.05):

8 (v, 0.05) = 3.2403 + 0.4334 In (v) + 0.02692 In* (v)
+ 0.01229 10’ (v) - (4.142)

Table 4.7 — Table of values of d, and 3y,

v ds0 9 v 350 Bo0

1 1.96 3.24 11 3.09 4.60
2 2.23 3.56 12 3.15 4.67
3 240 3.76 13 3.20 474
4 2.53 3.93 14 3.25 480
5 2.64 4.06 15 3.30 4.86
6 274 4,17 16 334 491
7 2.82 4,28 17 3.38 4,96
8 2.90 437 18 342 5.02
9 297 4.45 19 3.46 506
10 3.03 4.53 20 3.50 5.11

Using the above procedure it is comparatively easy to construct the power
characteristics for any redundant quantity. In real problems, however, where hundreds
of rediundant quantities are involved, constructing the power characteristics is not
practical. However, the power of the test may be fairly well characterized by a single
number - the value of g; o Or d; o = g; 5 G, - thal is, by the value of a gross error
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which will be detected with the probability of 90%. The d; o value is called "the
threshold value" and g; o is called "the dimensionless threshold value".
It is quite 111ustrat1ve to draw the dependence of g; 4, on the ratio G;, / ©; , which

follows from combmanon of Eqs (4.141) and (4.93)

_ Oy (v, 0.05)
hm= e Te )™

(4.143)

The dependence (4.143) for o = 0.05 and different degrees of freedom is shown in
Fig.4.12. It can be scen here that when the ratio S, / ©; is greater than 0.7 (or the

adjustability is less than 0.3), the efficiency of the test for the detection of gross error
is decreasing steeply. It is logical that in the cases of nonadjustable guantities, where
the adjustability equals zero, no gross error can be detected.

15

93,90

10

Fig.4.12 — Dependence of dimen-
sionless threshold value gy, on the

= 5%/ ratio G, /o

Example 4.12: Threshold values for mass balance reconciliation

Let us continue with the analysis of the mass balance from Example 4.11. The
calculation of the threshold values is demonstrated in Table 4.8. It is the case of two
degrees of freedom, so that we find in Table 4.7 the corresponding value of
84 = 3.56. By a calculation according to Eq.(4.141) we arrive at the values present
in the last two columns of the Table 4.8.
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Table 4.8 — Threshold values (Example 4.12)

J G; ij d; o0 d; o0
1 1.0 0.779 4.570 4.57
2 0.8 0.0 oo oo
3 0.8 0.531 5.363 4.29
4 04 0.0750 18.987 7.60
5 2.0 1.875 3.797 7.60
6 0.1 0.00799 44.56 445

Let us note that the calculation is carried out with the known standard deviations
only; we do not need to know the values of the measured quantities. Hence' the
analysis of the power of the test can be done prior to the measurement proper.

The results presented in Table 4.8 conform well with those of Example 4.11.
Indeed, it is not possible to expect that a gross error could be detected in the case of
stream 6 since the gross error introduced is considerably smaller than the threshold
value for this quantity, which equals 4.45. In the case of streams 1,3 and 5 gross
errors were detected without any problem because the gross errors were
approximately twice the respective threshold values. Accordingly, also the values of
Q,;, are more than ten times higher than the critical value of the test.

It may be rather confusing that the gross error detected in the case of stream 4 is
somewhat smaller than the threshold value (4 versus 7.595). Here it 1s caused by the
values of random errors that were present in this case. It is probable that, in a
repeated measurement, this gross error would not be detected (let us note that the
value of Q_, is but slightly higher than the critical value of the test - 8.43 and 5.99,
resp.).m '

Effect of gross errors on results of measurement

From the practical point of view a comparison of the power characteristics of the test
for detecting gross error with the effect of a gross error on quantities that are the
target of the measurement is more important than the power characteristics proper.

If the deviation of the target quantity from the true value exceeds a required value,
we say that this target quantity is in gross error. Then the following phenomena can
be defined: :

phenomenon B - gross error was detected

phenomenon A - a gross error occurred in the farget quantity

phenomenon C - non (B) N A - no gross error was detected and, at the same time,
a gross error occurred in the target quantity.
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It is instructive to plot the dependences of the phenomena A, B and C on the gross
measurement error magnitude. In the case of phenomenon B this has already been
done since such dependence is identical with the power characteristics of the test
(Fig.4.11).

Typical dependences of the probablllty of the occurrence of a gross error in the
target quantity (phenomenon A) on the gross error magnitude are demonstrated in
Fig.4.13a. The individual dependences may differ from one another considerably in
accordance with the form of the relation between primary and target quantities. We
can meet with strong dependences where even a small gross error manifests itself as
a gross error in the target quantity (curve 1), as well as with the case where the target
quantity is independent of a certain primary quantity (straight line 3).

—= PlA]

Fig.4.13 — Probabilities of events A and C

Similar dependences for the probability of the case when no gross error in a
primary quantity was detected - while in the target quantity a gross error occurred
(phenomenon C) - are presented in Fig.4.13b. There are three typical dependences
that can be met with. The curve 1 represents a case when, from a certain magnitude
of a primary quantity gross error, the probability of phenomenon C is high. Such an
unfavourable case occurs when the primary quantity is nonadjustable and affects the
target quantity. The curve 2 runs through a maximum, the value of the function in
the maximum being greater than the given value P, . The probability of the
phenomenon C is considerable only within a certain range of the primary quantity
gross error. The last case (curve 3) is the most favourable one. The curve either tends
to the horizontal axis or runs through a not very distinct maximum. Here the
probability of the phenomenon C is low irrespectively of the magnitude of the
primary quantity gross error.
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As regards practical consequences, it is mecessary to avoid particularly the
phenomenon C, which means that a result is subject to a gross error, while we take
it as being correct. Henceforth we shall refer to the phenomenon C as an error of
kind C. The error of kind C differs from an error of the IInd kind in that it does not
consider those cases when a gross error, though existing, has not been delected and,
at the same time, no gross error occurred in the target quantity (which is essential).

Example 4.13: Detection of gross errors in the material balance of an absorber
Let us consider the absorption unit described in Example 4.9. Regarded as the target
quantities will be the degrees of absorption of substances 1 and 2 (s; and 5, )
defined as § : :

.Sl = nlz/nu‘. (4 144)
32= ”22/”21 - :

where n, ; is the flow of ith component in jth stream,

The efficiency of the material balance analysis from the viewpoint of the
occurrence of gross errors was simulated on a computer using the Monte Carlo
method. Randomly generated uncorrelated errors with zero mean value and relative
standard deviations, shown in the Table 4.5, were added to the values of the primary
quantities that satisfied the balance equations exactly and represented the real values.
In addition, a gross error of constant magnitude was always added to one primary
quantity. A hundred of thus simulated measurements were conducted for each primary
quantity and magnitude of gross error using the method described in Example 4.9.
The H, hypothesis was tested by the 0, statistics.

The results of the study are presented in Figs 4.14 to 4.16. Empirically assessed
power characteristics of testing the H;, hypothesis are shown in Fig.4.15. These are
relative frequencies of detecting a gross error (rejection of Hy ) for the individual
measured quantities in dependence on its magnitude. The gross errors in primary
quantitics are expressed in a dimensionless form (divided by their standard
deviations). It may be seen from Fig.4.14 that the power characteristics for the
individual primary quantities differ markedly from one another. While, for example,
the power characteristics for the primary quantities 1 and 2 are favourable, il holds
for the quantity 4 that any gross error will probably not be detected, even if it is
considerable in reality.

Let us further define the concept of the gross error in the target quantity. If we
start from the true values of primary quantities, we arrive at the true values of the
degrees of absorption s, = 0.4968 and s, = 0.8907. If we take into consideration the
standard deviations of the primary quantities shown in Table 4.5 and carry out the
reconciliation, we find the standard deviations of thus assessed degrees of absorptions
¢, = 00122 and G, = 0.0046. Assuming normal distribution, we can construct for

the degrees of absorption the confidence intervals whose limits {for o = 0.05) are



184 Processing of measured data {Ch. 4
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Fig.4.14 — Power characteristics of gross error detection test (Example 4.13)

—3
Fig.4.15 — Probabilities of error of type C for quantity s,

{04729 , 0.5206) for s, and {0.8817 , 0.8997) for s, . If the degrees of absorption
found in the individual simulated measurements lie outside these intervals, we will
state that this target quantity (degree of absorption) is corrupted by a gross error.
Empirically assessed probabilities of errors of type C are shown in Figs 4.15 and
4.16. These are relative frequencies of the case when a gross error occurred in one
of the target quantities, which, however, has not been detected (the hypothesis H, has
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Fig.4.16 — Probabilities of error of type C for quantity s,

not been rejected). It follows from the diagrams that in a limited number of the
primary quantities a gross error within a certain range may cause, with a high proba-
bility, that the target quantity will be subject to an undetected gross error (primary
quantities 3 and 5 in the case of 5, and 4 in the case of 5, ). With the other primary
quantities such danger is negligible.

The conclusion that can be drawn from the above finding is that the statistical
analysis of material balance inconsistency in combination with independent checking
of the results of measurements 3, 4 and 5 (using parallel independent measurements,
frequent revisions of measuring instruments, and the like) can, with high probability,
exclude the possibility of any of the target quantities being corrupied by gross
errors. m .

Detection of systematic errors

Let us assume that we have a series of measurements of a certain process, for
example a number of material balances set up on the basis of the day-to-day
evaluation of the plant operation. Series of resulis so obtained make it possible not
only to deal separately with the analysis of the individual sets of measurements, but
also to examine the resulting time series with respect to the occurrence of systematic
errors. Hence a more extensive volume of data enables one to detect smaller errors
than was so in the cases discussed earlier.

Let us consider a series of adjustments of a single quantity obtained as the result
of data reconciliation. If systematic errors are not present, these adjustments should
behave as realizations of a random variable, which means that they should fluctuate
around zero. The examination of such a time series from the viewpoint of a
systematic occurrence of positive or negative values, or of a certain trend, can direct
our attention to the fact that systematic errors may be present. Other methods for the
examination of this problem (problem of the analysis of residuals in regression) are
discussed in the book (Draper & Smith 1966).
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4.5.2 Searching for the source of gross errors

Finding out that a gross error is probably present in the measured data represents only
the first step in solving the problem of eliminating the gross error from the data. In
principle, it is possible to proceed so that all the sources of measured values are
checked up (measuring instruments, analytical methods, sampling practices, eic.). The
extent of work associated with an action of this kind is usually enormous and,
besides, in many cases the checking of plant measuring instruments cannot be done
without breaking up the plant operation (disassembling of flowmeters, and the like).

It is, therefore, useful to concern ourselves with the possibility of finding out the
source of a gross error on the basis of the analysis of measured data inconsistencies.
Such an approach to the searching for the gross error source need not lead to an
explicit determination of the error source but can reduce considerably the amount of
measurements that would need to be made on site.

Preliminary considerations

As an introduction it is necessary to state that the identification of a measurement that
is subject to a gross error is more complicated than a mere detection of a gross error.
The reason for this is that the problem of errors identification often cannot be simply
formulated mathematically. In its solution methods of mathematical statistics and
logic have to be combined with mformatnon on the measured process we have
acquired previously.

In publications dealing with statistical treatment of measurements some problems
of the measured data analysis are solved with a view to identifying the so-called
outliers, In Subsection 3.3.2 a method was set out for identifying a gross error in a
series of repeated measurements of the same value. Methods are also known for
identifying a measurement departing significantly from a regression line. In most of
these cases, however, this concerns measurements of a single variable, with roughly
the same precision, The structure of the mathematical model usually is simple, which
makes the problem considerably easier. When carrying out measurements in process
Pplants we meet simultaneously with different measuring precision, and the measured
quantities usually are interrelated with one another in a rather complex way. In such
a case it is necessary to adopt procedures differing, to a certain degree, from those
hitherto commonly presented in textbooks on applied mathematical statistics.

- Now let us start from the assumption that a significant inconsistency between the
measured data and the mathematical model was ascertained. Such inconsistency may
be caused by a number of factors, which, as mentioned earlier, can be divided into
two groups: the inadequacy of the mathematical model and the inadequacy of the
model of measuring errors (presence of gross measurement errors). Further we shall
focus on the inconsistency caused by gross errors of measurement.

The basic way of scarching for the measurement (measurements) corrupted by
gross errors, can be taken over from the evaluation of controversial statements -
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similarly as it is done in daily life. If there are statements of several persons available
and one of them is in contradiction with the rest, then, on the assumption of their
independence, only that statement is considered incorrect.

In more complex cases the credibility of the individuals is also taken into account.
These two principles, of which the first one can be named principle of minimizing the
number of sources of gross errors and the second principle of credibility, will be
applied to the identification of gross errors. This means practically that we shall try
to explain a gross inconsistency as being caused by a gross error in a minimum
number (preferably only one) of the measurements, and, if we have to select among
two or more measured quantities, we shall choose the one; whose measurcment we
distrust more.

First let us concem ourselves with selecting a set of measured quantities among
which we shall look for the source of a gross error. A reasonable requirement with
respect to such a set is that it should contain quantities with uncorrelated measuring
errors. This requirement follows the principle of minimizing the number of sources
of gross error since the correlation in its consequences means that a gross error from
a single source will appear simultaneously in two or more quantities with correlated
errors. Therefore, a suitable basis for gross errors identification usually is the set of
primary quantities.

Further information on potential sources of gross errors is given by the power
characteristics of the test used for gross errors detection. It is obvious that if the
detection of a gross error in a given quantity is not probable, then the existence of
a detected gross error caused by that particular quantity is also not probable. In this
respect the limiting cases are the nonredundant quantities which can obviously be
counted out completely from the list of suspects.

A number of methods has been suggested for selecting measurements that are
subject to a gross error. Four of them will be briefly described further.

Analysis of standardized adjustments
It is known that the value of so-called standardized adjustment
z=v/0, (4.145)

is a good indicator of the presence of a gross error. It is possible o prove that when
only one gross error is present, in the absence of random errors, the standardized
adjustment of that quantity is greater or equal (in the absolute value) to the
standardized adjustments of the other quantities. Even when the presence of random
errors in other quantities may distort the situation to a certain extent, the standardized
adjustment of a quantity that is corrupted by a gross error always belongs among the
greatest ones (in the absolute value).

As mentioned earlier, the standardized adjustment is not defined for nonadjustable
quantities whose adjustments are identically equal to zero. In practice, however, we
can meet with quantities which are "almost nonadjustable”. It is characteristic for
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these quantities that their adjustments as well as the standard deviations of their
adjustments are close to zero. In theory even in this case the standardized adjustment
may serve for identifying a gross error. However, it is a quotient of two very small
numbers and, therefore, the resulting value has to be accepted with caution (it may
be affected by numerical problems during computing).

The functioning of this method can be studied on results of Example 4.11 (see
Table 4.6). It can be observed here that the variable with a gross error is always
among suspects with the largest values of standardized adjustments z, (boldface
entries in the Table). However, only in the case of siream 3 this method gives the
unequivocal answer. In the remaining cases also some other flows are found suspect.
This sitwation is typical of many real cases from industry. :

Analysis of the residuals of equations

In the case when the unmeasured quantitics are not present, or when a system of
equations can be decomposed so that such a subsystem of equations is formed, an
analysis of the individual equations residuals can be useful. If we form standardized
residuals, i.e. quotients of the residuals and their standard deviations [see Eq.(4.127)],
we may find equations having values of residuals so high that they cannot be ascribed
only to the presence of random errors of quantities appearing in that particular
equation. If we find the measured quantity in all equations that exhibit significantly
large residuals, the said quantity will be suspected as the source of a gross error. The
above method has been worked out especially for single-component balances in
complex systems (Mah, Stanley & Downing 1976), where significant residuals
possess an obvious physical meaning (so-called imbalances).

There is a problem here, however, that different equations are sensitive to the
formation of a significant residual in a different way. It may happen that a gross error
in a certain quantity will not cause a significant residual of all equations in which the
~ quantity appears (Madron 1985b). Such situation reduces somewhat the efficiency of
~ this method.

Elimination of measured quantities

~ Let us suppose that we regard all the redundant quantities - successively one by one -
~ as being unmeasured, and carry out the gross error detection procedure. If we have
included among the unmeasured quantities one that is subject to a gross error, it may
- be expected that, in this case, the gross emmor will not be deiected. Then we shall

declare suspicious all those gquantities, whose inclusion among the unmeasured
_quantities has not led to detecting the presence of a gross error.

With this method it is necessary to realize that besides the processing of the
fundamental set of measured data, so many additional runs of data processing have
to be conducted, dependent on how many adjustable quantities there are. Even when
this need not concern all the redundant quantities (it is possible to focus only upon
suspicious quantities with high standardized adjustments), the computation time may
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be prohibitive. It is, therefore, important that there have been developed procedures
(for linear models) that do not require complete reconciliation in each elimination
step. In these cases the results of the base case are corrected only as a result of the
inclusion of the measured quantity among those unmeasured ones (Ripps 1961,
Romagnoli & Stephanopoulos 1981, Crowe 1988).

Measurement credibility

When the method of elimination of measured quantities is applied to the detection of
gross errors, it is possible to meet with the following phenomenon. When a measured
quantity is included among the unmeasured ones, its value is obtained as the result
of the coaptation. If the value thus calculated differs extremely from the measured
value, we may raise objections against it.

In most cases we are informed about the maximum possible gross error which can
occur in the course of the measurement. For instance, we may know the reading of
some other, though less precise, but quite reliable instrument. The accumulation in
a storage tank must be greater than zero but cannot exceed the tank capacity. The
flow rate of a liquid is limited by the capacity of the respective pump. It would
certainly be possible to find out other kinds of prior information about the maximum
possible error of an individial measurement.

The above kind of reasoning is the basis of the following method for gross errors
identification. It can be divided into four steps:

1. A value of the maximum gross error (in absolute value), which cannot be
exceeded, is assessed for each measured quantity. This value, denoted for ith
measured quantity as d; ., , may be rather large in some cases. It may even make
sense if d; ., is within the range of hundreds of per cents of the measured value.
2. Based on the value of the gross error detection testing criterion @ .. one estimates
the value of the gross error of the individual quantities (that could cause the found
value of Q_,). These estimaies will be denoted Idl the method of their calculation
will be described later,

3. From among the measured quantities a subset B is chosen for which it holds

td | > d; e (4.146)

Thus we have selected a subset of quantities which we do not regard as the source
of a gross error since the estimate of their gross error is greater than the assumed
values d; ... .

4. Now the set of quantities suspicious as the source of a gross error (set C) is found
as the difference between the set of suspicious quantities assessed by traditional
methods (set A) and the set of quantities satisfying the inequality (4.146) (set B).

C=A-B (4.147)
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Estimating absolute value of a gross error
It holds for the mean value of the non-central ¥? distribution
Ev,8)=v+8 , (4.148)

The value of @, is the realization of a random quantity with % (v , 8) distribution.
If no other information is avaliable, Q_._ can be considered an estimate of mean value
and used for estimating the parameter § of noncentral % distribution according to

3=(0,, -V (4.149)

Respecting Eq.(4.138) we obtain, after the rearrangement, an expression for
estimating the gross error d :

1d = @ua - V)2 67 / o, " (4.150)

Example 4.14: Estimating a gross error magnitude

In Example 4.11 a case of a mass balance was dealt with. Gross errors equal to
tenfold the standard deviation of the random measuring errors were added to the
individual measured values. Using the global test, the presence of a gross error was
detected in the quantities 1, 3, 4 and 5.

Table 4.9 — Estimation of the gross errors magnitude
(Example 4.14)

j 4 (9 S; o, id; |
- 0 1.74 - - -

1 10 845 1.0 0.799 11.3
3 8 59.7 0.8 . 0.531 9.2
4 4 8.43 0.4 0.075 54
5 20 738 20 1.875 18.1

~ The values of the gross errors and of Qo fOr the individual cases are presented
in Table 4.9. The estimates of the gross errors, calculated from (4.150), are shown
in the last column of the Table. It can be seen from the results that the agreement
between the gross error true value and its estimate is fairly good,m

Example 4.15: The identification of a gross error

The detection of the gross error presence in a mass balance was examined in Example
4.11. Let us apply the methods of a gross error identification to the case when the
gross error (10 per cent of the measured value) was added to the measured
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quantity x, . The course of the identification is shown in Table 4.10. The value of
Q.. = 41.2 was found after reconciliation, which is more than the critical value 5.99.
The values of standardized adjustments z; are also present there. The highest valucs
of z; belong to the quantities 1, 3 and 6. The quantity No.3 has the standardized
adjustment a little smaller than the others but the difference is not significant.

Next the method of elimination of measured quantities was used. Successively the
quantities No.1, 3 and 6 were regarded as unmeasured ones and the reconciliation
was carried out. Then the values Q. were compared with the critical value of the
x* distribution for o = 0.05 and one degree of freedom, which is equal to 3.84 (the
transfer of one quantity among unmeasured ones culs the number of degrees of
freedom by one).

Table 4.10 —  Identification of a gross error (Example 4.15)
O = 845

i _ & Orin - i (%) den,i

1 -9.17 - 0.35 20 11

2 .

3 7.33 30.7

4 -2.66

5 2.66

6

9.17 0.35 30 57

It can be seen from Table 4.10 that the quantity No.3 can be omitted from the list
of suspects since, contrary to the quantities 1 nad 6, the presence of a gross error is
detected even when it is added to the unmeasured quantities.

Now it is necessary 1o arbitrate between the quantities 1 and 6. Based on the
evaluaion of the measured process, gross errors greater than 20 and 30% of the
measured values of x, and x, , resp., are not possible. Further, gross errors at 11%
and 54% of the measured values were estimated from Q_,, with the aid of Eq.(4.150).
Since the estimated value of the gross error for the quantity x, is considerably greater
than the maximum error (30%) set beforehand, x, remains the only suspect quantity. =

The presence of more gross errors

The methods of gross errors identification presented so far can be used also in cases
when more than one gross errors is present.

As the starting point can serve the set of quantities with large values of
standardized adjustments. If standardized adjustments differ significantly in absolute
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values, the method of successive elimination can be used. The quantity with the
largest absolute standardized adjustment is put among unmeasured quantities and the
reconciliation is done with the reduced set of measured variables, If the presence of
some further gross error is detected, the whole procedure is repeated. The whole
procedure ends if no gross emor is detected, or if there remain no redundant
quantities. .

This approach looks very promising, but the practical implementation faces serious
problems. Quite often there are more than one candidates for elimination in individual
elimination steps (remember the previous example). In some cases some other
information can be taken into account. For example Serth and Heenan (1986)
proposed to analyze if the results after the elimination of suspect quantities are
realistic (positive concentrations, reasonable values of flow rates etc.). If it is not the
case, the respective suspect quantity is not eliminated. However, even in this case the
probability of eliminating good measurement and retaining the bad one is quite high.

4.5.3 Elimination of gross errors

When eliminating gross errors, we distinguish, essentially, between two different
cases. The first one occurs when we can use as the basis only the measured data and
cannot repeat the measurement, neither can we examine the properties of the
measuring instruments used, and the like. In this case it is a matter of a mere
elimination of values that are subject to gross errors (which can be done
automatically by a computer). As follows from our long term experience, this
problem can only exceptionally be solved with success. The reason is that the
methods for gross errors identifications only rarely give unambiquous results
(especially when more gross errors are present). We say that these methods are not
selective enough. More often they define a set of suspect quantities.

The other case, in which the analysis of measured data takes place simultaneously
with their acquisition (for example when the data processing is on-line), is
considerably more favourable. Then the set of measured quantities can be divided into
two sets, the first one containing those quantities, which are checked by procedures
for gross errors detection (the quantities with low threshold values). If a gross error
is detected, it can be identified and eliminated by a combination of gross error
identification procedures and on site checking of measuring instruments.

In the second group there are quantities for which the gross error detection is not
efficient (high values of threshold values). If these quantities influence significantly
the targets of the whole measurement (see Subsection 4.5.1 - an error of type C), they
should be checked independently on-site (by adjusting the instruments more
frequently, doubling the measurements, and the like). Only such complex approach
can yield really reliable results. On the other hand, the reliance on automatic
elimination of gross errors by a computer may result in false confidence in results.
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Even very sophisticated data analysis methods cannot substitute the responsible
approach to the measuring process, maintenance of instruments, and the like.

4.6 RECOMMENDED LITERATURE TO CHAPTER 4

Reconciliation of measured values based on the least-squares principle was devised
independently by Gauss, Legendre and Andrain at the beginning of the 19th century
(Bohm & Radouch 1978). Since then thousands of papers and many books on this
topic have been published. Reconciliation had been widely used mostly in astronomy
and geodesy long before the advent of computers (for example the reconciliation of
measured angles in triangular nets used in geodesy to obey 180° sum in every
triangle). :

First such activities in process engmeermg emerged in the early sixties (RlppS
1961, Kuehn & Davidson 1961). Since then many applications in chemical and
refinery processes, pulp industry, ore processing and others have been described in
the literature. '

The basics of reconciliation and parameters estimation can be leamed, for example,
from papers by Britt & Luecke (1973), Knepper & Gorman (1980) or from books
(Mah 1990, Bard 1974). '

The basis of almost all chemical engineering models is formed by mass,
component and enthalpy balances. Processing of data obeying mass (single-
component) balances is treated well in papers by Vaclavek (1969a), and Mah, Stanley
and Downing (1976). Multicomponent balances are discussed e.g. by Vaclavek,
Kubicek & Loucka (1975).

There is quite voluminous literature on variables classification, mostly in
connection with mass balances (Vaclavek 1969a, Mah, Stanley & Downing 1976,
Stanley & Mah 1981b, Crowe, Campos & Hrymak 1983) or component balances
(Vaclavek, Bilek & Karasiewicz 1972, Vaclavek, Kubicek & Loucka 1976,
Romagnoli & Stephanopoulos 1980, Kretsovalis & Mah 1987a, Crowe 1989a). Papers
by Kretsovalis & Mah cover also chemical reactors and energy balances (1988a,
1988b). Most of the classification algonthms are graph-oriented, some are
equations-oriented.

Attention is given also to problems of gross errors detection. After the first works
in this area (Reily & Carpani 1963, Almasy & Sztano 1975, Mah, Stanley and
Downing 1976) many others were published (Madron, Veverka & Vanecek 1977,
Romagnoli & Stephanopoutos 1980, Tamhane 1982, Mah & Tamhane 1982, Madron
1983a, Serth & Heenan 1986, Heenan & Serth 1986, Serth, Valero & Heenan 1987,
Crowe 1989b). Some gross errors detection procedures were evaluated by Tordache,
Mah & Tamhane (1985).

The identification of gross errors has also received much attention. After pioneer
works by Ripps (1961), Nogita (1972) and Mah, Stanley & Downing (1976) this
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problem was investigated e.g. by Madron (1985a, 1985b), Narasimhan & Mah (1987)
and Crowe (1988). All the above procedures are based on the assumption that the
covariance matrix of measuring errors is known. A quite different approach based on
so-called Studentized residuals was described by Jongenelen, Hrijer & Zee (1988).
Also worth mention are the methods of estimating the covariance matrix of
measurement errors (Kubacek 1983, Almasy & Mah 1984),

An efficient solution of large-scale problems is facilitated by the decomposition
of data processing into reconciliation and coaptation described in Section 4.2. Widely
used are the graph-oriented approach presented by Mah, Stanley and Downing (1976)
and equations-oriented matrix projection method by Crowe, Campos & Hrymak
(1983) and Crowe (1986).

The identification of nonlinear models in this book was based on linearization of
the system of equations. Another approach based on nonlinear programming has been
studied by Pai & Fisher (1988), Ramamurthi & Bequette (1990), Tjoa & Biegler
(1990).

There are also numerous papers on data processing of specific unit operations, such
as chemical reactors and bioreactors (Vaclavek 1969a, Murthy 1973, 1974, Madron,
Veverka & Vanecek 1977, Madron 1981, Wang & Stephanopoulos 1983), distillation
problems (Rose & Hyka 1984, Horakova & Madron 1987, MacDonald & Howat
1988, Kuncir & Madron 1990), rigorous models of unit operations (Nair & fordache
1990) and heat exchangers (Madron, Horakova & Hostalek 1986, Pang et al. 1990).
‘Reconciliation can also be applied to utilities systems (Serth & Heenan 1986,
Stephenson & Schindler 1990). _

Important experience can be gained from the implementation of modern data

processing methods in operating plants (Umeda, Nishio & Komatsu 1971, Holly,
Cook & Crowe 1989, Raza et al. 1989, Leung & Pang 1990).
~ The important problem of the choice of directly measured quantities (the
measurement placement) was dealt with by Vaclavek (1969b), Vaclavek & Loucka
~ (1976), and Madron & Vybomy (1983).
- A common assumption applied so far concerned a sieady-state of the measured
process. The data processing under dynamic conditions is studied by Wells (1971),
Vaclavek (1974) and Stanley & Mah (1977). A good analysis of this problem was
- presented by Almasy (1990). The detection of changes in steady states was studied
by Narasimhan et al. (1986).
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As already stated in Chapter 2, the individual stages of the process of measurement,
i.e. preparation of a measurcment, the measurement proper and evaluation of results,
have to compose a balanced whole. The first precondition for obtaining good-quality
results are responsible planning and preparation of the measurement that include
decision-taking at several levels, from a global conception of the measurement to
details of chemical analyses, sampling methods, and the like.

The problems of measurement planning are more complex than those we have
dealt with so far. They require that we cope with a number of spheres of the
measurement theory (problems of errors, measured data processing) and, therefore,
we can concern ourselves with them only at this place, although, taken from the
viewpoint of methodology, this Chapter should have been inserted at the begmmng
of the book.

The measurement can be effected in various ways differing in their efficiency.
Hence the planning of measurement may be formulated as a problem of optimization
(how to obtain the required information at minimum costs, within the shortest
possible time, etc.). Since this presents a complex problem, it would be extremely
difficult to solve it as a single whole. A more favourable prospect of succeeding has
the approach based upon optimization of partial problems at individual levels, or on
comparison among several different alternatives. Although in most cases such an
approach does not lead to the overall optimum, it makes 11: possible to obtain a
satisfactory, technically feasible solution.

5.1 DETAILS OF PLANT MEASUREMENT

The typical questions met in the course of detailed plannmg of plant measurements
are, for instance:

- choosing the places where samples are taken,

- analytical methods used,

- number of parallel determinations of samples composition,

- sampling frequency.
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A number of questions of this kind may be answered on the basis of intuition or
of analogy with similar cases the researcher has already met with. In other cases it
is possible to make use of theoretical knowledge based on, for example:

- theory of random errors propagation,
- character of measuring errors (systematic and random errors),
- theory of stationary random processes (measuring of fluctuating variables).

This range of problems also covers some of the questions discussed in the
preceding Chapters of this book. So, for instance, the choice of the time interval of
taking a sample from the siream, whose composition is fluctuating, represents an
example of optimization in this respect (see Example 3.16). Similarly, by using a
method based on the theory of fluctuating signals processing, it is possible to choose
between a continuous measurement (or use of an instrument equipped with an
integrating device), or measurement at discrete instants of time (see Subsection 3.3.5).

Problems often arise in the course of selecting the analytical method. Usually there
are more methods available, differing in laboriousness, precision, accuracy, and other
aspects. Since the obtaining of a more precise result is usually contingent on more
extensive work, we try to choose a method whose precision is just adequate for our
needs. The working capacity thus saved can be’ devoted 1o more useful matters
(carrying out the chemical analyses more frequently, analyzing of other samples in
order to obtain redundant measurements, and the like). The same is true as far as the
optimum (or minimum necessary) number of parallel analytical determinations is
concerned. A suitable approach to the solution of the said problems is the application
of the theory of information 1o the problems of analytical methods, which is
described, for example, in (Eckschlager & Stepanek 1979). '

5.2 APPLICATION OF THE ERRORS PROPAGATION THEORY

The theory of errors propagation can be applied in virtually all spheres of the
measurement planning. At this point we shall study the possibilities of selecting
conditions of measuring in an optimal way, so as to reduce the influence of random
measurement errors on the errors of final resulis,

The results obtained by studying the propagation of random errors (see Tab.3.1)
enable one to formulate certain simple rules that have to be adhered to when
minimizing errors of results. So, for example, when a result is given as the sum of
a series. of directly measured quantities, the precision of the result is affected mostly
by the precision of the measurement with the highest variance; such measurements
have to be focused upon when improving precision of the result. Analogically, when
a result is a product of directly measured quantities, maximum attention must be
given to the measurement with the greatest relative standard deviation.

The course of optimization of measurement conditions is as follows: that quantity,
which is the objective of the measurement, is expressed as the function of directly
measured quantities and other quantities, characterizing the measurement conditions.
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Those quantiﬁes, which can be varied freely and which affect the precision of results,
represent for us the optimization variables. A suitable measure of the precision of a

result (most frequently the standard deviation) is expressed with the aid of random .

errors propagation theory as a function of the optimization variables. When doing so,
we must often consider the influence of optimization variables on the precision of
primary quantitiecs measurement. The task of measurement optimization is then solved
as minimization of standard deviation of the result with respect to the set of
admissible values of optimization variables.

Example 5.1: Optimization of ammonia losses measurement

A mixture of air and ammonia is leaving the plant via a stack. It is necessary 1o
determine the ammonia flow rate in the stack. However, due to the character of
streaming in the stack, conventional methods of flow rate measurement cannot be
used. A method has been suggested, based on the fact that the flow through the stack
in time is virtually constant. Ammonia concentration is measured under normal
operation conditions and then a measured amount of secondary air is fed to the stack
bottom. After stabilization ammonia concentration at the stack outlet is measured.
Ammonia flow rate can be computed on the basis of component mass balance. The
task is to find such flow rate of secondary air, at which the standard deviation of the
assessed ammonia flow is minimal.

Tt is known that the total mass flow through the stack is roughly 300 kg h™* and
the ammonia mass fraction 0.05. The standard deviations of the individual
measurements are 6 kg h'' and 0.0025 for the secondary air flow rate and ammonia
{raction, resp.

Let us introduce the follomng symbols:

F, - flow rate through the stack at the beginning of the measurement (kg h™"),
Fl - mass flow rate of secondary air, the optimization variable (kg h),
w - ammonia mass fraction at the beginning of the measurement,

- ammonia mass fraction after the dilution by secondary air
F = Fy w - mass flow rate of ammonia, the target quantity,

s O, - standard deviations of measurements of the secondary air mass flow rate

and of ammonia mass fractions.
The fundamental balance equation is

Fow=(F,+F, )w , or
(5.1)

The mass flow rate of ammonia is expressed by means of directly measured quantities
Fy,wand w, .
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F,w w
F=Fyw= —— (5.2)
W—Wl

For use of the calculation of random errors propagation, we linearize the nonlinear
relation (5.2) by expanding in the Taylor series while neglecting the terms of the
second and higher orders. The function is expanded at the point of the assumed
values of quantities F, and w:

w, F, w}? F, W
AF, - —— AW+ —— A 5.3
W - W, w-w, )? W (w-w, )? e 53)

F=F,w+

We assume that the errors of measuring are non-correlated; then the variance of the
ammonia flow rate ¢, is expressed by the following relation [see equation (3.45)):

2 4 4

w2 w wt + w

o= ——— of +F’ —— o} (5.4)
(w-w)? (w-w, )*

since 6,2 = 6,2

The relation (5.4) is evaluated for the values F, = 300 kg h” and w = 0.05. The
mass fraction depends on the other quantities:

Fow '
= 5.5
Wy Fo + F, (5.5)

The flow rate F, is considered to be an independent variable.

The dependence of o, on the ratio F, / F, is demonstrated as curve 1 in Fig.5.1.
The minimum value of oy is attained for the flow rate of secondary air equal to
- approximately 1.1x multiple of the flow rate through the stack, ie. for F| =
330 kg h'. At this optimum value the standard deviation of the ammonia mass flow
rate equals 3.1 kg h', which is 20.6 % of the measured value. In addition, it follows
from Fig.5.1 that the secondary air flow rate can be chosen at a somewhat higher than
- optimum value without any significant adverse effect. If, on the other hand, the flow
rate is lower than optimal, the precision of measurement decreases steeply.

Let us examine also the effect of standard deviations of direct measurements on
standard deviation of the result. If the standard deviation of ammonia concentration
measurement is reduced to a half, we obtain the dependence 2 in Fig.5.1. When the
standard deviation of the measurement of secondary air flow rate is reduced to a half,
however, 6 remains virtually unchanged (dropping by only 0.3% at the minimum),
so that the dependence of o, on the ratio F, / F,, coincides with the original curve 1.
Hence, if we want to improve the measurement of F significantly, we have to focus
our attention on reducing the variance of ammonia concentration measurement. =
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Fy _ Fig.5.1 — Precision of ammonia
FD ' flow rate measurements (Example
5.1)

The method described above can be generalized to the case of a greater number
of variables with the use of share matrices introduced in Chapters 3 and 4.

5.3 OPTIMUM ESTIMATION OF MATHEMATICAL MODELS
PARAMETERS

The generalization of the problem solved in Example 1 is the choice of such
conditions of the measurement as will ensure that the whole set of unmeasured
quantities (parameters of the mathematical model) are estimated with the highest
possible precision.

First it is necessary to choose a criterion that will be used as the measure of the
parameters precision. The following quantitics are minimized most frequently:

- volume of the confidence region (ellipsoid) of parameters,
- sum of variances,

- weighted sum of variances,

- maximum variance.

Solutions of some of the problems can be found e.g. in the monograph (Bandemer
et al. 1977). Next we shall outline, how this task is deadlt with when the volume of
the confidence ellipsoid of models parameters is minimized. In this case we take
advantage of the fact that the volume of the confidence ellipsoid V is directly
proportional to the root of the determinant of the covariance matrix of estimates of
models parameters y.
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V ~ [det F,]'2 = [det ;' 177 (5.6)

It is, therefore, sufficient to find such a method of measurement that will minimize
the determinant of Fj or maximize the determinant of Fj".

Further we shall confine ourselves to a model of estimating the directly
unmeasured quantities from redundant measurements (see Subsection 4.4.2).

The mathematical model is

By = x | | (57)

We shall assume that the measurements of the directly measured quantities X are
equally precise, and the matrix F, is not known in advance. The estimate of the
covariance matrix of parameters estimate is given by (see Example 4.7)

F,=8*(B" B)" (5.8)

On the given assumption the estimate of the covariance matrix F; is a function of the
matrix B only and it holds that

det F;' ~ det (BT B).

By choosing the matrix B (referred to as the design matrix) we can influence the
covariance matrix of estimates of directly unmeasured variables, which is used when
the optimum conditions of the measurement are searched for.

Let us assume that the model (5.7) represents the expression of the measured
dependent variable x as a polynomial function of an independent variable . For the
individual values of ¢; and x; Eq.(5.7) has the following form:

LYty . My =x, Q=11 (5.9)

and the ith row of the matrix B obviously is (1, f; , ... , £ ). The values of the
independent variable f; (supposed to contain no error) are so-called node points of
measurement. Obviously the volume of the confidence ellipsoid of ¥ is, for a given
number of measurements /, a function of the choice of node points ¢; that are, in this
case, optimization variables. When an interval is given within which the ¢, may be
selected, the two following tasks can be formulated.

How can one choose #; , i = 1, ..., I so that the confidence ellipsoid of y be as
small as possible? It is essentially a case of the selection of node poinis of
measurement and of assessing the number of repetitions of measurements at the
individual node points.

The second problem arises if a number of measurements is already available but
we are not satisfied with the result (the confidence intervals for the parameters are
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100 wide). We carry out additional measurements so that we always measure one pair

, evaluate the result, and repeat this until the confidence region is reduced to the
requued size, In this case the task is to choose f; in each successive measurement, so
that the decrease in the confidence region is maximal (the procedure is referred to as
sequential method),

Example 5.2: Improving the estimation of linear function parameters

In Example 4.7 we have estimated parameters of a lincar function of an electrolytic
cell voltage in dependence on current intensity. The confidence ellipse parameters by
and b, were markedly elongated. Therefore, supplementary measurement is required
to make the estimates of parameters more precise (to reduce the area of the
confidence ellipse to less than one fifth of its original value). The independent-
variable - current intensity - can be chosen from the interval {0.5, 3) kA. We may
assume that the precision of voltage measurement does not depend on the value of
current,

The task is to suggest further measurement (that is to select such values of current
intensity), so that the required reduction of the confidence ellipse area might be
achieved with the least possible number of measurements. To do so, we will use the
method of maximization of the matrix (BT B) determinant. In Example 4.7, ten
measurements have already been made and we are now planning the eleventh
measurement. Hence the matrix B will have eleven rows. The first ten rows have
already been fixed (by the measurement carried out previously), the eleventh row
(1,1, ) contains the optimization variable, i.c. the current intensity during the
supplementary measurement. :

Table 5.1 — Results of Example 5.2

I, D D\ s x 10¢ 6, % 10° 8, x 107
- 1.412 0.842 9.818 4.96 172
0.5 58.40 0.131 1.296 0.73 0.26
1.0 37.06 0.164 1.628 092 0.33
1.5 20.72 0.220 3.152 1.49 0.53
20 9.374 0.327 3324 1.86 0.66
2.5 3.031 0.574 6.167 3.44 1.21
3.0 11.688 0.770 7.998 4.61 1.59

In Table 5.1 the values are presented of D = det (BT B) and of the reciprocal
value of the D root (proportional to the area S of the confidence ellipse) for various
values of /,, within the range 0.5 - 3 kA. It may be seen that the area of the
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confidence ellipse will be minimal when the current intensity during the subsequent
measurement is at the lowest limit of the admissible interval, i.e. 0.5 kA.

To verify the above conclusion, a series of measurements was simulated by a
computer for the values of current intensity as given in the first column of Table S.1.
Using the methods described in Example 4.5 the values of parameters were evaluated
and also the confidence ellipses were assessed. Areas of the ellipses as well as the
estimates of standard deviation parameters for the individual cases are presented in
the next columns of Table 5.1. ‘

It follows from the results that the optimal value of current intensity during the
supplementary measurement ensures that the initial requirement (to reduce the area
of the confidence ellipse to 1/5 of its original value 9.818x10 % ) is met since the
reduction was actually by the factor 7.6. On the other hand, if the supplementary
measurement were carried out at / =3 kA, the ellipse area would have decreased only
by the factor 1.2, so that additional measurements would be necessary.m

5.4 SELECTING DIRECTLY MEASURED QUANTITIES

The problem of optimizing the selection of directly measured quantities can be
formulaied mathematically in the following way., We assume that a mathematical
model, represented by a system of equations among the quantities occurring in the
given problem, is known. The set of all the quantities not known beforehand can be
divided into subsets of measurable and unmeasurable, and further into subsets of
required (representing the objective of the measurement) and non-required quantities.
The task is to select from the set of measurable quantities a subset of quantities that
will be measured, so that the desired quantitics can be estimated at a required
accuracy, and, at the same time, an extreme of the optimization criterion (for example
the minimum cost of measurement) is attained. Hence we are trying t0 meet the
objective of the mecasurement at the minimum cost, within the shortest possible time,
with the lowest consumption of labour, and the like.

There is no doubt that thus formulated the problem is interesting theoretically but,
in most cases, its significance is purely academic. The reasons for this statement are
as follows. N

~ The notion of accuracy of a result is rather complex. In addition to precision, it
involves also the question of systematic errors of measurement and of protecting the
results against the influence of gross errors of measurement, In spite of the fact that
methods for solving such partial problems do exist, in the end it is difficult to
evaluate exactly the individual variants of measurement with respect to accuracy of
the obtained resulis. _

Further problems may arise when forming an objective function which is o be
optimized. There is often a number of methods available for measuring of a certain
variable, which differ from one another as regards the occurrence of random,
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systematic and gross errors (for example, the flow rate can be measured by
flowmeters of various types, each of which can have several modifications).
Information conceming the cost of individual variants is usually rather incomplete.

The set of admissible methods of measurement usually is fairly extensive. As will
be shown later, the number of various possibilities of selecting the measured
quantities is quite high even in comparatively simpie cases.

It would be possible to present more reasons for claiming that the task of optimum
selection of measured quantities cannot be solved rigorously for the time being. This
knowledge, however, should not prevent us from applying the findings of the theory
of measurement to solving the partial problems we meet when selecting the measured
quantities. '

Next we shall try to outline the solution of some topical problems in this arca. We
shall confine ourselves to the selection of directly measured quantities (which is
sometimes formulated as a dual problem of selection of unmeasured quantities) so
that a just solvable set of equations for unmeasured quantities is formed. The case of
optimal selection of redundant measurements (for instance with a view to detection
of gross errors) has not yet been solved.

5.4.1 Classification of quantities

We are often confronted with the task of carrying out the measurement of a plant
equipped with some instrumentation, and where analyses of certain streams are
conducted routinely. We. want to know whether all the quantities, required as the
result of plant measurement, are observable (i.c. belong among the directly measured
or can at least be estimated by solving the equations of the mathematical model). If
it is not so, we need to know, which quantities, hitherto unmeasured, have to be
measured so that all the required quantities might be determined. Therefore, the first
stage consists in dividing the unmeasured quantities into observable and unobservable
ones. In the second stage unmeasured quantities are selected as measured in the
future. It is useful to classify, at the same time, the directly measured variables as
redundant and nonredundant (since only redundant variables can be analyzed as
concerns the occurrence of gross errors).

Thus formulated the problem can be solved easily for a one-component mass
balance. Let us assume that we have a flowsheet expressed in the form of a
connected oriented graph. Let us assume further that we want to assess the flow rates
of all the streams. For use of classification it is advantageous to take the graph as
disoriented, that is, not to consider the orientation of the graph edges.

For the classification of unmeasured streams as observable and unobservable, the
following rule is applicable (Mah 1990):

The stream is unobservable if and only if it occurs in a circuit of unmeasured

streams.
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Fig.5.2 — The graph of mass balance schema

In the diagram (Fig.5.2) there is only one circuit formed by unmeasured streams 8
and 9. The flow rates of these streams are nonobservable, It is obvious, too, how to
proceed when selecting additional measurements in order to make all the unmeasured
streams observable - we select unmeasured sireams with a view 1o break the circuits
of unmeasured streams. In our particular case we are choosing between sireams 8 and
9. By including one of these sireams among the measured ones we are breaking up
the circuit of unmeasured streams and all the flow rates are thus observable.

Similarly, there exists a simple method for classifying directly measured flow ratcs
as redundant and nonredundant ones. The following rule (Mah 1990) holds true:

Let a stream i connecting the nodes j and k, be measured. The measurement of the
stream i is redundant if and only if the nodes are not connected by a path of
unmeasured streams.

Hence, for example, the measurement of the stream 2.in Fig.5.2 is nonredundant
since the unmeasured sireams 6 and 7 connect the nodes 5° and 2’ (initial and
terminal nodes of the stream 2).

When we want to find all the redundant quantities we proceed so, that we
gradually reduce the original graph by merging the nodes connected by unmeasured
stream (or streams), and ignore the resulting loops. The procedure is illustrated in
Fig.5.3. Successively we combine the nodes 1’ and 5° (streams 1 and 6 drop out),
nodes 3’ and 4’ (streams 8 and 9 drop out), and finally we merge the node 2° with
that obtained by merging of nodes 1’ and 5°. The resulting graph coniains only the
streams 3, 4 and 5, which are, at the same time, redundant.

In a general case, when we work with a general mathematical model, the
clasification of quantities is more difficult. If the mathematical model is linear, we
can use the method described in Section 4.2. The information about variables
classification was obtained there as a by-product of problem decomposition into
reconciliation and coaptation. If the mathematical model is nonlinear, the problem of
classification is much more complicated. If we apply this method on the linearized
form of the model, the solution is only approximate. There have also been developed
other methods of classification, mostly applicable to systems of balance equations.
These methods which are efficient, but rather complicated, will be mentioned in
Section 5.6.
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Fig.5.3 — Reduction of a graph_when looking for redundant measurements

In most cases the above procedures enable the task of variables classification to
be solved without major problems. Yet, there may be a reservation as regards this
approach. Practical experience shows that the resulis of classification should not be
overvalued. It often happens that the precision of a quantity, which is observable in
theory, is so poor (its standard deviation is so high) that it is nonobservable in
practical terms. Similarly, a measured quantity may be redundant in theory, but not
so in practice (low adjustability resulting in bad precision if calculated). It is,
therefore, useful to look at the problem of variables classification from a practical
point of view. '

Let us introduce the following terms: Nonobservable in practice is such a quantity,
whose standard deviation is greater than the value predetermined for that quantity.
Note that this term covers both estimates of directly measured and unmeasured
quantities.

A quantity is redundant in practice when the adjustability is greater than the set
value A: :

a=1-0,/0,+>A

A being from the interval {0,1).

The following procedure proved to be applicable when classifying variables in
practice. All the quantities are considered to be measured directly. The data are
processed using the method described in Section 4.4.1 [where we are interested
particularly in the relation (4.23) for the covariance matrix of reconciled values Fl.
The standard deviations of reconciled values (roots of the diagonal elemenis of the
matrix F,) are sufficient for the classification of variables in practice. There remains
one problem, however, of what should be substituted into Eq.(4.23) for the variances
of yunmeasured values.
 In virtually all cases we are capable of assessing the interval within which the

value of an unmeasured quantity must occur. So, for instance, a number of quantities
in plants are measured only by instruments with low precision, such as local
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thermometers, manometers. In most cases we do not take these readings into
consideration when processing the data since we regard them as not precise enough;
they can, however, serve as a rough specification of the range within which the
respective quantity will lie. Another time the interval is given by the physical
meaning of the measured quantity -~ for example the conceniration fraction must lie
within the interval {0,1). The flow rate of gas in a pipeline is limited by reaching
the speed of sound, or by the capacity of pumps. Pressure limit is given by adjusted
values on safety valves, and the like.

By an unmeasured quantity we may understand a random variable acquiring values
from the interval (a , b), and whose value can be written in the form@+b)/2+
(b - a)/ 2. If the distribution of this variable were uniform, it would hold for the
standard deviation ¢ = (b - @) / (2 V3). To avoid possible mistakes it may be
recommended to choose the value of ¢ somewhat higher, equal to a half of the
interval width, that is .

c=(b-a)/2

From the practical standpoint, the above method enables the problem of classification
to be solved in a simple way. This method has a sound statistical basis because the
introduction of intervals for unmeasured quantities is common in so-called Bayesian
approach (Beck & Arnold 1977) as the introduction of prior information, However,
it should not be used for strongly nonlinear models.

Example 5.3: Classification of variables in a single-component balance
Reconciliation of a single-component balarice in the case in which all the streams
were measured was discussed in Example 4.4. Let us now assume that the streams
3, 10, and 11 have not been measured (the respective diagram is in Fig.5.4a). The
task is to classify , both theoretically and practically, the quantities with respect to
their observabilty and redundancy.

It can be seen from Fig.5.4a that the unmeasured streams form a single circuit (for
example from node 4’ we can come back through nodes 1° and 3’ by streams 10, 3,
and 11). The flow rates of these three streams are, therefore, nonobservable, Now, we
shall gradually merge the nodes 1°, 3°, and 4°. The resulting graph is i Fig.5.4b. The
streams 2, 4,5, and 12 are redundant. The other streams, eliminated in the course of
nodes merging (1, 6, 7, 8, and 9), are nonredundant.

Now let us do the classification from a practical point of view. First we shall
specify the intervals, within which the unmeasured quantities must occur. The stream
3 flow ratc must lie within the interval (0;4 000) m’ ; the upper limit is given by
the maximum capacity of the pump. The interval for the flow rate of stream 10,
which has 10 be within the interval (0;1000) m® , is assessed analogically. The
stream 11 represents accumulation in a storage tank whose volume is 100 m® Hence,
accumulation has to be within the interval {0;100) m® .
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b}

Fig.5.4 — Graph of a balance schema (Example 5.3)”
a) criginal graph; b) reduced graph

Quantities, whose relative standard deviation exceeds 3% of the reconciled value
(i.e. o, / & > 0.03), will be considered practically nonobservable. Those quantities,
where reconciliation resulted in a decrease in the standard deviation by less then 10%
of its original value (i.e. o, / 6+ > 0.9 or the adjustability a < 0.1) will be considered
practically nonredundant.

Table 5.2 — Input data and results of Example 5.3

i X’ g X; O, - a Oy /x;
1 3.85E+3 1.92E+1 3.85E+3 1.92E+1 0.001 0.0049
2 1.85E+3 9.24E+) 1.83E+3 6.04E+0 0.347 0.0032
3 2.00E+3 2.00E+3 3.79E+3. 5.33E+1 0974  0.0140

4 1.36E+3 6.81E+0 1.37E+3 5.65E+0 0.171 0.0041
5 3.59E+2 3.59E+0 3.61E+2 3.43E+0 0.045 0.0094
6 1.02E+3 5.11E+0 - 1.02E+3 S5.11E+0 0.001 0.0049
7 1.02E+3 5.10E+0 1.02E+3 5.10E+0 0.001 0.0049
8 1.03E+3 5.17E+0 1.03E+3 5.16E+0 0.001 0.0049
9 1.05E+3 5.24E+0 1.05E+3 5.24E+0 0.001 0.0049
10 6.00E+2 6.00E+2  1.04E+3 5.46E+1 0.909 0.0524
11 5.00E+2 2.10E+1 5.42E+1 4 98E+1 0.004 0.9194
12

1.O1E+2 2.10E+0 1L.O2E+2 2.07E+0 0.015 0.0203

The results of data processing are presented in Table 5.2. The measured values and
their standard deviations are given in the first part of the Table (in the cases of
unmeasured quantities the centres of the presented intervals are considered to
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substitute measured values). In the right-hand part of the Table there are the results
of the reconciliation, in particular the ratio 6, / ¥ and the adjustability a, which
decide, whether a quantity is observable and redundant. It follows from the results
that the flow rates of the streams 10 and 11 are practically unobservable, while only
the flow rates of streams 2 and 4 are practically redundant.

The classification gives markedly different results, depending on whether it is done
from the theoretical or practical point of view. The set of practically redundant
quantities has a smaller number of elements than the set of quantities redundant
theoretically; as we have already mentioned, the redundancy, particularly with
quantities measured with high precision, often is negligible.

Somewhat surprising is the finding that the flow rate of the stream 3, theoretically
unobservable, is classified as practically observable. This can be explained as that the
accumulation (stream 11) is so small when compared with the other sireams, that it
can be neglected without any significant consequence. &

5.4.2 Comparison of all possible variants

As mentioned earlier, measurement of required quantities can be effected by various
methods. A possible way of finding the optimum solution is the comparison of all the
possibilities available. Let us evaluate this task using a single-component balance.

Let us have a closed connected graph representing the flow rates among individual
nodes. The task is to find all the possible variants of choosing directly measured
quantities, enabling full observability of unmeasured quantities (a directly solvable
system of equations for the values of unmeasured quantities is formed).

In the preceding Subsection an assertion was presented that the necessary and
sufficient condition for the observability of all the streams is that the unmeasured
streams must not form a circuit. In addition, the number of directly measured streams,
on condition that all the flow rates are observable, must be minimal (if it were not
so, there would be more directly measured quantities than necessary, which means
redundant measurements). Hence a subgraph of unmeasured streams must contain as '
many edges as possible, these, however, must not form a circuit. It was shown in
Appendix 5 that each spanning tree of the graph posssesses such a property.

~ The task of finding all the possible choices of directly measured quantities is thus
identical with finding all the spanning trees of the respective graph. There exist
several algorithms and computer codes for solving this problem on a computer. An
advantage of most of these algorithms is that they are capable of finding all these
spanning trees without repeating (no solution has to be examined twice). Searching
for all the graphs spanning trees exceeds the scope of this book by its complexity and
the reader is therefore referred to literature (Chen 1971). For illustrative purposes a
simple graph with all its spanning trees is shown in Fig.5.5. In the case that the graph
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Fig.5.5 — Selection of unmeasured streams
a) flowsheet; b) graph; ¢) all spanning trees

represents a scheme for a mass balance, the spanning trees represent all the possible
variants of the choice of unmeasured quantities.

The problem can be solved analogically when selecting directly measured
quantities in a general linear model that can be written

Cp+a=0 (5.10)

where C is a matrix of coefficients whose dimension is m X n (n > m), 81s a vector
of constants and p is a vector of unknown guantities present in the problem. The task
is to divide the vector p into to two subvectors, one of measured and the other of
unmeasured quantities. Eq.(5.10) can be now rewritten in the form of Eq.(4.1). In
order that we may calculate the unmeasured quantities according to Eq.(4.12), the
matrix of coefficients of the unmeasured quantities must obviously be regular. Hence
the problem of finding out all possible variants of the selection of directly measured
quantities can be formulated as a problem of finding all the possible regular square
matrices of dimension m X m from a given rectangular matrix of dimension m X n.
Also this task can be programmed on a computer, those interested are referred to
literature (Chen 1971),



210 Rational approach to measurement planning [Ch. S

In principle the method of comparing all the possible variants is viable; its
drawback, however, is that quite often there are a great number of variants that have
to be compared.

Example 5.4: Number of varianis in the selection of directly measured quantities
in a mass balance
In the textbooks of the theory of graphs the following lemma is frequently presented:

Let L= A A", where A is a reduced incidence matrix of an oriented graph. The
number of different spanning trees of this graph equals the matrix L determinant.

dhQo 862 Fig.5.6 — Flowsheets to Example 5.4

The calculation of the number of graph spanning trees is demonstrated as an
'example; for the graph in Fig.5.6b. The node 4’ (environment), which is not shown
in Fig.5.6b., is considered the reference node, and the reduced incidence matrix is

|

1 0 0-1 0
0 1-10-1
6 0011

—Ooo

and the matrix L
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4 0-1
L= 0 3-1
-1 -1 3

Let us note that the matrix L can be built simply even without matrix
multiplication. On its diagonal there is the number of edges connected with the given
node, elements lying outside the diagonal L;; are equal to the number (with minus
sign) of edges connecting the ith and jth nodes

In our case the determinant of the matrix L equals 29; this means that there exist
29 different spanning trees in the given graph. In a mass balance according to scheme
in Fig.5.6b there exist 29 different variants of selecting the directly measured
quantities in such a way that the unmeasured quantities could be assessed explicitly
by solving the balance equations. Presented in Fig.5.6 are four graphs of mcreasing
complexity, together with the number of different spanning trees. It can be seen that
the number of spanning trees grows steeply with increasing complexity of the graphs.
A comparison of all the variants is real only for the first three cases. The fourth case
is already at the limit of possibility even if a high-speed computer is available. In
Section 6.3 the single-component balance of a chemical plant is examined (17 nodes,
49 streams); the number of the graph spanning trees is 7.76x10°. Obviously, such a
case can no more be coped with by the method of comparison of all the variants.m

The conclusion similar to that arrived at in the preceding example holds also for
the case of the general linear model (5.10). Optimal sclection of measured quantities
in real cases requires some optimization procedure. For the case of single-component
balance such procedure will be presented in Section 6.3.

5.4.3 Improving the measurement precision

It follows from the examples presented so far that the problems of optimum choice
of directly measured quantities are rather complex. It is, therefore, advisable to
confine oneself, in practical lerms, 1o selecting one or a few acceptable variants, and
10 their improvement when time allows.

A suitable basis for this is usually the practical classification of the quammes from
the viewpoint of their observability as described in Subsection 5.4.1. We can see from
the data concemning the precision of individual quantities, in which cases the requisite
precision was achieved using the existing method of measurement, and which
quantities have to be measured more precisely. There are two most common ways of
improving the precision of measurement - perfection of the existing measurement or
installation of new measurements. The boundary between these two methods need not
be sharp. In the course of perfecting an existing measuring instrument a qualitatively
new measurement may be created.
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The question usually arises, upon which of the directly measured quantities should
we concentrate our attention? The methods of errors propagation enable the precision
of results 10 be expressed by means of the standard deviations of directly measured
quantities. To solve this problem in an efficient and systematic way, so-called
matrices of shares have been introduced in Chapters 3 and 4.

It is obvious that if we are able to formulate in a certain way the objective
function characterizing overall precision of the measurement (for example the sum
of variances of requisiie quantities), we can readily select those directly measured
quantities that affect the precision of results most significantly.

It follows from the considerations presented that the search for a -good solution of
practical problems proceeds in two phases. In the first place the first variant of the
choice of directly measured quantities is to be found. Such first variant still need not
meet all the requirements put on the measurement but we endeavour to make it as
good as possible (so-called suboptimal solution). In the second phase the initial
variant is further improved. It is difficult to give any general directions as to how to
proceed since the methods may vary in accordance with a number of circumstances
(problem formulation, information about measuring errors, etc.). The whole range of
these problems will be illustrated in detail in Section 6.3 by an example of optimal
choice of measuring points when balancing a chemical plant.

5.5 FURTHER PROBLEMS OF MEASUREMENT PLANNING

As may be seen from the problems discussed so far, the difficulty in finding out the

optimum plan of measurement grows with the level at which the measurement is

planned and prepared. Whereas until now we have been capable of at least

approximate mathematical formulation of the problem, when a global conception of

measurement is looked for, even this very first step brings about considerable

difficulties. At the same time, a proper orientation of the whole research is of key

importance as regards the obtaining of results applicable in practice. It seems that the

leading role in looking for a good (when not just the optimal) strategy of

measurement belongs to the experience of those solving the problem, to a certain kind

of intuition acquired when dealing with previous problems. Further we shall present

the fundamental questions that have to be answered when solving the most frequent

tasks in plant measurement.

When looking for optimum process regimes:

- selecling the optimization variables,

- region within which the optimization variables can be varied,

- approach to optimization (relation between empirical methods and mathematical
modelling),

- the applied method of optimization (plan of factor experimenis).
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Building of mathematical models:

- choosing the mathematical model type (empirical models or models based on laws
of nature), _

- depth of mathematical description (microscopic or macroscopic models);

- methods of assessing the parameters of mathematical models (the share of
published data, laboratory and plant measurements).

When increasing plant capacity (debottlenecking):

- choice of throughputs at which the measurement will be effected,

- scope of checking chemical engineering calculations,

- way of solving special problems (wear of equipment due to higher production rate,
safety of work, etc.). |
The above enumeration demonstrates the complexity and variety of questions

forming the global strategy of measurement. A more or less qualified answer can be

given to a number of them on the basis of experience from the previous plant
operation (e.g. admissible ranges of process variables). Another times also. the
knowledge and methods of the theory of measurement may be applied. As an
example in this respect it is possible to give the Section 6.2, where a rational

approach to assessing the specific consumptions of raw materials and energy in a

complex plant is described,

5.6 RECOMMENDED LITERATURE TO CHAPTER 5

The problems discussed in this Chapter belong to the area of optimization of
experiments. The problems of experiments optimization are dealt with by the
mathematically oriented monograph (Bandemer et al. 1977). Out of publications
focused upon experiments in industrial processes it is possible to recommend the
book by Himmelblau (1970) compiling a number of methods and examples hitherto
published mostly by periodicals. Optimization of chemical analyses can be studied
in the book by Doerffel & Eckschlager (1981).

Somewhat beyond problems dealt with by standard literature on experiments
optimization is the problem of optimum choice of measured variables. This area,
especially in connection with the classification of variables, is mentioned in
Section 4.6. '



6 Case studies

The following chapter contains four more extensive examples to document the
application of the hitherto presented approaches and methods. Although it is not
possible t0 go into great detail because of the scope and complexity of these cases,
we will see solutions of actual tasks as commonly encountered when carrying out
measurements in chemical plants.

6.1 MATERIAL BALANCE OF SYNTHESIS GASES PRODUCTION

The task is to set up a consistent (reconciled) material balance of the production of
hydrogen and synthesis gases on the basis of measured data.

6.1.1 Process description

Hydrogen and the synthesis gases are produced by the gasification of residual oil and
~ by further processing of the resulting gas (Fig.6.1).

~ Residual oil (stream no.1) is gasified by partial oxidation in a mixture with oxygen
(2)-and steam (3) in the subsystem 1’. Carbon particles and hydrogen sulphide are
separated from the resulting gas. Four exit streams are in the subsystem 1°: furnace
black (4), excess water (5), hydrogen sulphide gas (6) and so-called desulphurized gas
- (7) which is further branched (streams No. 8, 9, 10).

The desulphurized gas (8) is fed into subsystem 2’ where the shift conversion of
- CO proceeds according to

CO +H,0-CO,-H,=0 (6.1)

and most of the carbon dioxide is separated by triethanolamine absorption. Leaving
the subsystem 2’ are CO, (11) and processed gas - so-called raw hydrogen (12) which
is split into two streams (13) and (14).

CG and CO, are removed from the stream (13) by methanation in subsystem 4’
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Fig.6.1 — Measurement of hydrogen and synthesis gases production

Nodes (subsystems): 1° - gasification and desulphurization, 2’ - CO conversion and CO, washing,
3’ . CO, washing, 4’ - methanation, 5° - mixing;

Streams: 1 - residual oil, 2 - oxygen, 3 - steam,4 - furnace black, 5 - water, 6 - hydrogen sulphide
gas, 7, 8, 9, 10 - desulphurized gas, 11, 15 - CO , 12, 13, 14 - raw hydrogen, 16 - washed gas,
17 - pure hydrogen, 18 - synthesis gas;

Measurement: F - flowmeter, % - analysis, T - thermometer, p - manometer, * - siream with exactly
known composition

CO +3H,-CH,- H,0=0 - (6.2)
CO,+4H,-CH,-2H,0=0 (6.3)

One of the products is so-called pure hydrogen (17) suitable for the production of
ammeonia.

Carbon dioxide is removed from the desulphurized gas (9) by scrubbing in
subsystem 3’. CO, is vented to atmosphere (15) while the so-called washed gas (16)
is combined with raw hydrogen (14) in a mixer 5°. Synthesis gas thus obtained (18)
is fed into a methanol plant.

6.1.2 Measured and required quantities
The disposition of the available measuring instruments is shown in Fig.6.1. The

flowmeters, with the exception of that designed for measuring the stream (2), are
equipped with an automatic correction for temperature, pressure and density under
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standard conditions, so that the volume flow rate of the gas is given as at 0 °C and
101.3 kPa,

The required quantities are all the measured ones, and, in addition to these, the
unmeasured flows of the streams (5) and (13).

6.1.3 Mathematical model

The mathematical model will be formed by a set of balance equations. A few
pieces of information are needed before we proceed to the construction of such 2
model.

Table 6.1 contains data on the substances present in the individual streams. The
manufacturing process takes place at a high pressure and the content of water vapour
in the gas streams may be neglected. Several unmeasured streams of water (serving
primarily as a direct exchange of heat) not shown in Fig. 6.1 are connected with the
mdividual subsystems. The flow rates of these streams are not measured, but as will
be shown later, these are not essential for assessing the required quantities.

Table 6.1 — The occurrence of substances in streams
(+ substance is present, - absent, ++ the concentration is
complement to 100%; S - streams 7, 8, 9, 10, 12, 13, 14, 16, 18)

Stream
Substance

residual oil + - - - - - -
water _ - - + - - - .
carbon black - - - + - - -
CO - - - - - - + -
CO, - - - - ++ + -
CHd. : - - - - - + +
H, | - - - - - ++ - +
Nz ' - ++ - - - + i
H,S - - - - + - -
G, - + - - - - -
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The gases are analyzed and their composition is given in volume fractions; the
fraction of one of the components is always obtained as the difference beiween unity
and the sum of the remaining fractions. Hence that concentration is not a directly
measured quantity and the calculated difference from 1 is used instead of it in the
mathematical model (see Tab. 6.1).

Residual oil is a complex raw material, but it will be considered a chemical
individuum. Its clementary composition (C-84.92, H-10.90, S-2.92, N:0.56 and
0-0.70 % by mass) will be considered free of error. It will be assumed further that
the values of fuel oil density as well as of the molecular and atomic weights and
densities of gases under standard conditions are virtually free of errors.

Next, let us introduce the following notation:

w, , mass fraction of element A in residual oil

¢.» volume fraction of substance A in the ith stream

M, molar mass of element or substance A (kg kmol™) ;

v, volume of 1 kmole of substance A under standard conditions (0 °C
101.3 kPa)

V, with gaseous streams - flow rate at standard conditions; with residual oil -
volume flow rate at density 915 kg m™ (m® b’ )

p;  ith stream density (kg m™)

m, ith stream mass flow rate (kg h')

For the sake of clarity, when constructing the mathematical model, the measured
quantities will be denoted by the superscript ’, the unmeasured ones by an asterisk
* and the exactly known values (constants) will be without designation.

Node 1’ Balance

The mechanism of partial oxidation of residual oil is not known exactly. Hence
the balance will be written on the basis of conservation of chemical elements.
Balance of carbon:

Vipywe/Mc-m'y I Mc- (Vg + Ve + Vi) (000, / Voo, + @100/ Voo +

+ 0 7cu !/ Vo ) - Ve (1 - Qgpis )/ Voo, =0 (6.4)
Balance of hydrogen:

VP Wy I My +2(m'y -m's ) [ My - 2V @ eps / Vs -

-V + Vi + V') 40" 0 / Ve + 20754,/ v, ) =0 (6.5)
Balance of nitrogen: |

Viprwin/ My + 200 -@06,) V'3 /vy, -

-V + Ve + Vi) @) /v, =0 : (6.6)
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Balance of sulphur:
VipiWis /Mg -V Qeps [ Vs = 0 6.7)
Balance of oxygen:
VipiWio/ Mo+ 'y -m's ) [ Mo + 2V, @10,/ Vo, - (Vig + V' + V7, )
(©300 / Voo + 20"500, / Voo, ) - 2V (1 - @gpus ) / Voo, = 0 (6.8)

Further, it is necessary to introduce a correction to the stream (2) flow rate with
respect to the temperature, pressure and density of the gas at standard conditions. In
Eq. (6.8) the stream (2) flow rate appears as an unmeasured quantity. It can be
expressed from measured quantitics with the aid of the correction (3.86)

. T . p' vz
V=V, [ Pugi  Zproi P 2] (6.9)
p T 2 ppmj

In this case, p’, is not measured directly but it can be expressed from a direct
measurement of the gas composition and tabulated values of the gases density under
standard conditions

p’n = (p,Z,Oa pn.Oa + (1 - (P,z,o, ) pn,N: (610)

where p, o, and p,, are the densities of oxygen and nitrogen under standard conditions.

Node 2’ Balance

In node 2’ the chemical reaction (6.1) takes place. Since the stoichiometry of the
chemical conversion is known, the increments and decrements of the substances may be
expressed by means of the rate r, of this reaction, The balance is written for the flows of
the individual substances (kmole h ),

Balance of CQ, :

Vs 9100, - V', . V' +V,) Q' 1co )/ Voo, +7; =0 (6.11)
Balance of CO:

[V’ q>’:7,00 -V + Vi) 0o/ V-1 =0 (6.12)
Balance of CH, :

V@ - Vi + VW) ®uon 1/ ven =0 (6.13)

Balance of N, :

(Vs @'7n, - (V' + Viu)0uw /=0 (6.14)
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Balance of H, :

Ve @7, - V'a+Vi) Qrom 1/ Vo + ry=0 (6.15)

Node 3’ Balance :
No chemical reactions are present in this node and hence the form of the balance
equations is simple. '

Balance of CO, :

Ve 9500, - V'i6 ® 1600, - Vls =0 - (6.16)
Balance of CQO:

Ve @100 - Vi @160 = 0 (6.17)

and analogically for CH, , N, and H, .

Node 4’ Balance :

Here two reactions proceed with stoichiometric equations (6.2) and (6.3). The
respective changes in the number of moles are expressed with the aid of the rates of
the individual reactions r, and r, .

|Balance of CO, :

Vi 0 hco/ Voo - ra =0 _ (6.18)
Balance of CO:

Vi ©c0 / Veo - T2 =0 N (6.19)
Balance of CH, :

V' O e -V tp’n'm Y/ Ve +7r,+7r,=0 (6.20)

Balance of N, :

V-l3 (P’B_Na - V’n (p,IT,Nz. =0 (6-21)
Balance of H, :
Vs Qum - Vi @ ) Vi - 3r,-4r5=0 _ (6.22)

Node 5° Balance
The forms of the balance equations are identical for all the substances involved.
When any of the substances is denoted as A, then the balance equations for all the
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five substances assume the following form:

Vie@ua+ Vi @ua-Vy Qpa=0 (6.23)

The set of equations (6.4) through (6.23) together with farther equations mentioned
above represents 26 equation among 34 measured and 8 non-measured quantities, Out
of unmeasured quantities (F°s, V*,, V", , V", , V"5, 7", r*,, 7% ), only the first
three are required. The dimension of the problem is reduced by eliminating those
unmeasured quantities that are not required (e.g. r*, is expressed from Eq. (6.11), and
substituted to Eqs (6.12) and (6.15)). Thus, the final set of 21 equations among 34
measured and 3 unmeasured quantities is obtained. This mathematical model will be
used hereinafter for the treatment of the measured data.

6.1.4 Measurement errors

Now let us concentrate on the creation of a model of errors of the measurements of
the gas streams flow rates and concentrations which occur most frequently in our
case. A similar line would be followed when estimating the errors of the other
measured quantities.

Measuring of gaseous streams flow rates

In the case under study, we meet with both measuring equipment with automatic
correction for gas temperature, pressure and density at standard conditions, and
equipment without such a correction.

A block diagram for measuring the flow rate without correction is shown in Fig.
6.2. The diagram represents a certain transformation of the orifice pressure difference.
- This is transformed into a unified signal in the pressure difference transmitter V and
 the value of the signal is square-rooted in the next element O. The output signal is
then registered by the instrument R. The block diagram presents also multiplication
N of the square-rooted signal by a proportionality factor K (whose value depends
. primarily on the design of the orifice and is a source of certain error). Hence the

2P o—md v O b= N +={ R _ _
L 'Fig.6.2 — Block diagram of flow measurement

(15} (05) {C5) {1 without correction
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blocks N and K are shown here only for respecting the errors of the orifice proper
and of the measuring system adjustment. The parenthesized numbers in Fig.6.2
indicate the maximum relative errors (classes of accuracy) of the individual blocks.

The maximum error of the given measuring system is estimated on the assumption
of a random character of the primary errors.

When gain of the individual members of the measuring chain in Fig.6.2 is denoted
A with the corresponding indices, the final reading on the regmtermg instrument x
may be approxjmated by

xc=(AcA P)m A Ay Ak A . ' (6.24)

In so doing we may assume that the errors are contained in the gamns of the
individual members (i.e. Ay , Ay , Ay, Ag and Ag ). The total errors in the registering
instrument reading can be estimated using the method of random errors propagation.
The term on the right-hand side of Eq.(6.24) represents a product of powers of
quantities subjected to errors and the relative standard deviation of the registering
instrument reading 4. can be expressed by the relation (see Table 3.1)

_ Tv v
Yo = T"‘Yﬂ S S R (6.25a)

It is also possible to substitute into Eq.(6.25a) maximum relative errors instead of
the relative standard deviations whereby an estimate of the maximum relative error
in the final result ¢ is obtained

=(15/4+05+05+08+1*)?=16% (6.25b)

Thus the maximum error of the whole measuring system has been estimated at
1.6% of the measunng range (class of accuracy 1.6%). It has to be pointed out that
this is a case of an error in a non-corrected value; additional errors are introduced by
corrections for temperature, pressure and density of the gas. These errors, however,
are respected automatically in the mathematical model, see Eq.(6.9).

It has to be considered further that the maximum relative error as given by Eq.
(6.25b) holds only for the upper limit of the measuring range. The measured value
actually fluctuates around 80 % of the measuring range, and hence, the maximum
relative error is increased in the proportion of 100/80. The maximum relative error
of the flow rate measurement is thus roughly 2% of the measured value.

A block diagram of gas flow rate measuring with correction for temperature,
pressure and density of the gas at standard conditions is shown in Fig. 6.3.
Calculation of the maximum errors of this measuring system is rather complex and
will not be presented here. Those interested in this problem are referred to the paper
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Fig.6.3 — Block diagram of flow measurement with corrections -
for temperature, pressure and density under standard conditions

by Toman (1971) where the design of a given measuring system is discussed in detail
inclusive of the measuring errors. In this paper the maximum measuring error is
estimated at 2% of the measured value within the 50 - 100 % range of the maximum
flow rate. :

Analyses of gaseous streams

Most of the gas streams (all with the exception of streams (2) and {6) that were
analyzed by traditional analytical methods) were analyzed by gas chromatography.
To estimate errors in the determined concentrations the following two runs of
measurements were designed.

Altogether, three sets of five samples were taken in the plant at a single sampling
point. Each of the samples was analyzed separately, Sample standard deviation of the
determination of individual concentrations was calculated according to Eq.(3.72)
(measurement I).

A standard gas mixture whose composition was close to that of the gas streams
in the plant was analyzed eight times by different analysts during several days.
Sample standard deviation was calculated from the assessed data using Eq.(3.71)
(measurement I). The resulls are presented in Table 6.2.

Whereas the measurement I implies the repeatability of an analytical procedure as
conducted by a single analyst on an instrument and adjusted in a certain way
(inclusive of the sampling proper), the measurement T takes into account the human
factor as well as adjustment of the instrument (reproducibility). It follows from Table
6.2 that the influence of the latter two factors is markedly greater than the effects of
factors involved in the measurement I It may be seen further that the standard
deviations depend on the absolute value of the measured concentration.
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The relative standard deviations for individual ranges of the volume fractions as
¢stimated on the basis of the results of measurement 11 are given in Table 6.3. The
given values that will be used in the measured data processing are more pessimistic .
than optimistic. The mean values over the balancing period represent an average of
nine values, while partial elimination of the measuring errors may take place.

Maximum errors and standard deviations of the other directly measured quantities
were assessed analogically. In the case in which the maximum:errors were known
(i.e. measuring by instruments), standard deviations equal to 50% of the respective
maximum error were ascribed to the measurements. The data relating to the accuracy
of all the measurements and expressed as relative standard deviations are presented
in the third columm of Table 6.4. |

Table 6.2 — Sample standard deviations of volume fractions

Substance Co, co CH, N,

volume fraction 0.0380 0.4700 00022 00130
5 0.0004 0.005 00001  0.0003
S 0.0012 0.045 0.0001  0.0005

Table 6.3 — Estimates of
relative standard deviations
(7) of gases analyses

Y
Volume
fraction %
0.002 - 0.004 5
0.01 -0.02 4
003 -0.04 3
0.30 -0.50 1
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Table 6.4 — Input data and results to Section 6.1
(V-m*h F-kgh; ¢ - vol.%)

x x Vet v/o, x Y a
V, 1.799E+1 0.005 -2.855 1.797E+1  0.0035 . 0.29
v, 1.237E+4 0.010 -0.050 1.248E+4  0.0077 0.21
? o - 9.660E+1 0.005 -2.357 9.551E+1  0.0010 0.80
F, 8.670E+3 0.020 -0.000 8.670E+3  0.0200 0.00
Vi 4.045E+4 0.010 -2.162 4,012E+4  0.0053 047
Ve 8.760E+3 0.010 -0.873 8.713E+3  0.0063 0.37
P71 . con 3.840E+0 0.030 -1.386 3.794E+0  0.0281 0.08
¢7 co 4.747E+1 0.010 -1.729 4.6876+1  0.0042 0.58
D7 ch 2.200E-1 0.050 0.217 2223E-1  0.0246 0.50
Q7 1.310E+0 0.040 -0.956 1.262E+0  0.0177 0.57
F, 2.330E+2 0.050 -2.642 2.329E+2  0.0498 0.01
Vi 7.300E+2 0.010 -2.951 7.299E+2  0.0099 0.00
Ve 7.530E+2 0.010 0.447 7.526E+2 ° 0.0099 0.00
Ps . s 3.900E+1 0.010 9.544 - - -
Vi 3.670E+3 0.010 -0.509 3.669E+3  0.0092 0.08
P, oo 1.200E-1 0.050 1.240 1.213E-1  0.0487 0.01
P2 oo 3.400E-1 0.030 1.165 3.434E-1  0.0286 0.04
Qa2 cn  2400E-1 0.050 -0.897 2.307E-1  0.0246 0.55
T, 3.180E+2 0.003 0.050 3.179E+2  0.0029 0.01
Q. con  0.200E-1 0.050 0.323 6.269E-1  0.0367 0.26
Q1. oo 4.890E+1 0.010 -1.419 4.841E+1  0.0038 0.62
P cu.  2.300E-1 0.050 -0.065 2.296E-1  0.0246 0.51
D6 . o 1.290E+0 0.040 0.349 1.303E+0  0.0177 0.55
Vie 8.470E+3 0.010 -0.689 8.436E+3  0.0062 0.38
Pz, oo 4800E-1 0.050 -0.363 4.736E-1  0.0339 0.33
Pz co 3.360E+1 0.010 0.467 3.384E+1  0.0047 0.52
Q. . 2.200E-1 0.050 1.028 2.299E-1 0.0246 0.49
®s.n - 1.350E40 0.040 -0.857 1.306E+0  0.0177 0.57
Vi 1.200E+4 0.010 0.840 1.210E+4  0.0049 0.50
Vi, = 3.433EH4 0.010 -0.972 3.444E+4  0.0061 0.38
Oy cn  7-500E-1 0.050 -1.259 7.062E-1 0.0180 0.66
P, 1.350E+0 0.040 -0.350 1.330E+0  0.0177 0.56
P, 4.020E+0 0.609 -0.050 4.034E+0  0.0086 0.04
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6.1.5 Measured data processing

The measured values, mathematical model and model of errors represent a basis for
solving the given problem. New knowledge obtained during statistical treatment of
the measured data will be presented next. The measured values are shown in the
second column of Table 6.4, being mean values Obtained during a 72 hour balance
measurement. Plant operation was fairly stable during that period and the influence
of the process parameters fluctuation on the measured values may ‘be neglected.

Gross errors detection

The mathematical model represents a set of 21 independent equations for 3 unknown
quantities. Eighteen measured quantities are redundant and they may be used for
evaluating the measured data from the viewpoint of possible occurrence of gross
errors in the measurement (see Section 4.5). |

During the first stage all the measured values were reconciled so as to fulfil
exactly the equations of the mathematical model. Essentially this was a case of
solving the problem of identifying a general quasi-linear model as described in
Subsection 4.4.5. The value of Q_,, as defined by Eq.(4.19) was then calculated from
the adjustments. The obtained value of @, = 108.7 is the realization of a random
quantity with y* distribution and 18 degrees of freedom. The 95% quantile of
distribution %> (18) is 28.9. That is to say, that the probability of Q_, being larger
than 28.9 is only 5%. It is, therefore, possible to reject, on the 5% significance level,
the hypothesis that only random measuring errors are present.

When searching for a potential source of errors we first focused our atiention on
the analysis of adjustments as described in Subsection 4.5.2. Standardized adjustments
of the individual quantities arc presented in the fourth column of Table 6.4. It can be
seen here that the magnitudes of adjustments of the quantities Vi and ¢,y (flow rate
and concentration of hydrogen sulphide in the stream No. 6) differ from those of the
other standardized adjustments.

Both these measurements were verified. We found no discrepancies in the system
of flow rate measuring. Hydrogen sulphide concentration is assessed by absorption
into solution, and by subsequent analytical determination. This method was compared
with the determination by gas chromatography. It was found that the results obtained
by the former method were significantly lower than those obtained by the
chromatographic method.

To verify the hypothesis that measuring of the hydrogen sulpmde concentration
in the stream No. 6 is the only source of gross errors; the method of a measured
quantity elimination as described in Subsection 4.5.2 was applied. Hydrogen sulphide
conceniration was considered to be an unmeasured quantity and the data were
reconciled once more (whereby the number of redundant data decreased to 17). The
value of Q. = 16.5 was calculated. In this case, Q_, has the distribution %* (17),
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the 95% quantile of this distribution being 27.6. Since 16.5 < 27.6, there is no reason
to believe that there might be any other gross error present.

Final results of measured data processing

The results are summarized in the respective segments of Tables 6.4 (measured
quantities) and 6.5 (unmeasured quantities). Reconciled values of directly measured
quantities are presented in the Sth column of Table 6.4, Relative standard deviations
(standard deviations/reconciled values) are in the 6th column. The last column of
Table 6.4 gives the adjustability of directly measured quantitics. As the result of
reconciliation, the standard deviation dropped below 50% of the original value in the
case of 13 quantities (i.e. 39% of their total number) and below 80% of the original
value in the case of 23 (i.e. 70%) quantities. One quantity (F, ), however, was
nonadjustable. On the average, the reconciliation resulted in a decrease to 65% of the
original value of the standard deviations.

The values of quantities not mecasured directly and their relative standard
deviations (coefficients of variance) are presented in Table 6.5. The calculations were
effected on a programmable calculator Wang 2200 with the aid of the universal
computer code. The input data were the measured values, their standard deviations
and the set of equations of the mathematical model.

Table 6.5 — Estimates of unmeasured

quantities
A Yj'
y ¥
%
F | 5298 4.1
Vi, 34 971 0.6
(A 12 282 0.8

Ps s 44.66 1.1

The reconciled values are presented in Table 6.6 corresponding with the flowsheet
in Fig.6.1. The complete set of flow rates and concentrations of the streams under
study represent the solution of the given problem.
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Table 6.6 — Reconciled values of flows and concentrations

Stream

Quantity

1 2 3 4 5 6 8
F kg h116445 - 8670 233 5208 - -
v m’ h?  17.973 12382 - - - 735 40115
res. ' l-
oil mass % 100 0 0 0 0 0 0
carb. .
black mass% O 0 0 100 0 0 0
H,0O mass% O 0 100 0 100 0 -0
CO, vol% 0 0 0 0 0 55.34 379
CO vol% 0 0 0 0 0 0 46.87
CH, vol% 0 0 0 0 0 0 0.22
H, vol.% 0 0 0 0 0 0 47386
N, vol.% 0 4.49 0 0 0 0 1.26
HS vol.% 0 0 0 0 0 44 .66 0
0O, vol.% 0 95.51 0 0 0 0 0

Stream

Quantity

9 10 13 14 16 17 18
F kg h™! - - - - - - -
Vv m* h! 8713 730 34971 3669 8436 34442 12104
res.
oil mass % O 0 0 0 0 0 0
carb.
black mass% O 0 0 0 0 0 0
HO mass% 0 0 0 0 0 0 0
CO, volL% 3.79 3.79 0.12 0.12 0.63 0 047
CO vol%  46.87 46.87 0.34 0.34 4841 0 3384
CH, vol.% 0.22 0.22 023 0.23 0.23 0.71 0.23
H, vol%  47.86 4786 98.00 98.00- 4943 9796 64.15
N, vol.% 1.26 1.26 1.31 ©1.31 1.30 1.33 131
H,S vol% 0 0 0 0 0 0 0

0, vol% 0 0 0 0 0 0 0
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6.2 DETERMINATION OF SPECIFIC CONSUMPTION OF RAW
MATERIALS AND ENERGY IN A COMPLEX CHEMICAL PLANT

Specific consumptions of raw materials and energy are probably the most important
characteristics of chemical plants. Their determination, based on measurements
carried out in operating plants, belongs to methods frequently employed to evaluate
chemical processes. Whereas the consumption of a whole system is usually readily
determinable, the distribution of the total consumption among individual products
may present a rather difficult task (Boustead & Hancock 1979). The following section
is devoted to the optimization of procedures used for assessing specific consumptions
in complex systems on the basis of industrial measurements (Madron & Veverka
1981).

6.2.1 Problem analysis

One of the features of modern technological processes is their complexity, associated
with the formation of a number of main products and by-products as well as of
secondary energy. Consequently, typical systems problems such as the exchange of
cnergy between individual subsystems or the distribution of consumptions among
separate streams are encountered in the determination of specific consumptions. The
prerequisite  for assessing specific consumptions in such systems is their
decomposition into independently balanced subsystems for which the specific
consumptions of raw materials and energy are to be determined separately. On the
one hand, such a decomposition must be detailed enough to enable the specific
- consumptions t0 be determined. On the other hand, with an increasing number of
subsystems balanced independently, demands on the installation and maintenance of
measuring instruments will grow, and so will demands on the working capacity
associated with the measuring and data treatment.

Two problems will be discussed further: computer-based calculations of specific
consumptions and minimization of the number of balanced subsystems.

6.2.2 General considerations

Let us consider a chemical plant consisting of K subsystems among which mass and
energy exchange is taking place (Fig.6.4). All the streams occurring in the plant may
be divided into two groups. The first group comprises those streams for which the
defining of specific consumptions of raw materials and energy makes sense (products
and intermediates). Hereafter such streams will be referred to as reference streams.
The second group comprises the other streams, i.e. raw materials and energies
consumed and secondary energies and by-products generated. It is typical of chemical
plants that, in many cases, it is not possible to draw a dividing line between raw
materials and energy. The manufacture of ammonia may serve as an example: the
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Fig.6.4 — Diagram of a chemical process system
products and intermediate products (reference streams);
----- raw materials and energy (encrgy strcams)

essential raw material - natural gas - may also be considered as the source of energy.
Hereafter, all such streams will be designated generally as streams of energy.

During the formation of individual reference streams a certain amount of energy
must be transformed. The amount of interchanged energy is usually expressed in
terms of the consumption of its carriers. Thus one speaks about consumption of
cooling water, steam at a given temperature and pressure, and the like. To be able to
assign the amount of consumed energy carriers to the individual reference streams,
we shall introduce also streams of energy carriers consumed, referred to, for
simplicity, as streams of consumed energy. Then one stream of consumed energy
belongs to each reference stream and its value is equal to that amount of the energy
carrier which was consumed during the formation of the respective reference stream.
When more than one energy carrier is involved in a problem, the stream of consumed
energy is characterized by a vector with the number of elements equal to the number
of energy carriers (and raw materials). It is necessary to bear in mind, however, that
these are only fictitious streams introduced for the purposes of calculation and used

for cumulating the consumed energy on the account of the respective streams. The
encrgy streams and streams of consumed energy will hereafter be referred to as
streams of generalized energy.

The situation can be demonstrated by means of oriented graphs in which the
individual subsystems are nodes of the graph and the streams are their oriented edges.
Shown in Figs 6.5 - 6.7 are graphs of flow of energy, consumed energy and
generalized energy corresponding to the block diagram in Fig.6.4. It is obvious that
the graphs of reference streams and graphs of consumed energy are identical.
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Fig.6.5 — Graph of energy flow G,
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Fig.6.6 — Graph of consumed energy flow G,
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When solving practical problems, one has to deal most frequently with graphs
having the following properties: (i) the reference streams are not outgoing streams of
the environment, (ii) the graph of reference streams is connected and there exists an
oriented path from any node (except for the node of environment) to the node of

environment.

The above properties, with obvious physical meanings, are prerequisites for the
determination of specific consumptions. Their validity will be presumed henceforth.
On introducing the union of the consumed cnergy graph (G, ) and the graph of
energy flow (G, ) as a graph whose set of nodes is the union of sets of nodes of the
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Fig.6.7 -—— Graph of generalized energy flow G,

graphs G, and G, , and the set of edges the union of sets of edges of the graphs G,
and G, , the graph of generalized energy flow (G, ) is obtained as the union of the
graphs G, and G, .

The specific consumption of energy must be assessed separately for each type of
energy. It is, therefore, possible to limit the first step to the determination of the
specific consumption of only one kind of energy without any loss of generality.

6.2.3 Specific consumption calculations

Let us assume further that the magnitudes of flow of all the reference streams and
energy streams have been measured or are otherwise known. Caiculation of the
consumed energy flows will be based on equations for the generalized energy
conservation. The balance of generalized energy around the individual subsystems can
be written in the matrix form

Av=0 (6.26)

where A is the reduced incidence matrix of the graph of generalized energy flow (the
balance of the environment is deleted) and v is the vector of generalized energy
flows.. '

Matrix A can be decomposed into incidence matrix of the graph of consumed
energy flow A_(X ,J, ) and incidence matrix of the graph of energy flow A, (K, J, )
(the environment node being deleted). The balance equations of generalized energy
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then can be expressed by the flows of energy (V) and flows of consumed energy
(v, ), the latter being the objective of the calculation:

v,
(A, , A [ }“” resp. A, v,=- A, v, (6.27)
v

When the graph of reference streams has no splitters, it contains just K streams
(Chen 1971). The matrix A, is then square and regular, and (6.27) is sufficient for
calculating the unknown v, according to

v=-A'A v, (6.28)

If, however, the graph of reference streams contains splitters (i.¢. nodes with two
or more outgoing cdges), the number of balance equations is smaller than the number

of unknown streams of consumed energy. The difference d between the number of
unknown values and equations is given (Chen 1971) by Eq.(6.29)

F 4
d= X (d,-1) (6.29)
k=1

where d, is the number of outgoing streams of consumed energy from the 4th node.
Equation (6.27) has to be complemented by d additional relations characterizing the
splitters. '

Let m reference streams v; go out from the kth node, j = ¢, , ¢, , ..., q,, .
Information on the distribution of the consumed energy among these m outgoing
streams may be wrilten using a set of m - 1 independent equations:

Vql aqu - qu a,[ql - 0
; (6.30)
Var Gge = Vgu By, = 0

where a,,, is the distributing ratio, i.c. the ratio of the consumed energy leaving the
node & in.the stream g; to the total amount of consumed energy leaving the node k.
Obviously, for the distributing ratios it holds

Ta,=1 (6.31)
=l

Equations (6.30) are written for all the splitters. The resulting set of d equations is
written in the matrix form =
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Mv=0 (6.32)

The set (6.27) is complemented with the set (6.32) to give

IR
v = - v, (6.33)
M 0 _
with the solution
-1 ) !
z=[ A’] [ A }u=8% (6.34)
M 0o

A detailed algebraic analysis has shown that, under the previously made
assumptions, the set (6.33) has a unique solution. '

The specific consumptions of energy p; associated with the formation of the jth
stream are given by the following relations:

p=v iz j=L2,..d (6.35)

where v, ; is the jth element of the vector v, and 2j is the jth element of the reference
streams flow vector Z.

If more than one kind of energy is involved in the problem, the above procedure
may be applied separately to each kind. This approach, however, makes it necessary
to find a specific transformation matrix B for each type of energy. When the
distributing ratios do not depend on the type of energy, which assumption can be
accepted in most cases, only one transformation matrix may be set up for all kinds
of energy. The relation for calculating the consumed energy (6.34) is then extended
to the case of I kinds of energy

V=BV, | (6.36)

where V, is the energy flow matrix, whose elements V, ;, represent the flow of the ith
kind of energy in the (f + J, )th stream of energy, and V, is the matrix of consumed
energy, whose elements V, ;, represent the flow of the ith type of energy in the jth
stream.

When V,;, = 0, the ith type of energy is not present in the j + J, )th stream. If
V,;i <0, the flow of the ith type of energy is in a reverse direction relative to the
orientation of the (j + J, )th edge.
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6.2.4 Minimizing the number of balanced subsystems

A proper approach to the decomposition of a system into separately balanced
subsystems may often reduce considerably the work necessary for the determination
of specific consumptions. Minimization of the number of balanced subsystems not
only simplifies the mathematical treatment of the results of industrial measurements,
but what is even more important, reduces the number of measuring instruments that
have to be checked or newly installed.

When minimizing the number of balanced subsystems, it is advisable to start from
a detailed flow chart in which the flows of both reference streams and energy streams
are given. The essential requirement for such an initial flow diagram is that the origin
of the outgoing streams of the reference stream splitters must be clearly seen. It is
advantageous to simplify this initial diagram further by combining the individual
elements into larger subsystems. It is necessary, however, still to be able 10 assess
specific consumptions for all the required outgoing streams (products).

An analysis of the solvability of the set of equations (6.33) has shown that, in
principle, any two neighbouring subsystems may be combined, except for combining
a splitter with a node linked to it by an outgoing stream of that splitter. The latter
method of combining is admissible only in those cases when the combination results
in the vanishing of the splitter. Two such cases are demonstrated in Fig.6.8, ie.
parallel reference streams linked with a splitter (b) and a simple recycle (a).

a}

> Fig.6.8 — Admissible
combining of a splitter with the
b) ' next node

6.2.5 Determination of specific consumptions in hydrogen and synthesis gases
production by residual oil gasification

Consider a process whose reference streams diagram is shown in Fig.6.9. Residual
oil is gasified by a reaction with oxygen and steam, and the resulting mixture is
further processed by desulphurization and conversion of carbon monoxide into
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hydrogen. ‘Three main products are produced: desulphurized gas, hydrogen and
synthesis gas. Specific consumptions of the following kinds of energy are to be
assessed: residual oil (1), cooling water (2), ¢lectricity (3), and steam (4).
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Fig.6.9 — Diagram of reference streams flow. Production of hydrogen and synthesis gases by
residual oil gasification

1 - production of oxygen; 2 - residual oil gasification; 3 - desulphurization; 4, 7 - gas separators;
5 - high - temperature CO conversion; 6 - low - temperature CO conversion; 8 - methanation; 9,
12 - compression; 10 - CO, scrubbing; 11 - gas mixer; 13 - environment;

A - desulphurized gas; B - hydrogen; C - synthesis gas

In the first stage, the minimization of the number of independently balanced
subsysiems is carried out by combining successively pairs of subsystems. This
procedure is shown in Fig.6.10. The original number of 12 subsystems could be
reduced to four. Also shown in Fig.6.10c is the new way of numbering the
subsysiems. | |

A simplified diagram of the manufacturing plant, corresponding 1o the reference
streams diagram in Fig.6.10c, is given in Fig.6.11. In addition to the enumerated
reference streams flows, flows of the individual types of energy are also indicated
(for the sake of clarity the energy flows are not connected with the environment
completely).

The graphs of flow of encrgy, consumed cnergy, and generalized energy
corresponding to Fig.6.11 are shown in Figs 6.5 - 6.7. The number of flows of
reference streams J, = 7, the number of energy streams J, = 5, and the number of
types of energy 7/ = 4. The matrices necessary for calculating the specific
consumptions are (see Figs. 6.5 and 6.6): ’
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Fig.6.10 — Minimization of the number of balanced subsystems
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Further, the following data were measured: 2, the vector of flows of reference streams
Z" = [7.62, 40.47, 3.68, 34.27, 11.06, 33.77, 1.14] x 10° m* h! and V., the energy
flow matrix,



Sec. 6.2]

Determination of specific consumption of raw materials 237

i .
5" environment

esidual etectrici-
rnsi{ N c.water ty steam <A> <B> <(>
T T
t i ?
] i i
P | 1] ' |18
117 i1 t 4
T 2 2’ 4 3
{1.2.3.4) ] 15.6,7) (8.9]
tﬁ |l g ;
1t
1 4' 5

{10,11.,12}

Fig.6.11 — Simplified balance diagram of the manufacture of hydrogen and synthesis gases

Residual Cooling
Stream oil water
No (x10®kgh?) (o’ h')
8 0 0.
9 18.33 3120
V=10 0 890
11 0 - 176
12 0 626

Electricity Steam
(MW) (x10% kg ")
0 7.51
13.2 0
1.24 12.62
1.46 1.12
4.55 0

The consumed energy leaving the splitters (subsystems 1 and 2) is to be divided in
proportion to the amounts of the outgoing reference streams of the splitters. In this

case, for the kth splitter (see Eq. (6.30))
akq.f = qu / E zq:
el

For example, for subsystem 2,
m=2,q1:3 aIldq2=4
4, = 3.68 / (3.68 + 34.27) = 0.0970

ay = 34.27 ] (3.68 + 34.27) = 0.9030

(6.37)
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Then the martrix M (see Eqn.(6.32)) is
Y

0.8221 0.1548 0 0 0 0 0
M= 00232 ¢ 0 0 0 0 0.154
0 0 0.9030 0.0970 0 0 0

A, A and M were substituted into (6.34) and, after the matrix B had been
calculated from (6.36), the matrix of consumed cnergy flows V, was computed:

2.84 483 204 -1.16
1507 2565 1085  -6.17
146 334 117 1.35
V.=| 1361 3120 1092 12.60
430 994 4.68 1.31
13.61 3746 1547 12,60
L 042 T 72 031 017 |

The elements of the specific consumption matrix P are defined by analogy with
(6.35):
Pii=V, /g : (6.38)

where P, is the specific consumption of the ith kind of energy for generating the jth
reference stream:

[ 0372 634 0.268  -0.153
0372 634 0.268  -0.153
0397 910 0.319 0368
P-= 0397 91.0 0319 0368
0389 89.9 0423  0.119
0403 1109 0458 0373

L 0372 634 0.268  -0.153 |

In the matrix the jth row represents the specific consumptions belonging to the jth
reference stream. Thus the following specific consumptions were assessed, e.g. for
the produced hydrogen (stream 6): :

Residual oil (energy no. 1) 403 kg/1000 m® of gas

Cooling water (2) 110.9 m® / 1000 m® of gas
Electricity (3) 458 kWh / 1000 m® of gas
Steam (4) 373 kg / 1000 m® of gas

Negative values occurring with specific consumptions (last column of matrix P
indicate that steam is generated when streams 1, 2 and 7 are formed.



Sec. 6.3] Optimal selection of measuring points 239

6.2.6 Analysis of the method used

The procedure for the analysis of specific consumptions of raw materials and energy
in complex systems as described in the present Section enables the specific
consumptions to be assessed with a minimum number of measurements and minimum
treatment of the measured data.

Minimization of the number of subsystems that have to be balanced independently
can be performed either directly in the graph of the consumed energy flow or in the
respective incidence matrix, where the addition of the matrix rows stands for the
combining of neighbouring nodes. The procedure for minimizing the number of
balanced subsystems by adapting the incidence matrix can be programmed for a
compuier without difficulty.

When assessing the specific consumptions, a certain problem may arise out of an
unsteady operation of the plant, represented by an accumulation of intermediate
products. Such an accumulation can be incorporated in the balance diagram’ as a
stream between a storage tank and the environment, thus solving the given problem
theoretically. In practice, however, the existence of significant accumulations
complicates the determination of specific consumptions considerably. A storage tank
with accumulation represents a splitter connected with the environment by one
outgoing stream which may markedly reduce the possibilities of minimizing the
number of balanced subsystems.

Another important question that has not been studied systematically in the present
work is the problem of distributing the consumed energy among the outgoing streams
of splitters. In fact, a number of splitters can often be eliminated when minimizing
the number of balanced subsystems. Nevertheless, one or more splitters may be left
in the reference streams diagram and these must be taken into consideration when
analyzing the consumption of energy. Here we distinguish between simple splitters
and separators. With simple splitters the outgoing streams occur in the same state,
whereas the outgoing streams of separators differ in their state (temperature, pressure,
composition, phase). With simple splitters it is logical to distribute the consumed
energy in proportion to the sizes of the outgoing reference streams of the simple
splitter. In the case of separators, however, the situation is more complex. A possible
approach to the solution of this problem is an exergetic analysis (Baehr et al. 1965)
of the separator. This problem has not yet been solved satisfactorily.

6.3 OPTIMAL SELECTION OF MEASURING POINTS WHEN
BALANCING A COMPLEX CHEMICAL PLANT

6.3.1 Problem statement

A chemical plant consists of a number of mutually interconnected process units
(Fig.6.12). As concerns mass exchange among the individual units and between the
plant and environment, it is interesting to know the flows of sulphur, which appears
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in various forms (elemental sulphur, sulphur oxides, solutions of sulphurous
substances) in all the streams of the flowsheet in Fig.6.12.

Now the task is to evaluate possibilities of monitoring the flow of sulphur in
individual streams, In substance all the streams can be measured directly. The
accuracy of measurement, however, differs by orders (balance measurements of raw
materials and products are most accurate while the flows of off-gases and waste
walers are measurable with the lowest accuracy). In addition, the individual types of
measurement differ in investment costs (some measurement facilities are already
installed and used) and in Iaboriousness. The data concerning the investment and
operating costs (maintenance of the measurement device) are roughly known.

6.3.2 Input data

The information available in advance is summarized in Table 6.7. Approximate flow
rales (column 2) are known from carlier works as are the estimates of relative
standard deviations of measurements (column 3). In addition, investment costs I,
needed for installation of ith measurement are presented (in the cases of measurement
facilities already installed these investments are zero). In the next column the
estimates of operating costs of measuring including the costs of necessary
maintenance are presented in the form of time needed for measuring one value ¢, . It
is assumed that each measurement is made once per shift and that the yearly working
time is 8000 hours (hence each measurement is taken a thousand times a year).

6.3.3 Finding the first solution

Further, we shall confine ourselves to selecting directly measured quantities (selection
of measuring points) in such a way that a system of solvable equations for
unmeasured quantities is formed (redundant measurements are not present). It was
shown in Section 5.4 that unmeasured (i.e calculated) streams in a one-component
balance have to create the spanning tree of the graph of the balance flowsheet.
However, there is a great number of graph spanning (rees (e.g. the graph in Fig.6.12
has 7.76 x 107 different spanning trees), and, therefore, the selection of measurement
points should be optimized. Before doing so we shall introduce the term costed graph.

An edge-costed graph is a graph having a certain real number (cost) assigned to
each of its edges. The graph of a balance scheme can be costed in a number of ways;
it is possible to assign 10 each of the edges the presumed flow rate, standard deviation
of measurement or investment needed for executing the measurement. The latter two
types of costing are of particular importance for us from the standpoint of optimizing
the measurement points selection.
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Table 6.7 — Input data to Example 6.3

F; Yr, I; L F, Yr, f 2
1 [

kgh?' - MU  min kgh' - MU min
1 8000 0.01 0 1 26 100 005 30 10
2 40 0.05 0 30 27 3 001 0 15
3 3500 001 10 1 - 28 150 0.02 - 0 30
4 2500 0.01 0 1 29 7 025 5000 60
5 2000 0.01 0 1 30 300 0.05 0 10
6 60 005 20 10 31 60 0.05 20 10
7 30 050 15 10 32 6 0.00 0o 1
8§ 120 0.02 0 20 33 200 0.05 10 15
9 60 0.07 0 5 34 60 0.10 0 60
10 400 0.02 0 15 35 500 0.01 20 1
11 500 0.02 0 5 36 12 0.10 0 20

12 150 0.05 10 10 37 10 0.02 50 10
13 60 1.00 50 15 38 360 0.05 200 10
14 380 025 100 10 39 20 0.02 100 15
15 400 0.03 60 40 40 170 0.02 0 10

16 2500 0.02 0 5 41 300 0.02 0 5
17 2000 0.03 10 5 42 100 0.02 10 10
18 8 0.00 0 1 43 100 0.25 100 10
19 700 0.01 0 1 44 120 0.10 40 5
20 5000 0.02 15 5 45 580 0.02 100 10
21 400 0.02 0 10 46 700 0.01 100 10
22 i 0.02 0 1 47 1000 0.01 0 20
23 80 0.05 80 15 48 50 0.03 20 10
24 170 0.02 0 1 49 1300 0.02 0 15
5

25 S0 050 200

Next, we shall introduce the terms minimum and maximum spanning tree. The
minimum (maximum) spanning tree of a costed graph is a spanning tree, for which
the sum of costs of its edges is the minimum (maximum) one of all the spanning
trees of a given graph. Now it is possible to conjecture the connection between the
optimization of selecting the measurement point and the task of finding out the
maximum or minimum spanning tree of a graph.

When selecting measured quantities so as to ensure the minimum investment
needed for the measurement, we shall try to include the quantities with high costs of
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Fig.6.12 — Scheme of a chemical plant
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measurement among the unmeasured ones (by including a quantity among the
calculated ones we actually save money needed for carrying out its direct
measurement). Obviously the total saving will be maximal if a spanning tree formed
by unmeasured streams is maximal (on the assumption that the graph edges are
costed by costs of measuring the respective streams). _

Further, we shall describe the algorithm for finding the maximum spanning tree
(in the case of the minimum spanning tree the procedure will be analogical). The
procedure is based on a step-by-step formation of the graph tree from which the
expected spanning tree appears in the last step.

1. The graph edges are arranged according to decreasing costs (the graph edge w1th
the highest cost has the number 1, efc.).

2. The edge with the lowest number (i.e. with the maximum cost) is taken as the
basis of the maximum spanning tree; this edge represents an initial tree to which
further edges will be added.

3. The set of the graph nodes is divided into two subsets; the subset A contains
nodes that are constituents of the tree as formed up to the present time; the subset
B contains the remaining nodes. When the subset B is empty (does not contain
any node), the tree is then the maximum spanning tree and the search ends.

4. We shall create a list S of all the edges connected (i.e. having one node in
common) with th¢ hitherto created tree (the edges forming the tree do not belong
to S).

5. From the list § we choose the edge with the highest cost. If the only one node of
this edge belongs to the subset A, we connect this edge to the tree and return to
the step 3. When both nodes of the edge belong to the subset A, this edge is
deleted from the list § and we shall return to the start of step 5 (let us notice that
we delete those edges that would form circles with the previously chosen edges).

The described algorithm enables the maximum spanning tree of the graph to be
found by a finite number of steps. If more edges have the same cost, then there can
exist more maximum spanning trees with the same cost.

Fig.6.13 — A costed graph (a) and
its spanning tree (b)
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Let us demonstrate the creation of the maximum spanning tree with the aid of a
simple graph in Fig.6.13 where the parenthesized numbers are costs of the edges. We
shall proceed according to the individual steps as given in the algorithm:

arranging the edges: 5,4, 2, 3, 1

edge 5 forms the first trec

A=(1',2)B=(3,4)

$=(2,3,4)

selecting edge 4; a new tree is formed by edges 5,4

A=(1,2,4)%B=(3")

$=(Q1,2,3)

selecting edge 2. This edge is not suitable since both of its nodes (2’ 4’°) are from

the subset A (its attaching to the tree would result in a circle). Edge 2 is deleted

from the list § ' '

5. §=(1, 3). We select edge 3 and attach it to the trec which is formed by edges 5,
4,3

3. now, the subset B contains no element; the formed tree is the maximum Spanning

tree of the graph. The spanning tree cost is 40 + 30 + 10 = 80

Moot bW o

In the cases of larger graphs with tens or even hundreds of edges, it is necessary
to code the above algorithm for a computer.

Thus we have covered the selection of measuring points by the method of
maximum spanning tree. Individual variants of scleciing the unmeasured streams
differ according to the costing of the graph. In the following three methods of costing
will be presented. .

Let us denote the costing of the ith edge as 4, :

(=1 (6.39)
where I, is the investment cost of measurement of ith siream, in MU {money unit),

1000
(A )y=my <0 | (6.40)

in MU per year, where m is the cost of one hour of the measurement (in further
considerations the value m = 20 MU/hour will be used), ¢, = time needed for effecting
the ith measurement (in minutes). The number 1000 represents the number of
measurements per year,

(b ), = 0.08 (B, ), + (B, ), (6.41)

in MU per year.
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The first method costs the siream by the investment needed for the installation of
measurement, the second one by operating costs of the measurement and the third
method by the total cost of one year of measurement (at eight percent depreciation
rate), _ '

Next, we shall present the results of the optimal selection of measuring points. The
maximum spanning trees found by the jth method of graph costing minimizes the
objective function H; defined by '

H= TZ); Jj=123 - - (6.42)

where in the course of summation the index i passes over the number of all the
measured streams. Obviously the objective functions for j = 1, 2, 3 represent the
investment, operating and total costs; resp., needed for implementing the measurement
system.
The information can be completed by mentioning the precision of the measurement
system as a whole, expressed as the mean relative standard deviation g , defined as

. 12 :

Ys = [ A /n ] (6.43)
i=1

where ¥, is the relative standard deviation of measuring the flow of sulphur in the ith

stream (in the cases of unmeasured flows, v, is calculated by the method of
propagation of random errors) and » is the total number of streams.

Table 6.8 — Optimum selection of measuring point

H, H, H, ¥s
costing of
streams

MU ' MU/a MU/a -
1 170 000 129 667 143 267 2.345
2 680 000 70 000 124 400 2.835
3 330 000 80 000 106 400 2.823

unmeasured streams (maximum Spanning liees)

1 6, 13, 14, 23, 25, 29, 31, 35, 37, 38, 39, 43, 44, 45, 46, 48
2 2, 8, 10, 13, 15, 23, 28, 29, 34, 36, 38, 39, 43, 45, 47, 49
3

2, 10, 13, 14, 15, 23, 25, 28, 29, 34, 37, 38, 39, 43, 45, 47




246 Case studies [Ch. 6

The results are demonstrated in Table 6.8. A universal computer code was written
for the solution of the task. The calculation performed on a WANG 2200 computer
(finding one maximum spanning tree including its costing and solution of the system

-of balance equations) took 30 seconds.

The optimal sclection of measuring points in the case of a single-component

balance by the method of finding the maximum spanning tree is applicable even
~when we are not able to assign costs to streams exactly. Sometimes it is possible to
arrange the streams in accordance with our wish to measure them directly. The order
in such a scries (number one is ascribed to the stream that can be measured in the
easiest way) is so-called priority of measuring. If the graph edges are costed by the
priorities of the respective streams measuring, the maximum spanning tree represents
 the selection of unmeasured streams for which the sum of priorities is maximal (those
sacams we do not want to measure directly are preferentially ranked among the
unmeasured ones).

6.3.4 Optimal measurement placement from the standpoint of measurement
precision

The hitherto mentioned variants of measurement are optimal from the point of view
of measurement costs (investment or operating costs). An important factor that has
- been omitted until now is the measurement accuracy. The mean relative standard
deviation as defined by Eq.(6.43) obtained in the individual cases (see Tab.6.8) 1s
rather unfavourable. The high value of Y is caused by extremely high values of
relaive standard deviations of several quantities (standard deviations equal to
thousands of percent of the meisured values).

This fact can be explained in this way: Measuring of streams of off-gases and
waste waters belong among the most cost-intensive activities. At the same time, these
measuring systems must be usually newly installed and the measurement proper is
rather tedious. Therefore, these streams are preferentially included among unmeasured
streams. In these cases, however, the flows usually are considerably smaller than with
other streams (raw materials, intermediates and products). Since they are computed
as a difference between large numbers, their relative precision is poor.

Next we shall ry to optimize the selection of measurcment points from the
viewpoint of minimizing the function (6.43). Contrary to the previous cases where
the optimized function was a simple linear function of streams costs, it will not be
possible to find the optimum by simply finding the maximum spanning tree of the
graph. It will be possible to apply this method to find only the first, suboptimum
solution which will have to be further improved. A method, based on looking for a -
better solution in the neighbourhood of the initial spanning tree, has been developed
for solving the problem of optimizing the selection of measuring points in a general
case.
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In textbooks on the theory of graphs the distance between spanning trees is
defined. At this point we shall only mention that spanning trecs of distance 1 differ
from one another by a single edge, the other edges being identical. All the spanning
trees of distance 1 from a given spanning tree are found so that we go successively
through all the edges of the initial spanning graph, and try to substitute them by those
graph edges which are not parts of the spanning tree. Demonstrated in Fig.6.14 is the
initial spanning tree and all the spanning trees of distance 1 from it. In practice, the
number of spanning trees of the distance 1 from a given spanmng tree may vary from
several tens to several thousands.

E;IENT?I}IZI

Fig.6.14 — Spanning trees of the graph from Fig.6.13a
a) starting spanning tree; b) - f) spanning trees of distance 1
spanning trecs

The optimization method based on spanning trees of distance 1 is as follows. The
first step consists in finding out the initial spanning tree, for which the value of the
objective function is calculated. Spanning trees of distance 1 are then generated and
the values of their objective functions are calculated. When a spanning tree so formed
is better than the initial spanning tree, such a spanning tree is now considered the
initial spanning tree and the whole procedure is repeated. The search is ended when
there is no better solution in distance 1 from a given spanning tree (the spanning tree
represents the local optimum). '

The above procedure was used for solving the task of selection of measured
streams that would minimize the objective function (6.43). The initial solution was
found as the maximum spanning tree when edges of the graph in Fig.6.12 were
costed by the relative standard deviations of measurements.

A total of 428 spanning trees had to be evaluated to find the optimum. The
calculation was implemented on a Wang 2200 computer with the aid of a universal
program. The calculation including the finding of the initial spanning tree took two
hours. The most imporiant results are presented below, where in addition to the
function (6.43) also other characteristics (6.42) are given. The initial spanning tree
is formed by the following edges (unmeasured streamis)

7.9, 12, 13, 14, 23, 25, 27, 29, 30, 31, 34, 36, 38, 43, 44

H, = 555 000 MU
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H, =108 333 MU / a
H,=152733 MU /a
Ys = 7.99
The optimum spanning tree is formed by edges
1,4,7,10, 13, 14, 15, 17, 20, 25, 30, 33, 38, 43, 45, 49
H, =1 010 000 MU
H, = 139 300 MU / a
H, =220 133 MU / a
Ys = 0.086

Hence it was possible to improve the measurement precision expressed by the mean
relative standard deviation by two orders of magnitude.

6.3.5 Further considerations

The optimization method as described is not confined to a particular form of the
objective function, and may be applied to the sohition of a number of practical
problems connected with the selection of measuring poinis in single-component
balancing. In the above case its use resulted in a considerable decrease in the value
of the objective function in comparison with the initial solution. In spite of this,
however, there may be certain reservations from the practical standpoint,

The selection concerned only the measuring points without redundant
measurements. The solution which was found could be improved by choosing the
unmeasured streams whose measuring is not cost and labour intensive, and including
these among the measured streams (selection of redundant measurements). In
addition, it would certainly be useful to consider the possibility of improving the
precision “of the whole measurement by improving the precision of selected
measurements. But on which measurements should such attention be concentrated?
This could be found by expressing the objective function in dependence on standard
deviations of directly measured streams (see the method of share matrices in Section
3.2). The reader will certainly find other possibilities of further improving the
suggested variants of selecting measuring points. The quality of the final solution thus
depends to a large extent on time available for solving the problem.
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64 MEASURING THE HEAT TRANSFER COEFFICIENT OF AN
INDUSTRIAL HEAT EXCHANGER

The overall heat transfer coefficient X is the most important quantity characterizing
the function of heat exchangers and we can meet with its measurement in a number
of activitics, Measuring the value of K in new types of exchangers serves as the
source of underlying data for evaluating their function. Also useful is the
measurement of K on standard exchangers in order to obtain more precise design
correlations. Measurement of K is essential in the monitoring of fouling of heat
exchange surfaces. When improving the structure of existing plants, we oftpn meet
with the problem of placement of an existing heat exchanger under new conditions.
In such a case the measurement of X and its comparison with the theoretically
predicted value may be an asset.

The objective of the following subsection is to point out certain problems
connected with the measurement of K in industrial shell-and-tube exchangers. We
have encountered these problems during the measurement of heat exchangers in a
number of process plants, when we have found marked discrepancies between the
measured and theoretically predicted values. It turned out that, in some cases, this
discrepancy could be explained by propagation of errors in the course of the
calculation of K from measured data.

The mathematical model of a heat exchanger is a typical nonlinear model. One
important theoretical problem is discussed in the concluding part of this section:
errors we commit by the linearization of a mathematical model.

6.4.1 Mathematical model

Hereinafter we shall confine ourselves to an industrial shell-and-tube exchanger with
one pass in the shell space and two passes in the tube side. A simple mathematical
model describing the behaviour of this exchanger has already been presented in
Subsection 2.2.4 (Example 2.3), together with the respective diagram (Fig.2.5). By
an analysis of degrees of freedom we find that the number of unmeasured variables
is lower by one than the number of equations. It is, therefore, a case with one
redundant measurement, which can be processed by the method described in
Section 4.4,

6.4.2 Propagation of random errors during measurement of X

Before we start with the measurement of K proper, let us pay attention to the
simulation calculation of the functioning of the heat exchanger.

The input values for the calculation are the flow rates of both streams, their inlet
temperatures, K, heat exchange area and specific heat capacities of both streams. The
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outputs are the outlet temperatures of both streams, transferred heat, Az, and the
cross-flow correction factor €. . '

The simulation. can be expressed symbolically as the transformation of vector of
input variables X to vector of output variables y : -

y=Ff(x , where
XT=(F1,Fz,fl,Tl,Cpl,sz,A,K) :

yT=(f2,T2,Q,Ath,£)

The results of simulation for three values of the heat exchange area A are
presented in Table 6.9. It may be seen here that with increasing the exchange area
(in the case in which the heat exchanger is seriously overdesigned), the value of &
decreases. The simulation calculation carried out so far, which was actually the
solution of the set of equations of the mathematical model with respect to the output
variables, has yielded consistént values of variables that can be considered true
values, being not subject to any errors.

Table 6.9 — Heat exchanger simulation for different heat exchange
transfer area A

F, =150kgs? K =600 W m? K

F,=50kgs! t, =19.0°C

cp=4180 T kg! K! T, = 56.5 °C

A ({m?)
Quantity
500 1000 1500
I °C 274 29.0 294
T, °C 31.4 - 264 254
€ 1 0.896 0.683 0.504

At, °C 19.6 15.3 14.3
0 W 5.26x10° 6.28x10¢ 6.50x10°
Ke W m?K! 537.5 409.7 302.4

The task, however, can also be set out in the opposite way. The outlet
temperatures as given in Table 6.9 may serve as the input variables for calculating
the model parameters.
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y=£f(x) , where
XT=(F, ,Fp,t,,8,,T,,T),¢y,€n.A)
yT=(K,Q,AI,m,e)

This calculation simulates the identification of the model parameters from the
"measured” flow rates and temperatures. Since the values of "measured” variables
taken from Table 6.9 satisfy exactly the model equations (are not subject to errors),
the values of calculated parameters will be identical with those shown in Table 6.9.
The values of "unmeasured” variables assessed in this way represent the true values
that would be approached if we eliminated the errors of measurement.

When calculating the model parameters from exact values of flow rates and
temperatures we can find the scatier of parameters around the true (mean) values.
Based on the theory of random errors propagation, it is possible to calculate the
intervals within which the calculated unmeasured variables will occur at a certain
probability.

The maximum deviations of calculated unmeasured variables from true values are
presented in Table 6.10. They were calculated on the basis of maximum errors of
directly measured quantities given in the same Table (standard deviation used in this
calcuation were taken as maximum errors divided by 1.96). These results can be
interpreted so, that when we repeat the measurement many times under the same
conditions, about 95% of the individual calculated values will be subject to an error
smaller than is shown in Table 6.10.

Table 6.10 — Maximum errors of unmeasured quantities
Maximum errors of measured quantities are:

F,,F,+ 5% A+05%

t,,T,,T,£05°C e+ 0.2%

, A(m?® )
Quantity
500 1000 1500

K Wm?2K!' 396 (6.6%) 788 (13.0%) 227 (37.9%)
€ 1 001 (1.1%) 005 (77%) 0.16  (32.6%)
Ay, °C 0.54  (2.7%) 0.60 - (3.9%) 0.63 (4.3%)
0 W 2.6x10° (4.9%) 29x10° (4.6%)  3.0x10° (4.6%)

Ke wm2K! 305 (5.6%) 248 (6.0%) 19.0 (6.2%)
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It may be seen from Table 6.10 that the precision of K and ¢ depends
considerably on the exchanger size (overdesign). When the heat-exchange area is
1500 m?, the maximum error of measuring is so large that the measurement makes
no sense. At the same time, the other quantities (Q. A 1, as well as the product X €)
are ascertained comparatively accurately. The problem can be elucidaied by
constructing the ellipse defining the region within which 95% of the X and & values
occur. Such an ellipse, which is shown in Fig.6.15, was constructed from covariance
matrice by the method described in Section 4.4 [sece Eq.(4.83)). It can be seen from
Fig.6.15 that, owing to strong correlation between K and €, the ellipse shape is
markedly elongated and, consequenily, these parameters cannot be identified
separately but only as a product.

1 0 T I | I T

08 | 4

0,2 ! L l !
300 600 900

K/Wm2kd

Fig.6.15 — Propagation of errors in calculation of K and &
(Ellipses covering with 95% probability calculated values of K and &.
+ represents true values) '
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Further, it is useful to examine in a greater detail the propagation of errors in the
course of calculation of calculated unmeasured variables. The matrix of shares for the
exchanger area A = 1500 m? is presented in table 6.11. It follows from this that in thé
case under consideration the imprecision of K depends particularly on the
measurement of temperatures £, and T, , which contribute to the variance of K by 32
and 60%, resp. Hence, if we tried to reduce the variance of X, it would be nccessary
to measure these temperatures more precisely.

Table 6.11 — Share matrice of unmeasured quantities

A = 1500 m?
Directly measured quantitics

Quantity

F, F, A c, 1 , - T T,
K 0 1 0 0 6 32 60 0
£ 0 0 0 0 7 32 61 0
At 2 2 0 0 31 15 41 9
o 10 58 0 0 10 10 6 6
Ke 1 22 1 0 3 25 39 0

6.4.3 Processing of measured data

The method of measured data processing is identical to that used in the preceding
Subsection. The only difference is that, whereas in the preceding case the input data
were precise (satisfying exactly the mathematical model), now the data will be subject
to random measuring errors. Data, made up from the consistent (accurate) values 1o
which randomly generated random errors were added, are presented in Table 6.12.
These data were processed by the method described in Subsection 4.4.5 and the
results are shown in Table 6.12 (A denotes the maximum crrors of results).

The results are similar to those in the preceding Subsection (Table 6.10), their
terpretation, however, is different. In this case the values A do not represent the
maximum errors of resulis but define, together with the parameters %, the intervals
X £ A within which the unknown values of parameters occur with the probability of
95% (so-called confidence intervals). It may be seen here again that, in the case of
large heat-exchange areas, the confidence intervals are rather wide, witnessing a poor
precision of the measurement of K.

In Fig.6.16 are so-called confidence ellipses for K and €, having their centres at
points, whose coordinates are (K, €), and defining the region within which the true
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1'0 T |
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<Zr~ A=500m?

£
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300 - 600 900

K/Wnid k1

Fig.6.16 — Confidence ellipses covering the true values with 95% probability
{0 - estimate; + - true value)

values of K and & occur with the probability of 95%. In praciice the true values are
not known. In our case, however, when the data were generated, the true values are
known (see Table 6.9). _ _ -

- As in the preceding Subsection, it would be possible to introduce here the matrix
of shares. The results, however, would be analogical with those in Table 6.11.

. The detailed statistical analysis of the problem of identifying the overall coefficient
of heat transfer as made hitherio concerned a tubular exchanger with a single pass in
the shell space and two passes in the tube space. The same conclusions hold
approximately also for exchangers with one pass in the shell side and an even number
of passes in the tube side. A similar analysis could be made for other types of
exchangers provided that the mathematical dependence of the correction factor € on
other variables is known.
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Table 6.12 — Processing of measured data
Measured quantities: F, , F, , A, ¢, , 4, . 4,1, T,

A = 500 m* A = 1000 m’
Quantity - _
x* x A x* x A dy,

F, kgs 151.5 1494 4.6% 151.5 1490 45% 17%
F, kgs! 40.0 466 4.5% 46.0 46.7 44% 17%
A m? 498 498 0.5% 996 996 05% -

¢, Jkg'K' 4183 4183 02% 4183 4183 02% -

n °C 19.3 195 04°C 193 195 04°C 18°C
t, °C 27.6 274 04°C 29.2 290 04°C 18°C
T, °C 31.2 31.1 0.5°C 262 262 0.5°C 53°C
T, °C 56.6 567 05°C 566 567 05°C 53°C
K Wm?K! - 584 6.7% - 626 15.9% -

£ 1 - 0894 1.2% - 0.647 10.4% -

At °C - 19.1  28% - 148  42% -

0 Mw. - 497 49% - 596 4.6% -

Ke W m! - 522 5.7% - 406 6.2% -

It has been shown that when the value of € is low, the determination of X may
be subject to a considerable error. In such cases it is necessary to carry out a detailed
statistical analysis of the measured data,whereby the possible error in the results can
be estimated. When the precision of the results is unsatisfactory, it is possible to
examine, whether measuring some variables more precisely can result in considerably
better precision of K. It may turn out in some cases that it is impossible to assess the
value of K with required precision even if very precise measurement methods are
used.

The fundamental cause of problems, from the viewpoint of chemical engineering,
are the low values of the cross-flow comrection factor €. The textbooks usually state
that € should not be smaller than 0.7 - 0.8. It is true, however, that in industrial
practice exchangers whose € is smaller than (.5 can occur sometimes. There are a
number of reasons for this, from overdesign of the exchanger in the design stage to
its operating outside the design conditions region.

As with most real problems, the procedure used in the present work could not be
absolutely rigorous. The mathematical model itself is based upon a number of
simplifying assumptions. The adopted method of data processing holds true exactly
only with linear models. Hence the confidence intervals and regions are only
approximative.
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6.4.4 Errors caused by linearizing the mathematical model

One of the causes of potential errors during the processing of data, described in this
Section so far, is the fact that the methods used have been applied to the linearized
form of the model. Hence the character of the solution is only approximative and thus
may differ considerably from the reality. There have been very few studies, however,
dealing with these problems (Pazman 1966, Ramamurthy & Begquette 1990). The
solution is not a simple one, indeed - in this case it is mot possible to arrive at
conlusions that are valid generally. Any new knowledge acquired here will always
hold true only for a particular class of models depending on their nonlinearity and
other characteristics. In spite of this, further studies in this respect are desirable if the
confidence in mathematical modelling of real technological processes is o be
improved. Therefore, the remaining part of this Section will be devoted o studying
the above problem. _

Let us concentrale our attention upon the impact of nonlinearity of 2 model on the
confidence intervals and regions and on testing of model adequacy according to
(4.83).

The fundamental problem consists in the fact that the described constructions and
lests are based on the assumption of normal distribution of measuring errors, which,
in the case of a linear model, implies normality in the calculated unmeasured
variables. The nonlinearity of the model, however, causes a deformation of the
normal distribution, so that the presented constructions are approximative. The most
appropriate way for studying these problems is the Monte Carlo method, where
repeated simulation of the measurement on a computer yields results that can be
compared with the approximative linearized solution. Further we shall give attention
to two unmeasured variables - K and € (the remaining two - Q and A ¢, - will be
eliminated from the model). _

Now, let us proceed to the simulation of measuring the K and ¢ using the Monte
Carlo method. In the first place, the "true" values are found by a simulation
- calculation of the exchanger. The values A, X, F\,F,4,Tand c, (¢, being the
same for both streams) are set as input and the remaining ones, i.e. t, , T, and € are
calculated. Further, in the phase of Monte Carlo simulation randomly generated errors
- are added to the values so obtained. The following maximum errors were assumed:
flow rates - 5%, temperatures - 0.5 °C (1 °C in one particular case), heat exchange
- area - 0.5%, c, - 0.2%. Standard deviations were taken as the maximum error/1.96.
Altogether three cases were evaluated:

- 1) exchanger with heat exchange area 500 m?,

2) exchanger with exchange area 1000 m?,

3) same as in case 2, only the maximum error in (emperature measurement was
increased to 1 °C.

For each of the above variants 1000 sets of "measurements” were generated and these

data sets were processed. The results were examined as concerns the following
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- sample mean of parameters K and € as identified from the individual sets of

measurement (evaluation of the bias of estimates),

- relative frequency of cases when the interval (4.82) which did not cover the the

“true” values of the parameters,

- relative frequency of cases when the region (4.83), i.c. the conﬁdence ellipse, did

not cover the "true" vector,

- relative frequency of cases when the inequality (4.133) was not satisfied.

The results are presented in Table 6.13. The following conclusions can be arrived
at from this Table: As far as the bias of estimates is concerned, the situation is fairly
good. The maximum deviation of the mean of estimated parameters was found in the
case of K, variant No.3. (reality 600 kW m™ K™}, found - 604.4 kW m™ K™). Even
in this case, however, this dispropomon is negligible when compared with the

confidence interval for K (150 kW m

?K™).

Table 6.13 — Results of Monte-Carlo simulation

Variant
Quantity
1 2 3

A m? 500 1000 1000

K kW m?K! 600 600 600

£ 1 0.896 0.683 0.683

AK kW m? K? 39.7 77.8 150

Ae 1 0.010 0.052 0.103

K kW m? K*! 599.1 601.3 604.4

€ 1 0.896 0.682 0.682
P’{K outside (4.82)] % 5.2 5.2 7.6
P’[e outside (4.82)] % 53 4.5 7.2
P’[K.e outside (4.83)] % 52 5.6 9.4
P’[Q_, outside (4.133)] % 6.1 5.5 6.2

Remarks:

* - max. error of measuring temperatures 1 K
A K, A & - half of confidence interval width
K T- average values from 1000 simulations

P’[] - relative frequency

The relative frequency of cases where the inequality (4.133) was not satisfied
(gross error was detected, even if it was not present) was fairly close to the

theoretical probability 5%.
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Obviously, this finding is in relation to the fact that the task is but very little
overdetermined - practically by a single redundant equation only (enthalpy balance
of the exchanger), which is, moreover, only slightly nonlinear,

The largest deviations of relative frequencies from theoretical probabilities
occurred in the case of the coverage of "true” values by intervals or, as the case may
be, by the coverage of "true" vectors by ellipses of confidence. The maximum
disproportions were observed in the variant 3, where the relative frequencies were
markedly higher than the theoretical probabilities 5%. This is obviously due to the
non-normality of parameters distribution caused by nonlinearity of the model (the
confidence region has no more the shape of an ellipse). Yet, even in this worst case
the situation is not entirely unacceptable. It is necessary to consider here that, in the
given case, the accuracy of measurement is altogether poor (a half of the confidence
interval width for X is 150 kW m™ K™, i.e. 25% of the assessed value). In such a
case the worth of the whole measurement is rather questionable and its optimization
is necessary. '

It follows from the study executed that the statistical methods of processing the
measured data, as-developed for linear models, are, in- principle, applicable to
nonlinear models as well. We have arrived at this conclusion when studying the
identification of the mathematical model of a heat exchanger. To confirm this
opinion, further studies on other unit operations will be nceded.
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Appendix: Mathematical Tools

The appendix briefly summarizes the mathematical concepts which are necessary for
understanding this book. In most cases, the survey does not exceed the graduate range
of knowledge; it is supposed that it will serve the reader mainly for brushmg up what
has been learnt before.

A.1 VECTOR SPACES

An ordered set of n numbers X = (x, ... x, ) is called a vector of a-dimensional space
and the numbers x, , ... , x, are called the coordinates of the vector X. Vectors will
be denoted by boldface small letters, the coordinates by italics.

As examples of vectors may serve instantaneous values of flow rates at different
places of a pipeline network or the sequence of yields of a chenucal reaction obtained
in a series of subsequent batch operations.

Two vectors X and y are equal when and only when the corresponding coordinates
are equal.

The sum of vectors X and y is vector Z = X + y whose coordinates equal
z;=x;+y, for i = 1, 2, ... , n. For the sum of vectors, the following laws of
1.commutativity and 2.associativity hold |

l: X+ y=y+Xx
2. (X+P+v=x+(y+v

The product of scalar k£ and vector X is vector Z = kX whose coordinates equal
z;=hkx;fori=1,2,..,n

For vectors X, ¥ and real numbers a, b, one defines the linear combination
ax + by as the vector of coordinates ax; + by, . The notion of a linear combination
can be extended to the sum of an arbitrary number of products of a scalar with a
vector,

A linear space P is a set of vectors having the following properties. If X and y are
two arbitrary elements of P and c is an arbitrary real number, then also X + y and cx
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belong 1o the linear space P. An example of a linear space is the set of all vectors
in a plane. The vectors X, , ... , X, are linearly dependent if there exist some numbers
€y » .- » €, Of which at least one is different from zero, and such that we have

X+ tC X,=0 | | (A1)

where 0 is the zero vector (the vector whose all coordinates equal zero). In the
Opposite case, the vectors are linearly independent. The vectors are linearly dependent
if and only if one of them is a linear combination of the other vectors.

A linear space is called n-dimensional if it contains » linearly independent vectors
while any more than  vectors of the space are linearly dependent. The number 7 is
called the dimension of the linear space.

A linear subspace L of a linear space P is a subset of elements of P having all the
properties of a linear space. There holds that all elements belonging to L also belong
to P, but not necessarily conversely.

A.2 MATRICES

A.2.1 Basic concepts

We shall call a matrix an array of m x n real numbers arranged as a rectangle scheme
of m rows and n columns '

AnsAps e, . A
A= | An Ay, ... . A, A2
AmisBpzs oo A

We say a matrix of m rows and n columns is of type m x n ; if necessary, it is
written as A (m x n). If m = n , it is called a square matrix of order n. A matrix of
- type 1 x n is called row matrix or row vector. A matrix of type n x 1 is called
column mairix or column vector. A vector without the type specification will further
- be considered as a column vector. A number (scalar) can be considered as a 1 x 1
matrix.

The elements A; (i = 1, ... , n) of a square matrix form the main diagonal
(abridged: diagonal) of the matrix. A square matrix with nonnull elements in the main
diagonal and with all elements below (above) the diagonal equal to zero, is called
upper (lower) triangular matrix. A square matrix with nonnull elements in the
diagonal and with all off-diagonal elements equal to zero, is called a diagonal matrix.
A diagonal matrix is thus a particular example of a triangular matrix. If all diagonal

.
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elements of a diagonal matrix equal unity, it is called unit (identity) matrix and
denoted I A matrix whose all elements equal zero is called zero matrix and denoted
by 0. . : - .
A symmetric matrix is a square matrix whose elements satisfy A; = A;
i=1,..,mj=1, .., n); thus the elements placed symmetrically with respect to
the diagonal are equal. The basic kinds of matrices are illustrated on Fig.A.1.

If a matrix A (m x n) is divided by horizontal lines in number (p - 1) and by
vertical lines in number (g - 1) between the rows and between the columns,
respectively, one obtains a partitioned matrix (also called composed or block mairix)

whose elements in number pg are matrices (see Fig.A.2 for examples).

1

XXXX XXXxXx x ZXXX

XXxx XXxXx (xxxx) x Oxxx

XXXxXx XXXX X 00xx
XXxXx X 000x

a) b) ¢) d) e)

z00 z00 100 000 x51

xz0 0z0 010 000 5x7

xXxz 00z 001 000 17x

f) g) h) i) i)

Fig.A.1 — Basic kinds of matrices (x - real number, z - non-zero number)
a) rectangular, b) square, ¢) row, d) columm (vector), ¢) upper triangular, f) lower triangular,
g) diagonal, h) unit, i) zero, j) example of a symmetric matrix

A=(5) B=(23 C-= [7]

9

5
2
A 5 AB 523
woss [ A1) (%)
C 9 cD 924

Fig.A.2 — Examples of partioned (block) matrices

One of the basic concepts is that of the rank of a matrix. One says matrix A is of
rank h if in the set of its rows, there exist at most 4 linearly independent rows. It can
be shown that the same rank is obtained when considering the set of the columns
instead of the rows of the matrix. If rank (A) = min (m, n) where m and n are the
dimensions of the matrix, then the matrix is said to be of full rank.

A square matrix whose rank equals its order is called regular. If the rank of a
square matrix is lower than its order, then the matrix is called singular.
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A.2.2 Matrix operations

Two matrices A and B arc equal (one writes A = B) if they are of the same type and
if the corresponding elements are equal, thus A;=B.fori,j=1,2,...

The transposed matrix A" (ranspose of A) is obtained from matrix A by
interchanging the rows and the columns while preserving their order (i.e. by "turning
the matrix over" round the main diagonal). For the elements of matrices A and A T
we have A; = A7 for all i and j. S

The sum of matrices A and B is the matrix C whose elements equal the sum of
the corresponding elements of A and B, thus Cy=A; + B; for all i and j. The
matrices A and B must be of the same type, thus also C is of the same type.

The product of scalar ¢ and matrix A is the matrix B = ¢A whose elements satisfy
By = cAy for all i and j. In the special case of ¢ = -1, B is called opposite 10
matrix A, _

One of the most important matrix operations is matrix multiplication. Let A be of
type m X n and B of type n x p. The product AB is the matrix Cof typem x p
whose elements satisfy

ij &k

Ca= X A;B, (i=1,...mk=1,..,p) (A.3)
I

The product AB is defined only if the number of columns of A equals the number
of rows of B (one says that A and B are conformable). The product of a matrix with
the unit matrix (from the left or the right) equals the original matrix.

Further relevant properties of the matrix product are: Matrix muliiplication is
generally not commutative, but it is associative.

non-comutativity:  AB is not always equal to BA

associativity: ABC=(AB) C= A(BC)
The associativity of a greater number of matrices enables to calculate the product as
a sequence of products of two matrices. _

Let A= A, A, ... A, . For the rank of A there holds tha it equals at most the rank
of matrix A, of minimum rank

rank (A) <min rank (A;) fori=1, ... » D
The transposed matrix product equals

(41 A AYY=AT ATAT (A4)
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Important is the notion of inverse matrix introduced for square matrices. For a
given squarc matrix A, let there exist a matrix A such that simultancously

AA'=] and A'A=1]

where f is the unit matrix. Then A is unique, and it is called the inverse of
matrix A. For the existence of the inverse matrix, it is sufficient and necessary that
the original matrix is regular,

The inversion of a product of regular square matrices follows an analogous scheme
as the transposition -

(A A .. A=Al  ATA? | | (A5)

A.2.3 Linear, bilinear, and quadratic forms
In the application of matrix algebra, linear, bilinear and quadratic forms are of

frequent use.
A linear form in n variables is a polynomial defined as

fO=ax,+aqyx,+....+a,x,

where g; are given numbers, the so-called coefficients of the linear form. Having m
linear forms : :

e ee e (A.6)
fm (x) - Aml xl + + Amu xn.

this system of linear forms can be written as the matrix scheme
f= Ax (AT)

here, f(m x 1) and X (n x 1) arc ¢column vectors and A (m x n) is the matrix of the
system of linear forms.

Let us now have 2n variables (x,; , ... , x, ) and (y, , ... , ¥, ). A bilinear form in
2n variables is a polynomial of the 2nd degree whose any member is linear in x; as
wellasiny,,fori=1, .., m

fxy = r X A%y, (A8)

r=l 1
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In matrix expréssion
Fx, p=x"Ay (A9)
where A is the matrix of the bilinear form.

A quadratic form in n variables (x, , ... , x, ) is a polynomial of the second degree
defined as _ :

fx) = LY Ayxx,  where Ay= A, (A0
inl jel
or in matrix expression
f(x, )=x" Ax where A = AT (A.11)

The (symmetric) matrix A is called the matrix of the quadratic form.
For example t.hequadrauc trinomial x,? + 4x, x, + x, can be written accordmg to
Eqn.(A.11) where x"= (x, , x, ) and with the symmetric matrix

4= [51 ]

A.2.4 Elementary matrix rearrangements

The basic elementary rearrangements are:

1. The multiplication of a row (or column) of the matrix by a number different from
ZEr0,

2. The interchange of two rows (or columns) of the matrix.

3. The addition of a row (column) to another row (column). The elementary
rearrangements are those composed of the rerrangements 1 through 3.

B\

Fig.A.3 — Canonical form of a matrix
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By elementary rearrangements, any {generaily) rectangular matrix can be
transformed to the so-called canonical form (see Fig.A.3). In the canonical form , in
the left upper corner of the matrix one has the unit matrix while the other rows , if
present, equal zero.

Transforming the matrix to the canonical form is a convenient method of
determining the rank of the matrix, The rank then equals the order of the unit
submatrix in the canonical expression. :

A.2.5 Matrices and systems of linear equations

~ The system of m linear equations in n unknowns x, , ... , X,

Apx, + ... FALX =0 ;
' (A.12)
‘Alll xl +  ..... + AM x,, = Cm
can be written in matrix form
AxX=cC (A.13)

The matrix A is called the matrix of the system (of equations), the composed
matrix A,

A=[Aq (A.14)
is called the extended matrix of the system. A convenient method for the discussion
of the solvability as well as for the solution proper is transforming the extended

matrix of the system to the canonical form. Three basic cases which can thus occur
are shown in Fig.A4

a) ' b} c)

NN
NN

Fig.A.4 — Solvability of linear equations



272 Appendix: Mathematical Tools

a) a solvable undetermided system (having an infinity of solutions)

b) a non-solvable system (having no solution)

) a solvable system with unique solution.

It is essential that the solutions of the original system and that of the system

corresponding to the canonical form are identical. On this principle is based the well-

known Gaussy-Jordan method of elimination for a system of linear equations.
Another method of solution for a system of equations with a regular square matrix

makes use of the inverse of matrix A

x=A'c¢c (A.15)

as follows from the multiplication of Eqn.(A.13) from the left by matrix A”.
A.3 CONCEPTS OF PROBABILITY

A.3.1 Random events and their probabilities

Let us suppose that the rate of a chemical reaction depends on the temperature and
composition of the reacting solution. If we now fix the temperature and composition
in the reactor and measure the reaction rate several times at given conditions, the
results will probably differ slightly from case to case. The reasons may be for
example the fact that the actual conditions in the reactor differ slightly from the fixed
values, that the reaction rate depends also on other, uncontrolled factors or that we
have committed certain errors in the reaction rate measurement proper.

The result of the experiment, the measured value of the reaction rate, is a random
event because this value though can, still need not have been obtained in the given
case. More generally, a random event need not be just the finding of a specific value
but for example the fact, that the measured value lies in a certain, a priori chosen
interval. The laws a random event obeys are probabilistic (stochastic) laws.

In this book, we shall meet only cases where the random event will be occurence
of a value in an interval (or of a vector in a multidimensional region). The respective
intervals (regions) can be conceived as sets; for random events, set concepts and
operations can then be introduced. For example if an interval assigned to event A is
a part of the interval of event B, one says event A is a part of event B (from event
A follows event B). For events one can introduce the notions of equality, union,
intersection ¢tc.; the notions refer to the sets assigned to individual events.

Two events which can not occur simultaneously are called disjoint. A set of
random events is disjoint if the events are two-by-two disjoint. An event § which
always occurs under the given set of conditions, is a sure event. Important is the
notion of a complete set of disjoint events, whose union is a sure event. Dividing the



Sec. A3} Concepts of probability 273

interval (region) assigned to a sure event into a set of not-overlapping intervals
(regions), one clearly obtains a complete set of disjoint events.
To any random event A is assigned 1ts probability, i.c. a number P (A) satlsfymg-
the following axioms
a) the probability is nonnegative

P@A=20

b) the probability of a union of disjoint events equals the sum of the probablhues of
the events .

A and B disjoint: P (A+ B)=P (A) + P (B)
c¢) the probability of a sure event equals unity
PO =1

To the determination of the numerical value of the probability, one can apply the so-
called classical definition of probability. If an experiment is n-times independently
repeated and if event A occurs m-times, then its relative frequency equals m/n. If,
increasing the number » of repeated experiments the relative frequency converges (o
a certain namber, this number is considered an estimate of the probability P (A).

A.3.2 Random variables

There is a variety of random events which are encountered in the probability theory.
The mathematical treatment requires transforming the random events to so-called
random variables. In this book, one will meet only the cases where the resulis of an
experiment (measurement) are certain measured values or their functions. In such
cases, as the value of a random variable is considered directly the measured value or
its function. Here, one has to make a distinction between the random variable and its
concrete value (the so-called realization of the random variable) obtained as the result
of a concrete experiment,

According to whether the random variables can assume only discrete values or can
vary continuously, they are divided into discrete and continuous ones. The values
obtained from measurements are always given (rounded off) to a certain number of
decimal places. For the sake of easier mathematical treatment and also because the
actual character of a measured value is usually continuous, we shall regard the
measured results as realizations of continuous random variables.
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A.3.3 Distribution of random variables

For computing the probability that a random variable assumes a certain value or a
value lying in a certain interval, of basic importance is the concept of the distribution
function. The latter assigns to any real number the probability that the random
variable will assume a value lower than this number. The mathematical expression is

F®=PX<x) | (A.16)

where X is the random variable, x is a real number and F (x) is the distribution
function. For examples of distribution functions see Fig.A.5.

1 | S
x —_
u —— ._U-E
b o ;
+——o0
—_ /
0 —— 0 i X
al b)

* Fig.A.5 — Distribution functions
a) discrete random variable; b) continuous random variable

The distribution function is non-decreasing and it satisfies F (=) = 0 and
F (+e) = 1. Relevant is the fact that the probability of the occurrence of the random
variable in the interval (x, , x, ) equals the difference of distribution function values

P SX<x)=F(x)-F(x) (A.17)
For continuous distribution functions, we have
P <X<x)=P@xsX<x)=Px <X<x)
If the distribution function is continuous, the probability distribution law for a
- random variable can also be expressed in terms of the probability density. A function

f (x) is the probability density function of random variable X at point x, if it is related
to the distribution function according to

F ()= f_“f @) dr (A.18)
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For the probability that the random variable assumes a value from the interval
{x, , x; ), there holds

P(x.SX<xa)=-}(:)d: | (A.19)

The relation illustrates the probabilistic interpretation of the prdpabnhty density. The
relation between the probability density and the distribution functlon is ﬂlustratcd in
Fig.A.6 [see also Eqns (A.16) through (A%19)]. .

i

—=f(x)

Fix,)- Flx,)

Xg —%

)] b)

Fig.A6 — Dlsmbuum function (a) and probablhty density
function (b)

One can thus express the probability distribution law for a continuous random
variable, using either the distribution function or the probability density; for
frequently encountered distributions, both can be found in tables. Of practical
importance are so-called quantiles of a distribution which are also often tabulated.
The P-quantile of a given distribution is the value x, of the argument of the
distribution function satisfying the condition:

The probability that the value of a continuous random variable belongs to the
interval (-o= , xp ) equals P; thus

JOa=F(5)=P

The probability P is often given in percent (%). For éxample, the 95% quantile of a
distribution is the value of the argument giving the value of the distribution function
equal to 0.95.
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Multidimensional random variables

In practical applications of the probability theory, it is often not sufficient to restrict
oneself to one random variable only; it is necessary to take into account a vector of
random variables simultaneously, i.e. to consider a multidimensional random variabie,
In the case of n random variables (X, , ... , X, ), one formulates the probability
distribution law for an n-dimensional random variable using a joint distribution
function. The function gives the probability that the value of each random variable X,
is simultaneously lower than the respective argument (a real number) x; of the
distribution function. Thus

F&,uw,x)=PX sx,,..,X,Sx,) (A.20)

The n-dimensional joint probability density of continuous random variables
X, , .., X, is the function f (x, , ... , x, ) related to the corresponding distribution
function as follows :

x, .xl :
F@vuin) =/ o] et o, (A21)

In addition to' the joint probability density, the so-called marginal probability
densities for individual random variables are introduced. Thus, the marginal density
for variable X, is by definition

fer=] [ fmne ) dy e A22)

The marginal distribution function F, (x, )

x
Fie) = fie)d, (A23)

gives the probability that a value of the random variable X, will be lower than x, ,
~ irrespective of the values of other random variables.

The notions of marginal probability density and of marginal distribution function
can also be extended to arbitrary couples of random variables. For example the two-
dimensional marginal distribution function F; &; , x; ) satisfies the relation

irespective of the values of other random variables.

Of particular importance is the notion of the statistical independence of two
random variables. Two random variables are statistically independent if the value of
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one random variable is independent of the value other variable has assumed. A
necessary and sufficient condition for the independence of random variables X; and X;
is the validity of the equation

Fex;.5)=F,(x)F; (x;) ‘ . (A.25)

For independent random variables, the two-dimensional marginal distribution function
is thus always equal to the product of the respective one-dimensional marginal
distribution functions.

A.3.4 Characteristics of random variables and of their functions :

The distribution law of a random variable, as expressed by the distribution function,
describes the behaviour of the random variable completely, but it is not always
sufficiently lucid. The characteristics of a random variable are numbers characterizing
in a straitforward manner certain selected properties of its distribution. In what
follows let us confine ourselves to two such characteristics, viz. the position
characteristics, which is the mean, and the variability characteristics, which is the
variance (dispersion) of the random variable.

The mean of a continuous random variable X, denoted E (X) or y, is defined by

EX = | zfod (A.26)

where f (x) is the probability density of the random variable X. In addition to the
mean value, there exist also other position characteristics; best known are the median
and the modus. The median M is the value for which there holds P (X < M) = 1/2.
The modus of a discrete or continuous random variable is the value giving the
maximum probability or probability density, respectively.

The variance of a continuous random variable is defined by

D) =/ [x-E@Pf)de @)

The variance is also denoted by o,® and its square root is called the standard
deviation. o '

For multivariate random variables, one can define the mean values and variances
of separate random varibles by the equations (A.26) and (A.27); here, for the
probability density one substitutes the marginal probability density of the given
‘random variable.

The notions of mean and variance can be generalized for functions of random
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variable X, for example ¥ = y (X). The mean and the variance of the function are,
respectively

E® =/ yoroa © (A28)

D = [ bO-EMPfO @ o (a29)

Let us now consider an n-dimensional random variable x = Xy, ..., X, ). Besides
the previously defined mean values and variances of separate vector components, a
measure of statistical independence of the components, the so-called covariance is
important. The covariance of two random variables X; and X; is denoted cov (X, , X;)
and is defined by - :

cov (X, X;) = E (IX, - E (5 )] [X; - E (X, )]} (A.30)

For random variables X; and X; with two-dimensional marginal probability density
fi &, x;) we have

+an o~ +oo

cov(X, , X;) =/ _ f__,:.- L 8) did - E (X)) E (X,) (A31)

With the covariance is closely connected the correlation coeficient p X, .X; ) a
dimensionless measure of the correlatedness of two random variables

cov (X;,X;)
G O,
4

P, X)= (A32)

The correlation coefficient takes its values from the interval (-1,1). If the coefficient
is null, the variables are called uncorrelated. If Ipl = 1, there is a deterministic linear
relation between the random variables.

- The covariances and the correlation coefficients of an n-dimensional random.
vector X can be arranged into the so-called covariance matrix and correlation matrix,
respectively. These matrices of type n x n are symmetric and the elements in the ith
row and jth column equal cov (X, , X;) and p (X;, X; ), respectively. The elements
of the diagonal of the covariance matrix are the variances of the components of the
random vector. On the diagonal of the corelation matrix, one has unities.

An important relation is that between the correlatedness and the statistical
independence ‘of random variables. If two random variables are statistically
independent, they are also uncorrelated. A converse assertion (that the correlatedness
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implies the independence) does not hold generally for any type of distribution of
random variables; but it holds true in the most frequent case where the random
variables have the multidimensional normal distribution. Therefore, in praciice, the
covariances or correlation coefficients are employed as a measure of independence
of random variables, and one often makes no distinction between the notions of
uncorrelatedness and independence.

A3 Tmportant distributions of random variables

In what follows, we shall restrict ourselves to those dxstnhlitlons 6f continuous
random variables which are important from the standpomt of measured data

processing.

Uniform distribution

The distribution of a random vanable is called uniform (rectangular), if the
probability density is constant on the whole interval of values the variable can
assume. Thus if the range of values of the random variable is the interval {a , b)
then the probability density equals '

f@W=1/(-a) forxe {a, b)
(A.33)
f&x)=0 otherwise
and the distribution function is
0 forx<a
FO=@x-a)/(b-a) forasx<bh
1 forx>b
Both functions are depicted on Fig.A.7. The basic characteristics satisfy
EGx)=(a+b)/2 ‘ (A.34)
D& =-a?/12 (A35)

Normal (Laplace - Gauss) d]Stl"lbllth[l

The normal distribution is the most important distribution of a continuous random
variable; under certain circumstances, also some other distributions can be
.approximated as normal. The probablllty density of the normal distribution is given
by the function

fR)= ——p ¢ p[ G- ") | (A.36)

1
o (2m)
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The function is characterized by two prameters, i and o, where i equals the mean
and o the standard deviation of the random variable. The normal distribution is
written briefly as N(l , 6> ). Examples of probability densities are given in Fig.A.8a.

If p = 0 and o = 1, one speaks of the standard normal distribution N (0,1) and
the random variable is denoted by U. The quantiles of the standard normal
distribution, denoted as u, , are given in Tab. A1 (see also Fig. A.8b). The
importance of the standard normal distribution consists in the universality of its
application. It is obtained from a random variable X, normally distributed as
N (1, 6°), by the transformation U = (X - p) / 0. The distribution of the random
variable U is then N (0,1).

—=f[x)
—— Fix]

Mb-a)f - - -

o ———— —

0 a b —=x 0 a.

X

Fig.A.7 — Uniform (rectangular) distribution
[probability density function f (x) and distribution function F (x)]

04 N{01)
> — 03+
ey X
Ni2a) 021
On‘l 992/,
S - -~ {95%% 258
\ 196
: —t S ¢ I~ 5 q > T 3
3 & 5 3 _2 1 68.3%0 %
954°%%
99,7 %% of area

Fig.A.8 — Probability density function of a normal distribution
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Table A.1 — Quantiles of standard normal distribution

P{U<u)=P
P 0.500 0.900 0.950 0975 099 0.995 0.999
up 0.000 1.282 1.645 1.960 2.326 2.576 3.090

If a quantile of the distribution N (i , 6° ) is to be found, one proceeds as follows.
From Tab. A.1 onc takes the respective quantile u, of the standard normal dlSIIlbutl()n
and the soughi-for quantile x, follows from the relation x, = 4 + O up .

The normal distribution is symmetric; bence the probability densuy, the
distribution function and the quantiles satisfy the respective relations

f@)=1Cu (A37)
CF@=1-F(u | . (A.38)
Up=-~Uy.p _ (A.39)

It is important to know that the values a < 0.5 satisfy

P{Wi<u, p)}=1-0 (A.40)

Multivariate normal distribution

The distribution of n-dimensional random variable x = (X, , .. , X, ) is called

n-variate normal distribution of random vector X if its joint probability density equals
fX)=kexp(-q/2) : (A.41)

where |

k= (2n)y ™ [det F) 2
and
g=x-wWTF (x-p

here, p is the vector of mean values E (x) and F is the covariance matrix of the
random vector X. One supposes F to be regular. The distribution is denoted

N, (u,F.
The loci of constant probability density satisfy the equation

g=(x-w"F*(x-p)=const | | (A.42)
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which is the equation of n-dimensional ellipsoid (n = 2: ellipse, n > 3:
hyperellipsoid). |

It is important to know the probability that the realization of a random vector will
occur inside a given ellipsoid. Let us have a random vector with distribution
N, (U , F); then the ellipsoid whose equation is

g=X-W'F' (x-py=y2 - (A43)
contains the variables with the probability (1 - ). The expression x,2, (1) denotes
here the 100 (1 - o) percent quantile of the ¥? distribution with # degrees of freedom
(see below).

Example A.1: Bivariate normal distribution

Let us consider the distribution N, (0, F) where F = | 3 (1} ] . In this case, the
probability density is given by the equation

fl,x)={ exp [-(x,%4 + x22 Y121} 7 @4m) (A44)

The equation of the ellipse of constant probability density is obtained by taking the
logarithm and by a rearrangement of the equation (A.44)

(/2 +x2=-2n @m)y-2In[f(x,,x,)] = K* (A45)
The equation (A.45) can be rcarranged to yield the standard equation of an ellipse
[/ CROP + (5, /K =1 S (A.46)

where the values 2K and K are the lengths of the respective semi-axes. The ellipses
for probability equal to 0.04, 0.01 and 0.001 are presented in Fig.A.9.

| ’1\ N Fig.A.9 — Contours of probability

T — 3 /7 | density of two-dimensional normal

: \&—«/ A distribution (Example A.1)
Ry syl — constant probability density

- - - 95% realizations inside the
ellipse
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Let us search further for the ellipse inside which is contained 95% rea.lizations of
the random vector. According to (A.43) its equation reads

(x /2P + 27 = Xlss (2) = 5.99 | - (A47)
The ellipse is depicted by the dashed curve on Fig.A9.m
The % distribution

Let us have v random variables U, , ... , U, , mutually uncorrelated, each of them
having the distribution N(0, 1). The random variable x deﬁned as the sum of squares
of the random variables

= UL+ ..+ U2 - (A48)
has the chi-square distribution with v degrees of freedom, denoted by %* (v). The

diagrams of the probability densities of the % distributions are shown in Fig.A.10,
for several degrees of freedom. The quantiles are given in Tab.A.2.

Table A.2 — Quantiles of ¥ distribution
PI<y, WM=P

P - P

v v
0.90 0.95 0.99 090 095 0.99
1 271 3.84 6.64 16 23.54 2630  32.00
2 461 599 9.21 17 24717 2759 3341
3 6.25 7.82 11.35 18 2599 2887  34.81
4 7.78 0.49 13.28 19 2720 3014  36.19
5 9.24 11.07 15.09 20 2841 3141 37.57
6 10.65 12.59 16.81 21 2962 32.67 38.93
7 12.02 14.07 18.48 22 3081 3392  40.29
8 13.36 - 15.51 20.09 23 3201 35.17 4164
9 14.68 16.91 21.67 24 3320 36.15 4298
10 1599 18.31 23.21 25 3438 3765 4431
11 17.28 19.58 24.73 26 35.56 38.89 45.64
12 18.55 21.03 2622 27 3674 40.11 46.96
13 19.81 22.36 27.69 28 3792 4134 4828
14 2106 23.69 29.14 29 39.09 4256  49.59

15- 2231 25.00 30.59 30 40.26  43.77 50.89
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—= fix)

Fig.A10 — Probability density function
of x? distribution

The mean and the variance satisfy the relations -
E’MMl=v (A.49)
D [ (n)] = 2v (A.50)

Noncentral ¢’ distribution

Let us have v random variables U, , ... , U, which are mutually uncorrelated, the
distribution of the ith variable being N (j, , 1). The random variable x’? defined as
the sum of squares of these variables

X2=U2+ ..+ U2 , (A.51)

has the noncentral chi-square distribution with v degrees of freedom and with
noncentrality parameter ; it is denoted by %2 (v , §). The noncentrality parameter &
. is determined by the relation

v 12 .
3= 2';' u,-’] (A.52)

(The terminology is not unique. In certain papers, as the noncentrality parameter
is designated the quantity A = & ). If the noncentrality parameter equals zero, one
obtains the usual (central) * distribution defined by Eqn. (A.48). If a %2 distribution
is given without more precise denotation, the central % distribution is meant. For the
mean and variance we have

Ex?(v,8l=v+& | | A5
Dx? (v, 8 =2v+45 st
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The ¢ (Student) distribution

Let us have two independent random variables U and x> Let U have the distribution
N (0,1) and let ¥? have the distribution %> (v) . The random variable ¢

. )
T @ e

has the distribution ¢ with v degrees of freedom, written as 1 (V).

The probability density for several degrees of freedom is in Flg.A 11, The
quantiles of the distribution, denoted by #, (v), are in Tab.A.3. The distribution is
symmetric. It thus satisfies relations analogous to the relation (A.37) through (A 40),
in particular

Table A.3 — Quantiles of ¢ distribution
Pli<t,(W)I=P

P P
v v
095 0975 0995 095 0975 0995
1 631 1271  63.66 14 176 215 298
2 292 430 993 15 175 213 295
3 235 318 584 16 175 212 292
4 213 278 460 17 174 211 290
5 202 257 403 18 173 210 288
6 194 245 371 19 173 209 286
7 1% 237 350 20 173 209 285
8 186 231 3.36 25 171 206 279
9 183 226 325 30 170 204 275
10 181 223 317 40 168 202 270
11 180 220 3.1l 60 167 200 266
12 178 218 306 120 166 198 262
13 177 216 301 165 196 258
P{l<t nW}=1-0 : | (A.56)

~ Increasing the number of degrees of freedom, the ¢ distribution converges to the
N (0,1) distribution.
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The F (Snedecor) distribution

Let us have two independent random variables y,? and X2> having distributions
X* (v, ) and * (v, ), respectively. The random variable F

y A .
=~ A.57
X2* IV, ( )

has the distribution F with v, and v, degrees of freedom, denoted by F (v, , v, ). .
The diagrams of the probability density are shown in Fig.A.12. The quantiles of

the distribution, denoted by F, (v, , v, ), are in Tab.A.4. The quantiles satisfy the
relation -

Frpy,v)=1/Fp(v,,v,) (A.58)

04 tleo )=N{0)1)

0,31

— £(x]

0, 1

-3 =2 -1 0 1 2 3 Fig A1l — Probabi.lily density
_ function of t distribution

1 F(20)

Fl10,10}

— §(%}

0 1 2 3 . 5 FigA.12 — Probability density
——X Functions of F distribution
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A.3.6 Random (stochastic) processes

A random (stochastic) process is a generalization of the concept of a random variable.
From the mathematical point of view, this process is a random function of time; from
the physical point of view, it means a process whose course in time is random.

As an example, let us consider the course of the temperature of gaseous ammonia
at the outlet from a pre-heater. Although this quantity is conirolled, it fluctuates
around the desired value due to extraneous perturbations. In Fig.A.13 are depicted
four realizations of the course of the temperature in time, Observing the individual
realizations we see that their courses are different, although they belong to the same
random process. The knowledge of the course of a realization in the past does not
allow us to determine its future course. The properties of a random process can only
be described by statistical means. _

Mathematically, a random process can be defined as the set of all possible
realizations with common statistical properties (the analogy to a random vanable and
its realization being obvious). '

Fig.A.13 — Repeated measurements of
ammonia temperature

Statistical properties of random processes

Suppose we dispose of the set of all possible realizations of a random process. In
analogy to the case of a random variable, one can define the distribution function or
the probability density function. At a certain time instant ¢, individual realizations of
the random process may assume different values. The disuibution of the values is
characterized by the distribution function F (x, f) which is generally a function of
time. _

For a brief description of random processes, in the same manner as for random
variables different characteristics are employed. Most frequent are the mean and the
variance. Important is the fact that the numerical characteristics can be defined either
as the characteristics of all realizations of a random process at a given time instant,
or as the characteristics in time for a unique realization of the process.
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Table A.4 — Quantiles of F distribution
P[F<Fp(v,,v,)] =095

V2
v, .
1 2 3 4 5 6 7 8 9 10

1 161 1851 1013 7.71 6.61 599 559 832 S5.12 496

2 200 1900 955 694 579 514 474 446 426 4.10

3 216 1916 928 659 541 476 435 407 386 3.71

4 225 1925 912 639 519 453 412 384 363 348

5 230 1930 9.01 626 505 439 397 369 348 3.33

6 234 1933 894 6.16 495 428 387 358 337 322

7 237 1936 888 6.09 488 421 379 350 329 3.14

8 239 1937 884 604 482 415 373 344 323 307

9 241 1938 881 6.00 478 4.10 368 339 318 3.02
10 242 1939 878 596 474 406 3.63 334 313 297
11 243 1940 876 593 470 403 3.60 331 310 294
12 244 1941 874 591 468 400 3.57 328 307 291
14 245 1942 871 587 464 396 352 323 302 286
16 246 1943 869 584 460 392 349 320 298 282
20 248 1944 866 580 456 387 344 315 293 277
24 249 1945 864 577 453 384 341 312 290 274
30 250 1946 8.62 574 450 381 338 308 286 270
40 251 1947 860 571 446 377 334 305 282 267
50 252 1947 858 570 444 375 332 303 280 264
75 253 1948 857 568 442 372 329 3.00 277 261

100 253 1949 856 5.66 440 371 328 298 276 259
200 254 1949 854 565 438 3.69 325 296 273 256
500 254 1950 854 564 437 3.68 324 294 273 255

o 254 1950 853 563 436 367 323 293 271 254

There is a property of random process which, in contrast (o the preceding ones,
has no analogy in case of random variables; it is the so-called autocorrelation
function. The autocorrelation function R (1, , 1, ) of the set of realizations of random
process X (t) , for two different time instants ¢, and ¢, , equals

R{,p)= E XE)XBN=EXE)X#+1)] (A.59)

here, T =, - ¢, is the so called time shift. It is thus the mean value of the product of
the random functions at times ¢, and 1, .
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Of particular importance are random processes whose autocorrelation function
depends only on the shift 1; ‘

Rt ,L+1)=R{x)
forall ¢, .
Types of random processes

According to the statistcal propertics, random processes are divided into several |
groups. A process whose all statistical properties are constant in time is called
stationary (in the strict sense). A less strict form of stationarity is the stationarity in
the wide sense; here, only the Constant character of the mean and variance and further -
the dependence of the autocorrélation function on the shift only are required. In
practice, one frequently assumes the stationarity in the strict sense for processes
where only the stationarity in the wide sense has been proved.

An important subgroup of stationary random processes are ergodic processes. They
are characterized by the property that the statistical characteristics of all realizations
at any moment equal the the respective statistical characteristics of any realization in
time. For the determination of the properties of an ergodic random process, it is
therefore not necessary to know all its realizations; one suffices. Physical stationary
random processes met in practice can usually be considered as ergodic. _

Nonstationary random processes have statistical properties variable in time. In
Fig.A.14 are shown the most important types of nonstationary random processes.

al

b) ' Fig.A.14 — Realizations of random processes
——1t a) variable mean value; b) variable dispersion
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Random processes can also be divided according to other criteria. If a random
variable can assume continuously all possible values, one speaks of a continuous
random process. If the variable can assume only certain values, a discrete random
process is involved. A random process defined only in certain time instants is the so-
called random time series.

A.4 MATHEMATICAL STATISTICS

A.4.1 Basic concepts

Mathematical statistics is concerned with processing measured or otherwise obtained
data under the assumption that they are realizations of random variables. It is based
upon the theory of probability and it employs its concepts.

The basic concepts of mathematical statistics are the basic ensemble and the
random sample. -

The basic ensemble is the set of events we dispose of in the discussion of a given
problem. The basic ensemble can be actual or hypothetical. Let us for example
assume we have to determine the mean concentration of the certain substance in the
delivery of a raw material. From the material of mass 1000 kg we take samples of
mass 10 g and we carry out the chemical analysis. In the total, one could take 10°
samples and the same number of results could be obtained from the analysis. The
results could be regarded as random events. In the given example, the basic ensemble
represented by the set of all possible samples was actual and finite (it had a finite
number of elements).

Let us further suppose we examine the accuracy of some given analytical method
carried out under prior defined conditions, in the manner that we shall repeat the
determination of the substance m identical samples prepared in advance. The basic
- ensemble represented by possible future analyses is then hypothetical and infinite (the
number of possible future analyses is not bounded).

In most cases, it is not possible to measure all elements of the basic ensemble.
Mathematical statistics judges on the properties of the basic ensemble from those of
» its part, the so-called sample. The sample should have the properties close 10 those
of the basic ensemble (it should be representative). A random sample is such that all
elements of the basic ensemble have the same probability of being included in the
sample. Within the process industries, 2 random sampling means, for example, to take
a sample from any place or, in continuous processes, at any time.

From the variables identified using the random sampling one computes their
functions, the so-called statistics (sample statistics). Examples of statistics are the
sample mean or the sample variance. A characteristic feature of statistics is the fact
that computing them does not involve unknown parameters of the distribution of
random variables in the random sample. The statistics are themselves random
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variables with a certain distribution which can be deduced from the distribution of
the random sample and from the functional relationship between the random sample
and the statistics.

In the statistical processing of a random sample, the most frequent task is
gathering information on unknown parameters of the distribution of the basic
ensemble. One speaks of the parameter estimates which can be either point or interval
estimates.

A point estimate i8 a statistic considered further as a sought-for parameter Since
the statistic itself is the realization of a random variable, this estimate is usually not
identical to the soughi-for parameter, it only approaches its value. Important
properties of point estimates are unbiasedness, efficiency and consistency.

An estimate is called unbiased if its mean value equals the actual value of the
parameter.

An estimate is called efficient if it is unbiased with mlmmum variance for any
sample size and for any admissible value of the parameter; if it holds only in Lhe
limit for sample size n — oo, it is called asymptotically efficient.

An estimate is consistent if, for n — o, it converges in probability to the true value
of the parameter. That means that with a sufficiently large sample the probability that
the estimate value will differ from the true parameter value by less than an arbitrary
small difference, will approach unity.

According to the criteria mentioned above, the estimates obtained on the basis of
the maximum likelihood principle show very good properties. For details of the
method of maximum likelihood, see the literature (Hines & Montgomery 1980).

The other type of estimate is the interval which with a certain prior chosen
probability contains the sought-for parameter (the so-called interval estimate). If more
parameters are estimated simultaneously, a point estimate is a vector in a
multidimensional space; an analogy to the interval estimate is, in this case, a region
in the multidimensional space, viz the region where the actual vector of parameters
occurs with a chosen probability. .

With the notion of interval estimates is closely connected the notion of confidence
interval. Suppose the result of the interval estimate of parameter © is the interval with
extreme points A; and A, . The interval is called the 100 (1 - o) percent confidence
interval for the parameter @ if we have

Ph<O<h)=1-a |  (A60)

The number (1 - ) is called the confidence coefficient. The relation (A.60) says that
the interval A, , h, ) covers the actual value of the parameter ® with probability
(1 - a). The confidence coefficient is usually chosen close to unity, in engineering
problems most frequently 0.95,
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A.4.2 Testing of statistical hypotheses

Sometimes we are interested in whether a certain assertion concerning properties of
the basic ensemble holds true; for example whether the mean value equals a given,
prior fixed value. Such assertions are called statistical hypotheses.

The procedure of deciding on the validity of a postulated hypothesis is the so-
called testing of a statistical hypothesis. The hypothesis whose validity is being tested
is called the null hypothesis, the hypothesis confronted with the former is the
alternate hypothesis. The test of the null hypothesis H, against the alternate
hypothesis H, leads, on the basis of examining a random sample, either to rejecting
H, or to not-rejecting H, (i.e. 1o rejecting H, ). Here, the nonrejection of H,, cannot
be identified with its acceptance, although the practical consequences of both are
usually the same. The nonrejection of a hypothesis simply means that on the basis
of available information, there is no reason to doubt the walidity of the
hypothesis.

In testing a hypothesis one proceeds as folows. One postulates a certain hypothesis
on the basic ensemble. One takes a sample of size n, i.e. a vector X=(X, , ... , X, ).
One chooses an appropriate statistic 7= 7 (X, , ... , X, ) which in this case is called
the testing criterion. One finds the distribution of the random variable T under the
assumption that the null hypothesis holds. The interval, where the statistic can be
contained [for example (-co ; +e0}], is divided into two intervals, the interval R and
its complement R’. R is chosen in the manner that under the validity of H, the
statistics T assumes a value from this interval with probability (1 - a). The interval R
is most frequently chosen such that for given a, its length is minimum. The value
of a is chosen sufficiently small (for example 0.05) and it is called the level of
significance. The region R’ is called the critical region. From the random sample one
now computes the statistic 7. If T assumes a value from the critical region R’, the
hypothesis H, is rejected.

In testing hypotheses one can commit basically two kinds of errors.

An error of the first kind consists in rejecting the hypothesis on the basis of a
random sample while the hypothesis, in fact, holds true. The probability of an error
of the first kind is the significance level a. _

. If the hypothesis H, does not hold but is not rejected on the basis of a random
sample, one speaks of an error of the second kind. The probability of an error of the
second kind is denoted by B, and the value (1 - B) is called the power of the test. .

While the probability of an error of the first kind for a given test was a single
number (equal to the significance level), the power of the test depends on how much
the null hypothesis deviates from the reality. If we are able to measure this deviation
in some way, the dependence of B on the deviation is called the operating
characteristic of the test. If the hypothesis can be tested by two or more tests (with
the same significance level), the test yielding the smallest value of probability of an
error of the second kind is called the strongest (most powerful) test.
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Let us now illustrate the most important problems of testing statistical hypotheses
with the help of a simple example.

Example A.2: Testing a statical hypothesis

A liquid flows through a pipe with a volume flow rate V. On the pipe, two
flowmeters are installed: A and B. For the values V, and Vy; measured by the
respective flowmeters we have

V.=V+d, Vo=V +d,

where d, and dy are the respective random errors of measurement. We suppose the
errors behave as normally distributed random variables with zero mean and with
variances 0,’ and oy’ , respectively. The flowmeter A is prone to give a systematic
error; our aim is 1o judge, on the basis of the measured values, whether such an error
actually arises in flowmeter A.

Let us formalize the problem mathematically. The above equations are rewritten as

Va=V+ds+d, Ve=V+d,

where dg is the systematic error of flowmeter A. The hypothesis that the flowmeter
A is not subjected to a systematic error will be written in the form dg = 0
(hypothesis H, ), the alternate hypothesis reads dg # 0.

Let us now carry out a sampling, which in our case is represented by measuring
the values of V,, and Vj . As a statistic, let us take the difference of the measured
values

T=V,-Vy=ds+d, - dy

Assuming the validity of H, (i.e. dg = 0), T equals the sum of two random variables
with zero mean and with normal distribution and it also has a normal distribution
N (0, 0,? + 63°). It can thus take the values from the interval (-eo , +oo),

Let us further choose the significance level a and the corresponding interval R.
In Fig.A.15a, we have the probability density of the statistic 7. Because T has a
normal distribution with zero mean, let us take the interval R symmetric with respect
to zero

R=(Crity op , Orih op)

where o, = (0,° + 05°)"* and u, _, is ine quantile of the distribution N (0,1).

Let us now assume H,, holds, thus dg = 0. In 100 a percent of cases the value of T
falls into the interval R’ and the hypothesis H, will be unduly rejected. The
probability of this error of the first kind is depicted by the hatched area in Fig.A.15a.
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Let us further assume dg # 0. The statistic T has, in this case, the mean value d
and the distribution illustrated on Fig.A.15b. The hatched area here represents the
probability of an error of the second kind (7' falls into the interval R and the
hypothesis H, is not rejected). Clearly, the probability of the error of the second kind
decreases rapidly with increasing value of 4, .m

area A
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> ﬁ\
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=

Fig.A.15 — Magnitude of errors of Ist kind (cr) and of Ind kind (B)
a)ds=0;b)d;=0

A5 GRAPH THEORY

The notion of a graph is frequently used with different interpretations (most
frequently, it means a graphical representation of some relation). In engineering
practice, another type of graphs is often met: such a graph is formed by a set of
points and by a set of lines connecting the points. The graph theory is concerned with
the mathematical expression of different relations in such a system of points and
lines.

 AS1 Bésic notions

In order to define a graph (say G), two sets have to be given: the set of nodes N (the
aforementioned points) and the set of edges E (the aforementioned lines). In addition.
to these sets, the graph is determined by a rule which for any edge determines the
nodes the edge connects. |

The nodes connected by a given edge (i.e. those with which it is incident) are
called the endpoints of the edge. If the edge is oriented, one speaks of the initial node
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and terminal node of the edge. A graph whose all edges are oriented, respectively
unoricnted, is an oriented (directed), respectively unoriented (undirecied)
graph. Examples of an oriented and of an unoriented graph are given in Fig.A.16..
To any oriented graph clearly corresponds a unique unoriented graph arising
by neglecting the orientation (the so-called disoriented graph). A converse
assignment is, however, no more unique. An edge issuing from and ending at
a single node is called a self loop.

Fig.A.16 — a) oriented graph; b) unoriented graph

Let G [N E] be an unoriented graph. A pa:h 1s such sequence of edges
(E, . , E, ) that one of the endpoints of edge E; (i = ... » # - 1) is also incident
with edge E;, and the other endpoint is _incident with edge E,,, . For the extreme
edges of the path, one of the respective endpoints need not be generally incident with
any edge of the sequence. A path whose first and last node coincides is called a
circuit. Examples of paths and circuits of the graph Fig.A.16 are given in Fig.A.17.
A graph whose any two nodes can be connected by a path is called connected. An
unoriented connected graph which contains no circuit is called a tree and its edges
are called branches. The number of the branches of a tree is smaller by one than the
number of its nodes.

If G, [N, ,E, }and G, [N, , E, ] are graphs, one says G, is a subgraph of G, if
and only if N, is a subset of N, and E, is a subset of E, preserving the incidence; if
G, contains all nodes of G , it is called a factor of graph G,, and if it i§ a tree, then
G, is called a spanning tree of graph G, . An important property of a spanning tree
of a graph is that the spamming tree connects all nodes of the original graph by the
- minimum number of branches. The edges of the graph which do not belong to the
spanning tree are called chords.
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Fig.A.17 — Subgraphs of the
graph in Fig.A.16b '

a) path; b) circuit; ¢) factor;
d) e d) tree; ) spanning tree .

A.5.2 Graphs and matrices

Operations with graphs, in particular when using a computer, require an exact
mathematical specification of the graph. An oriented graph without self-loops can be
fully characterized by its incidence matrix. Let us assume an oriented graph G [N, E]
with # nodes and b oriented edges. The incidence matrix A, of type n x b has its
~ elements A; equal 10 0, 1 or -1 according to the following rule:

A;=-1 if node N, is the initial node of edge E;
A;=1 if node N, is the terminal node of edge E;
A; =0  if node N; is not incident with edge E;

The incidence matrix of the oriented graph in Fig.A.16 is

10-1100 0
011 0-11 0
A=| 00 0-1 10 -
0000 0- 1
11 0 000 O
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An important property of any incidence matrix is the fact that each column
contains just two nonzero elements, 1 and -1, so that the sum of all rows of the
matrix is the vector zero. From here it follows that the incidence matrix is not of full
rank (for a connected graph, its rank equals the number of nodes minus 1). It is also
obvious that any row of the matrix can be computed from the remaining ones. All
information on a connected graph is thus also contained in a matrix obtained by
deleting one of its rows. Such a matrix is called a reduced incidence matrix and the
node corresponding to the deleted row is called the reference node. Similarly, a
simplified way of drawing a graph consists of deleting a reference node while some
edges of the graph are then incident with one node only. Recall, however, that this
is only a simplifying convention while in fact, each edge must be incident with a
node at both of its endpoints. ' ' ' '

A.6 RECOMMENDED LITERATURE

The mathematical concepts necessary for following the book can be found in a
number of textbooks on mathematics. The reader may find also a more detailed
description in specialized books dealing with linear and matrix algebra (Noble 1969),
probability and mathematical statistics (Hines & Montgomery 1969) and graph theory
(Chen 1971, Mah 1983). Somewhat beyond the general level of mathematical
knowledge are the problems of random processes; as a convenient source may serve
the book by Bendat & Piersol (1966).
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