This document contains Chapter 4 from the book by Chemplant

Data Validation and Reconciliation in Practice

Recon Demo Examples

Heat and Energy Balancing

Index

5	Мо	dels of thermal unit operations	2
	5.1	Mixer of thermal streams	5
	5.2	Simple heat exchanger	7
	5.3	General heat exchanger	9
	5.4	Steam generator	11
	5.5	Condensation of steam	14
	5.6	Expander	17
	5.7	Throttling of steam	19
	5.8	Wetness separator	21
	5.9	Input / output of energy (pump)	23
	5.10	Turbine segment	25
	5.11	Phase equilibrium water – water vapor	29
	5.12	Steam cooling	32
	5.13	Preheat of a crude oil	34
	5.14	Combustion of natural gas – the flame temperature	38
	5.15	Combustion of coal	43
	5.16	Coal fired steam generator with air preheat	46

5 Models of thermal unit operations

In the previous chapter, we have given several examples of mass and species balances. With the energy balances, the situation is more complicated for a number of reasons. Besides the unavoidable energy losses into the environment, there is another problem. It is the modeling of the mass streams enthalpy dependency on the state variables; indeed, our knowledge about these dependencies is never perfect. That's why already the name of the chapter speaks of models.

Further, we'll describe models of basic heat operations. From such "bricks"F one can then set up the models of more complex systems. The present chapter will enable the reader to create simple models in the program RECON and check himself the results.

The structure of all sections is as follows:

- BALANCING SCHEME. It is a copy of the scheme created in the graphical editor of the RECON program. To individual streams are in addition written identifiers of state variables (T for temperature, P for pressure and X for wetness) .If a given variable is denoted by these letters, unmeasured variables are given in italics. Details can be found in the part INPUT DATA of the example.
- 2. INPUT DATA. This is a somewhat abridged extract of data for the task F

- 3. created in program RECON menu *Flowsheet Data review Brief*. It comprises all information needed for the task configuration.
- 4. PANEL OF THE NODE MODEL PARAMETERS DEFINITION. It is the panel, where the node parameters for energy balance are defined. In case of more complex schemes, there can be more such panels.
- 5. RESULTS. It is an abridged extract from the results for the user's inspection, created in program RECON menu *Calculate Results*. All examples in this chapter are without gross errors, so the sum of squares of adjustments thus Q_{min} . values are not given.

Although this manual is not conceived as a substitute for instructions to the RECON program, let us still indicate a procedure to be maintained by the reader when creating the tasks.

- 1. Enter the name of the task, which is simultaneously the name of the file for the model to be created.
- 2. Enter the text of the file title (long name).
- 3. In the further panel, change physical units (when necessary). The units chosen in individual cases are given in part INPUT DATA.
- 4. Enter the component name. It is recommended to enter H2O and not to fill in the full name.
- 5. The graphical editor surface turns up. Before one starts drawing, it is recommended to enter the state variables values (temperatures, pressures and wetnesses) in the menu *Accessories*. Names, types and values can be found in part INPUT DATA. In the standard manner are given beforehand the wetnesses STEAM (wetness = 0) and WATER (wetness = 100).
- 6. The set up of models including energy balance is a little bit more difficult than for models with a mass balance only. It is recommended to start with the mass balance part of the model, which is usually a basis of energy balancing. After checking the mass balance part of the model, energy balance functions can be added gradually.
- 7. The scheme drawing proper is recommended to be started by drawing all nodes; the latter are to be conveniently placed on the screen (at later changes in size and placing, one can disturb the streams already drawn). At the nodes, one fills in only Name (it is in the scheme) and Description (invent some).
- 8. Then draw the streams. Their short names are given in the scheme, a description is again invented. The types of streams, values and possible errors (for measured variables) can be found in part INPUT DATA. If one deals with an energy stream, this must be marked in the panel of the stream on the right above. Thereby, the definition of the task concerning the mass balance is complete.
- 9. In order to create the energy balance equation for the given node, we must designate this node on its panel as a *heat node* (square on the right above). In this manner, one makes the center of the panel accessible for the configuration of heat functions, temperatures, pressures and wetnesses. At this moment, these state variables must naturally be already defined. Let us recall that one

fills in only those state variables that are relevant for the given heat function. So as to explain this important part, all panels are figured in the text.

10. Having finished the configuration of all heat nodes, one can carry out the computation.

Let us still explain certain abbreviations used in the RECON program.

- dT mean temperature difference in a heat exchanger
- F type of variable fixed variable (known as errorless)
- HTC heat transfer coefficient
- M type of variable Measured variable
- MC type of variable Measured variable, adjustable (Corrected by data reconciliation)
- MN type of variable measured variable, nonadjustable
- MPag unit of pressure (final g means pressure difference against atmospheric pressure, the same for further pressure units)
- N type of variable uNmeasured variable
- NO type of variable uNmeasured variable, Observable
- NN type of variable uNmeasured variable, uNobservable (non-observable)
- Q heat flow

Let us note in addition that certain examples have null degree of redundancy and one deals then only with solving the set of equations. For simple cases formed by one or several nodes, this is typical in practice. Redundancy arises just by connecting simple unit operations in larger systems.

For the majority of examples given in this chapter the reader will have at hand also their model solutions, i.e. files with respective models. Names of the files correspond to numbers of sections in this chapter. E.g. to example from Section 5.1 coresponds Example E-1, to example from Section 5.2 example E-2, etc.

Important note: If the heat balance concerns different forms of water only (water, steam, wet steam) without chemical reactions, we recommend to use only one chemical species denoted for example H2O. In this case Components (menu *Accessories/Components*) need not be linked with chemical component in the database of physical properties (column *Chemical name*).

If chemical reactions take place (typical for burning of fuels), we must be careful. Heats of formation of water and steam differ due to the latent heat of water vaporization. Different forms of H2O (water, steam) must be distinguished around nodes with chemical reactions. On the other hand side in nodes without chemical reactions (for example a condenser) distinguishing between water and steam would require to make this node the chemical reactor which is not practical. In such cases it is possible to use around nodes without chemical reaction only one form of H2O (water or steam) irrespective of the real state of H2O. See also the Note at the end of Subsection 5.16.

5.1 Mixer of thermal streams

Mixing two or several streams is a basic unit operation. The model generates two balance equations – the mass and energy balances. From the model, one can compute two unmeasured variables at most, e.g. the outlet flowrate and temperature.

The following example is that of mixing two streams of water with different temperatures. Before creating the scheme in the graphical editor, the user must define 3 temperatures and 1 pressure (menu *Accessories*). The pressure in the whole system is that of the atmosphere, and with respect to the temperatures, the water is below the saturation line. The model is formed by two equations (mass and energy balances). Because all variables are measured, the task has two degrees of redundancy.

Start by drawing the flowsheet for mass balance only (node M1 and streams S1, S2 and S3). At this moment the color of the node will be gray. After checking the box *Heat node* on the node's panel, fill in heat functions and their parameters. After that the color of the node will change, showing that the heat balance is active.

Fig. 5.1-1: Balance scheme (demo Example E-1)

INPUT DATA

NAME	TYPE		VALUE	MAX.ERROR		
МАТЕ	RIAL	STR	EAMS	[KG/S]		
S1 S2	M M		60.0000 40.0000	2.0000		
S3	М		102.0000	2.0000		
ТЕМР	ERAT	URES	[C]			
Т1	М		60.0000			
Т2 Т3	M M		40.0000 51.0000			
PRES	SURE	S [KP	A]			
atm	F		101.3250	J		
Node: <mark>M1</mark>				_ Sort of calculations: ————		
D	Description			☑ <u>B</u> alancing		
M1				Ηydraulic node		
Above sea le	vel	Node pres.		✓ Heat node		
			-	Reaction node		
Non-energetic streams incident with node Reactions in node						
Stream	Function	Temperatur		Wetness 🔺 Reaction 🕂		
S1	H2O(T,P)	T1	atm			
S2	H2O(T,P)	T2	atm			

Fig. 5.1-2: Panel of node model definition

RESULTS (abbreviated)

G	LOBAL	DATA			
	-	redundancy equations			-
V	A R I A B	LES			
	Name	Туре	Inp.value	Rec.value	Max. error
	STREA	MS [KG/	S]		
	S1	MC	60.000	60.148	0.938
	S2	MC	40.000	41.053	1.472
	S3	MC	102.000	101.201	1.484
	ТЕМРЕ	RATURE	S [C]		
	Т1	MC	60.000	59.653	0.880
	Т2	MC	40.000	39.769	0.946
	тЗ	MC	51.000	51.589	0.600
	PRESS	URES	[KPA]		
	atm	F	101.325	101.325	

The mixer is a basic node type. In practice, it can have several inlets, and also more outlets. For a mixer in proper sense, all outlet streams should be in the same thermodynamic state.

5.2 Simple heat exchanger

This kind of exchanger is characterized by the fact that it has only two streams, which exchange heat. One stream is so-called *hot* and the other *cold* stream. This model generates just one equation (heat balance). It is worth mentioning that with this model, one gives the heat exchange area and number of passes. From the model one then computes, besides the heat flow in the exchanger, also the overall heat transfer coefficient.

In our example, one deals with the heating/cooling of water with temperature below the saturation line and under atmospheric pressure. Before creating the scheme in graphical editor, one has to enter 4 temperatures and 1 pressure.

After that draw both streams. You will be warned that these streams are loops going from Environment to environment. This is allowed for heat exchangers only. After that draw the exchanger E1 on the crossing of streams.

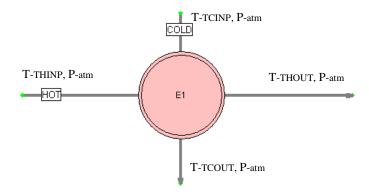


Fig. 5.2-1: Balance scheme (demo Example E-2)

NAME TYPE	VALUE	MAX.ERROR
MATERIAL STR	EAMS	[t/h]
COLD M	20.0000	2.0000 %
HOT M	10.0000	2.0000 %
TEMPERATURES	5 [C]	
TCINP M	20.0000	1.0000
TCOUT M	39.0000	1.0000
THINP M	90.0000	1.0000
THOUT M	50.0000	1.0000
PRESSURES [F	(PA]	
atm F	100.0000	

EXCHANGERS [M^2]

NAME	Stream	End	Function	Temperature	Pressure	Wetness	Area
E1	HOT	Inlet	H2O(T,P)) THINP	atm		100
		Outlet	H2O(T,P)) THOUT	atm		
	COLD	Inlet	H2O(T,P)) TCINP	atm		
		Outlet	H2O(T,P)) TCOUT	atm		

Exchanger : <mark>E1</mark>			🗹 <u>B</u> alancing			
ID	Description		Area (M^2)	Passes		
E1	Simple hear excha	anger	100	1-2 💌		
Exchanger parameters:						
	Function	Temperature	Pressure	Wetness		
Inlet	H2O(T,P)	THINP	atm			
Outlet	H2O(T,P)	THOUT	atm			
COLD Cold stream						
	Function	Temperature	Pressure	Wetness		
Inlet	H2O(T,P)	TCINP	atm			
Outlet	H2O(T,P)	TCOUT	atm			

Fig. 5.2-2 Panel of the model parameters definition

RESULTS

GLOBAL DAT	? A			
Degree of redunda Number of equatic Qmin Qcrit	-		1 1 81E+00 41E+00	
VARIABLES				
Name Type	Inp.value	Rec.valu	e Max.erro	<u>_</u>
STREAMS	[t/h]			
COLD MC	20.000	20.05	6 0.389	9
HOT MC	10.000	9.97	0 0.194	1
ΤΕΜΡΕRΑΤΙ	JRES [C]			
TCINP MC	20.000	19.62	9 0.802	2
TCOUT MC	39.000	39.37	0 0.803	3
THINP MC	90.000	89.81	4 0.954	1
THOUT MC	50.000	50.18		
PRESSURES				
atm F	100.000	100.00	0	
EXCHANGER	S [MJ/h],	[C], [MJ/h/M	1^2/C]	
Name Q	(hot) Q(d	cold)	Q(rec)	it htc
E1 167	75.797 15	88.655 1	655.290 39.6	572 0.417

Here, Q(hot) and Q(cold) mean transferred heats calculated from hot and cold streams separately, while Q(rec) is heat resulting from reconciled values.

5.3 General heat exchanger

A general heat exchanger differs from the simple one mainly by the fact that it can comprise more than two streams. It is formed by two balancing nodes, one of which represents the hot side, the other one the cold side of the exchanger. Both nodes are connected by an energy stream representing the heat flow from the hot to the cold side through the heat exchange surface. This arrangement makes possible to model situations, for the description of which the simple exchanger does not suffice.

The model generates altogether 4 balance equations – the mass and energy balances around both of the nodes. If compared with the simple exchanger, it has now three unknowns – the heat flow through the exchanger and two unknown flowrates at the outlets from both nodes. One degree of redundancy is available for the reconciliation, so long as the other variables are known (thus in the same manner as in the case of a simple exchanger).

Let us start from the preceding example, i.e. the heating/cooling of water with temperature below the saturation line at atmospheric pressure. In addition, let us consider the heat loss from the cold side, say QLOSS estimated a priori as 20 MJ/h; the error of this estimate is assumed to be 4 MJ/h.

Before drawing the scheme, it is necessary to define 4 temperatures and 1 pressure.

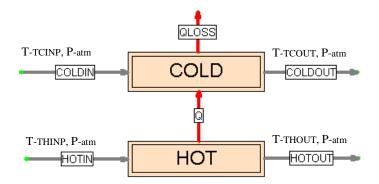
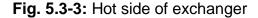


Fig. 5.3-1: Balance scheme (demo Example E-3)

Comparing with a simple exchanger, we see that both parts of the exchanger have now two incident streams – inlet and outlet. If some of the flowrates is measured then only once, e.g. at the inlet. The outlet flowrate is then calculated from the mass balance.

INPUT DATA


NAME	TYPE	VALUE	MAX.ERROR
MATER	IAL ST	REAMS	[t/h]
COLDIN	М	20.0000	2.0000 %
COLDOUT	N	20.0000	
HOTIN	М	10.0000	2.0000 %
HOTOUT	Ν	10.0000	
FLOWS	OF ENE	RGY [MJ/h]	
Q	N	1000.0000	
QLOSS	М	20.0000	4.0000
ТЕМРЕ	RATURE	S [C]	
TCINP	М	20.0000	1.0000
TCOUT	М	39.0000	1.0000
THINP	М	90.0000	1.0000
THOUT	М	50.0000	1.0000
PRESS	URES	[KPA]	

PANELS OF THE MODEL PARAMETERS DEFINITION

Node: COLC)		-Sort of ca	alculations:			
ID	Description				☑ <u>B</u> al	lancing	
COLD	cold side of a	heat exchange	er		🗖 Hyr	draulic node	
Above sea leve	el	Node pres.		Heat node			
			-		□ <u>R</u> e:	action node	
Non-energetic streams incident with node Reactions in node							
Stream	Function	Temperature	Pressure	Wetne	ss 🔺	Reaction 🗦 🕂	
COLDIN	H2OL(T,P)	TCINP	atm				
COLDOUT	H2OL(T,P)	TCOUT	atm		-	_	

Fig. 5.3-2: Cold side of exchanger

Node: HOT					-Sort of c	alculations:
ID	Description				⊠ <u>B</u> a	lancing
нот	hot side of a h	eat exchanger			🗖 Hy	draulic node
Above sea leve	el <u> </u>	Node pres.			🔽 He	<u>a</u> t node
			~		<u> </u>	action node
Non-energetic streams incident with node Reactions in node						
Stream	Function	Temperature	Pressure	Wetnes	s 🔺	Reaction 🗦 🕂
HOTIN	H2OL(T,P)	THINP	atm			
HOTOUT	H2OL(T,P)	THOUT	atm		-	_

RESULTS

GLOBAL	DATA				
Degree of Number of Qmin Qcrit	redundancy equations		1 4 8.792E-01 3.841E+00		
VARIAB	LES				
Name	Туре	Measured	Reconciled	Max.error	of reconciled val.
STREA	MS [t/h]				
COLDIN	MC	20.000	20.043	0.389	
COLDOUT	NO	20.000	20.043	0.389	
HOTIN	MC	10.000	9.977	0.194	
HOTOUT	NO	10.000	9.977	0.194	
FLOWS	OF ENEF	RGY [MJ/h]]		
Q	NO 1	.000.000	1659.996	59.427	
QLOSS	MC	20.000	20.055	3.998	
ТЕМРЕ	RATURES	5 [C]			
TCINP	MC	20.000	19.714	0.802	
TCOUT	MC	39.000	39.285	0.803	
THINP	MC	90.000	89.857	0.954	
THOUT	MC	50.000	50.143	0.955	
PRESS	URES [F	(PA]			
atm	F	100.000	100.000		

The results can be compared with the preceding example of a simple exchanger. The only difference is here the energy loss stream. In the case of a general heat exchanger, the mean temperature difference is no longer computed, nor the overall heat transfer coefficient. If the user needs these values, he must define them himself with the aid of user defined equations.

5.4 Steam generator

In practice, steam can be generated in different manners (e.g. by hot combustion products, other steam of higher pressure, or a hot heat exchanging medium). The thermodynamic state at the boiling proper inside the generator can be defined by temperature or pressure. One here assumes phase equilibrium between liquid and vapor phases.

This unit operation can be, according to its complexity, modeled as a simple or general heat exchanger. As the steam generator in a nuclear power plant will be the subject of a more extensive case study below, let us now prepare this model for further use.

Heat is supplied to the steam generator (SG) by high-pressure hot water circulating between the nuclear reactor and the high pressure water part of the SG. Into the steam part is supplied feed water; steam and blowdown water form the outlets. The steam contains a small amount of liquid phase. Because we here have more than 2 streams, let us apply the general heat exchanger model.

In this model, altogether 4 balance equations are generated. If we measure the flowrates of all mass streams connected with the steam space and the hot water flowrate at the inlet into the high-pressure water space, we have altogether 2 unknown streams, viz. hot water outlet and heat flow. If we further measure all temperatures and pressures, two degrees of redundancy are available for reconciliation and data validation.

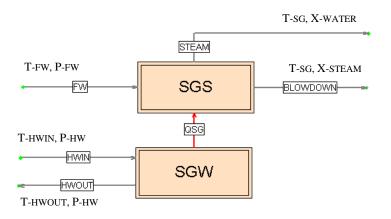


Fig. 5.4-1: Balance scheme (demo Example E-4)

INPUT DATA

Besides the mass and heat flowrates, the task involves 4 temperatures (hot water temperatures HWIN and HWOUT, temperature in steam generator SG, equal for outlet steam and blowdown, and temperature of feed water FW). Further involved are two pressures (FW for feed water and HW for hot water). In addition, we here have two wetness values for liquid water (WATER) and (wet) steam (STEAM).

NAMETYPEVALUEMAX.ERRORMATERIALSTREAMS[KG/S]BLOWDOWNM6.12005.0000 %

FW HWIN HWOUT STEAM	M 5 N 5	444.5000 650.0000 000.0000 445.0000	2.0000 % 5.0000 % 2.0000 %
E N E R G Y QSG	FLOWS		2.0000 %
T E M P E R HWIN HWOUT SG FW P R E S S U FW	M M RES [KP	[C] 295.2000 265.8000 257.6000 221.6000 A] 000.0000	1.0000 1.0000 1.0000 1.0000 0.5000 %
HW	M 10	000.0000	0.5000 %
W E T N E S STEAM WATER	F	0.2500 100.0000	

PANELS OF MODEL PARAMETERS DEFINITION

Node: <mark>SGS</mark>				Sort of calculations:							
ID	Description				🔽 <u>B</u> alancing						
ses	Steam gener	ator steam s	pace		🗖 Hydraulic node						
Above sea le	vel	Node pres.		✓ Heat node							
				Reaction node							
Non-energeti	c streams inc	ident with no	de				Reactions in node				
Stream	Function	Temperatur	Pressure	We	tness		Reaction 🗦 📥				
BLOWDOW	H2O(T,X)	SG		WA	TER		-				
FW	H2O(T,P)	FW	FW				_				
STEAM	H2O(T,X)	SG		STE	AM	-					

Fig. 5.4-2: Steam space

Node: SGW	1			Sort of calculations:						
ID	Description					ncing				
SGW	steam gener	ator water sid	е	Hydraulic node						
Above sea le	vel	Node pres.		✓ Heat node						
			-			<u>R</u> ead	ction node			
	<u>c streams inc</u>						Reactions in node			
Stream	Function	Temperatur	Pressure	We	tness		Reaction 🗦 🕂			
HWIN	H2O(T,P)	HWIN	HW							
HWOUT	H2O(T,P)	HWOUT	HW			-				

Fig. 5.4-3: Water space

RESULTS

GLOBAL DA	АТА							
Degree of redunda	ancy	2						
Number of equation	ons	4						
Qmin		4.001E+	00					
Qcrit		5.974E+	00					
VARIABLES	5							
Name Type	Inp.value	Rec.value	Max.error					
STREAMS	[KG/S]							
BLOWDOWN MC	6.120	6.115	0.306					
FW MC	444.500	448.863	6.172					
HWIN MC	5650.000	5471.834	200.270					
HWOUT NO	5000.000	5471.834	200.270					
STEAM MC	445.000	442.748	6.172					
ENERGY FL	a a							
сискої гы	OWS [KJ/S]							

TEMPERATUR	ES [C]		
FW MC	221.600	221.570	0.999
HWIN MC	295.200	294.745	0.863
HWOUT MC	265.800	266.161	0.890
SG MC	257.600	257.597	1.000
PRESSURES	[KPA]		
FW MC	10000.000	9999.995	50.000
HW MC	10000.000	10000.159	50.000
WETNESSES	[8]		
STEAM F	0.250	0.250	
WATER F	100.000	100.000	

The steam generator balancing is very important in practice. This example will again be scrutinized from other points of view in one of the Case studies below.

5.5 Condensation of steam

During the condensation, steam transfers its condensation heat to the cold stream, which is mostly liquid of lower temperature. So long as just this heating is the purpose, the whole apparatus is called heater. The steam in the condenser changes to condensate, which can be water at the saturation line, possibly also somewhat subcooled (in this section, sub-cooling will not be considered for simplicity). The difference between the inlet steam and outlet condensate enthalpies determines the amount of heat transferred.

The state at the condensation proper inside the exchanger can be defined either by temperature or by pressure. One here assumes phase equilibrium between steam and condensate. A heat exchanger with condensation can be, according to its complexity, modeled as a simple or general exchanger. Let us further use the general form of exchanger.

The example describes a high-pressure heater of feed water heated by steam withdrawn as side stream from a high-pressure turbine. With this arrangement, only feed water flowrate is usually measured. One further measures the withdrawn steam (STEAM) pressure (which approximates the pressure in the steam space of the heater) and the feed water temperatures before (FW-IN) and after (FW-OUT) the heater. Further known is also the wetness of the steam withdrawn.

This model generates 4 balance equations, but simultaneously we here have 4 unknowns (flowrates of steam, condensate and outlet feed water, and the heat flow. The degree of redundancy is 0 and no data reconciliation takes place. At this measurement constellation, the model is only able to compute all the unmeasured variables.

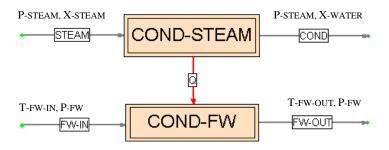


Fig. 5.5-1: Balance scheme (demo Example E-5)

INPUT DATA

NAME	TYPE	MAX.ERROR			
МАТЕ	RIAL ST	REAMS	[T/H]		
COND	N	60.0000			
FW-IN	М	1320.0000	2.0000 %		
FW-OUT	Ν	1300.0000			
STEAM	Ν	60.0000			
ENER	GY FLO	WS [GJ/H]			
Q	N	60.0000			
ТЕМР	ERATUR	ES [C]			
FW-IN	М	191.0000	1.0000		
FW-OUT	М	223.0000	1.0000		

PRESSURES	[MPAG]							
FW M	6.5000 0.1000							
STEAM M	2.8400 2.000E-2							
WETNESSES	[%]							
steam F	4.6000							
water F	100.0000							

PANEL OF MODEL PARAMETERS DEFINITION

Node: CON	D-STEAM		Sort of calculations:					
ID COND-STE/	Description condenser - :	steam side	☑ <u>B</u> alancing □ <u>H</u> γdraulic node					
Above sea lev	/ell	Node pres.			node tion node			
1								
Non-energetic	c streams inc	ident with no	de				Reactions in node	
Stream	Function	Temperatur	Pressure We		tness		Reaction 🛨 🗧	H.
COND	H2O(P,X)		STEAM wa		er			-
STEAM	H2O(P,X)		STEAM	stea	am	-		-

Fig. 5.5-2: Steam side

Node: CON	D-FW			Sort of calculations:						
ID	Description				🗹 <u>B</u> alancing					
COND-FW	condenser - 1	feed water sid		Пн	ydr:	aulic node				
Above sea lev	vel	Node pres.			🗹 Н	node				
			-			ction node				
Non-energetic	c streams inc	ident with no				Reactions in node				
Stream	Function	Temperatur	Pressure	We	tness		Reaction 🛨 🕂			
FW-IN	H2OL(T,F	FW-IN	FW				-			
FW-OUT	H2OL(T,F	FW-OUT	FW			-	_			

Fig. 5.5-3: Feed water side

RESULTS

GLOBAL DATA

Degree of redundancy	0
Number of equations	4
Qmin	0.000E+00
Qcrit	0.000E+00

VARIABLES

Name	Туре	Inp.value	e Rec.value Max.error						
STREA	MS [T/	Ή]							
COND	NO	60.000	110.800	5.383					
FW-IN	MN	1320.000	1320.000	26.400					
FW-OUT	NO	1300.000	1320.000	26.400					
STEAM	NO	60.000	110.800	5.383					
FLOWS	OFEN	ERGY	[GJ/H]						
Q	NO	60.000	190.266	9.243					
ТЕМРЕ	RATUR	ES [C]							
FW-IN	MN	191.000	191.000	1.000					
FW-OUT	MN	223.000	223.000	1.000					
		[MDAC]							
PRESS	URES	[MPAG]							
FW	MN	6.500	6.500	0.100					

15

STEAM	MN	2.840	2.840	0.020
WETN	ESSES	[%]		
steam	F	4.600	4.600	
water	F	100.000	100.000	

In this case, one has not dealt with data reconciliation, but only with direct computation (the degree of redundancy was 0). It is obvious that the values of all measured variables before and after the procedure must remain the same. However, this does not hold for the unmeasured ones. Quite often, at the task configuration the values of unmeasured variables are not known even approximately. There then arises the question, what the software will do with bad initial guesses of the unmeasured variables.

Special attention is required in cases where the enthalpy function does not uniquely determine the temperature or pressure (the enthalpy of steam as dependent on temperature or pressure passes through the maximum and two values of temperature or pressure can correspond to one enthalpy value).

5.6 Expander

Expanders serve for reducing the pressure of hot water to a lower value (frequently as part of a cascade of condensate from the steam system). Some part of the heat energy then gives rise to steam phase by evaporation. Then from one liquid stream, two streams are formed – water and steam. We here assume that the two streams are in the state of thermodynamic equilibrium. In addition the situation is complicated by the fact that the steam phase can contain some portion of liquid as a consequence of imperfect water droplet separation (this depends on the construction of the expander).

The following example will be simple – condensate on the saturation line expands from higher to lower pressure. The condensate is defined by the temperature, in the expander proper is maintained constant pressure. The arising steam contains 0.2 % liquid phase. From the flowrates, only inlet into the expander is measured.

The model generates two balance equations and we here have two unmeasured outlet flowrates. The degree of redundancy is thus 0. The model only serves for computing the phase distribution in the expander.

Fig. 5.6-1: Balance scheme (demo Example E-6)

INPUT DATA

NAM	1E	TYPE VALUE									MAX.ERROR				R						
М	A	Т	Е	R	Ι	A	L	S	Т	R	Е	A	М	S		[]	С/Н]			
WZ	ATE	ER-	00- 11- 10-	1		N M N						2	6.	00 00 00	00			5.0	000	C	olo
Т	Е	М	Ρ	Е	R	A	Т	U	R I	E ;	5		[C]							
W-	-IN	1				М						258	8.	00	00			1.(000	C	
Ρ	R	Е	S	S	U	R	Е	S		[]	ИР	AG []								
EΣ	ΥP					М						(Э.	66	00		5.	000)E-	3	
W	Е	Т	Ν	Е	S	S	Е	S		[!	8]										
	tea ate					F F								0E 00							

Node: EXP	ANDER				-Sort o	fcal	culations:
ID	Description					<u>B</u> ala	ncing
EXPANDER	expander					Hydr	aulic node
Above sea lev	/el	Node pres.				He <u>a</u> t	node
			-			<u>R</u> ead	ction node
Non-energetic	c streams inc	ident with no	de				Reactions in node
Stream	Function	Temperatur	Pressure	Wet	tness		Reaction 🗦 🕂
STEAM-OU	H2O(P,X)		EXP	stea	am		
WATER-IN	H2O(T,X)	W-IN		wate	er		_
WATER-OU	H2O(P,X)		EXP	wate	er	-	

Fig. 5.6-2: Panel of the model parameters definition

RESULTS

GLOBAL	DATA	
Degree of	redundancy	0
Number of	equations	2
Qmin		0.000E+00
Qcrit		0.000E+00

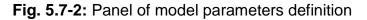
VARIABLES

Name	Туре	Measured	Reconciled	Max.error of reconciled val
STREA	AMS [T	/н]		
STEAM-OUT WATER-IN WATER-OUT	MN	2.000 26.000 20.000	5.236 26.000 20.764	0.269 1.300 1.041
ТЕМРЕ	ERATUR	ES [C]		
W-IN	MN	258.000	258.000	1.000
PRESS	SURES	[MPAG]		
EXP	MN	0.660	0.660	5.00E-3
WETNE	ESSES	[%]		
steam water	F F	0.00E+0 100.000	0.20E+0 100.000	

5.7 Throttling of steam

Throttling of steam is an adiabatic process, where the steam pressure is reduced by an obstacle in the flow. The throttling organ can have a fixed cross section area (e.g. an orifice), or a variable one (control valve). If heat loss into the environment is neglected, one can model in this way also pressure drop in flow of fluids in a pipeline.

The model generates 2 balance equations (mass and energy balances). In the following example, we'll have 2 unknown variables – flowrate and wetness of the steam at the throttling organ outlet. One will thus again deal with mere solution of the model equations without data reconciliation.


Concerning the stream energies, also their kinetic components may play a role (due to the pressure drop, also the stream velocity is changed). In case of wet steam, also wetness is changed. Although the operation is simple, the results of computation need not be trivial as the following examples will show.

INPUT DATA

NAME	ΓΥΡΕ	VALUE	MAX.ERROR
ΜΑΤΕΚΙ	AL STRE	AMS	[T/H]
STEAM-IN STEAM-OUT	M N	440.0000 400.0000	4.0000 %
PRESSU	RES [MP	AG]	
IN OUT	M M	2.6500 2.3500	5.000E-2 5.000E-2
WETNES	SES [%]	
STEAM-IN STEAM-OUT	F N	0.2500 0.2500	

Node: THR					-Sort (of cal	culations:
ID	Description					<u>B</u> ala	ncing
THR	throttling eler	ment				<u>H</u> ydr	raulic node
Above sea le	vel I	Node pres.					node
						<u>R</u> ead	ction node
Non-energeti	c streams inc	ident with no	de				Reactions in node
Stream	Function	Temperatur	Pressure	We	tness		Reaction 🛨 📥
STEAM-IN	H2O(P,X)		IN	STE	AM-I		-
STEAM-OU	H2O(P,X)		OUT	STE	AM-C	-	

RESULTS

GLOBAL DATA

	Degree of Number of Qmin Qcrit	redundancy equations		0 2 0.000E+00 0.000E+00	
V	ARIAB	LES			
	Name	Туре	Inp.value	Rec.value	Max.error
	STREA	M S [T/H	H]		
	STEAM-IN STEAM-OUT	MN NO	440.000 400.000	440.000 440.000	17.600 17.600
	PRESS	URES	[MPAG]		
	IN OUT	MN MN	2.650 2.350	2.650 2.350	0.050 0.050
	WETNE	SSES	[%]		
	STEAM-IN STEAM-OUT	F NO	0.250 0.250	0.250 0.187	0.016

One can see that due to throttling, the steam wetness has been lowered.

We have done still one computation with higher pressures of the steam; the values of other variables have remained the same.

PRES	SURES	[MPAG]	
IN	М	4.6500	5.000E-2
OUT	М	4.3500	5.000E-2

The resulting wetnesses now are

WETNES	SES [옹]		
STEAM-IN	F	0.250	0.250	
STEAM-OUT	NO	0.250	0.373	0.029

In this case, the wetness of the outlet steam has increased from the value 0.187 % obtained in the preceding example, to the value 0.373 %. The, as it seems to be contradiction of the two results follows from the saturated steam enthalpy dependency on pressure. While in the first case enthalpy increased with pressure, with higher pressures in the second example we have already got into the region where with increasing pressure, saturated steam enthalpy decreases (see the *p-i* diagram for water vapor). The dividing point is ca. 235 deg C, resp. 3.06 MPa. In the neighborhood of this point (of the respective values on the saturation line), the temperature resp. pressure dependency of the saturated steam enthalpy is very flat and passes through the maximum. This fact is quite relevant for the precision of balancing calculations and will be documented with more details in one of the case studies.

5.8 Wetness separator

The separator of wetness (small water droplets) serves for separating the liquid phase from the wet steam. Since the steam wetness is difficult to measure, one usually starts from the assumptions of given (fixed) inlet wetness and separation efficiency expressed e.g. by the steam wetness at the outlet from the separator. The model generates 2 equations. Input variables can then be for example inlet steam flowrate and steam wetnesses at the inlet and outlet. It is then possible to compute for example the flowrate of the liquid phase separated and that of steam at the outlet from the separator. In the following example, we'll assume that the whole separator works under one pressure.

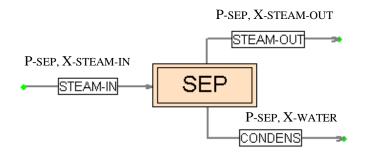
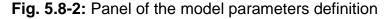



Fig. 5.8-1: Balance scheme (demo Example E-8)

INPUT DATA

NAME	TYPE	VALUE	MAX.ERROR
MATER	IAL S	STREAMS	[T/H]
CONDENS STEAM-IN STEAM-OUT	N M N	10.0000 64.2000 40.0000	4.0000 %
PRESS	URES	[KPAG]	
SEP	М	0.6600	5.000E-3
WETNE	SSES	[%]	
STEAM-IN STEAM-OUT water	되 고 고	6.2000 0.3000 100.0000	
Node: SEP			Sort of calculations:
· · · · · · · · · · · · · · · · · · ·	scription parator Node	pres.	☑ Balancing ☐ Hydraulic node ☑ Heat node ☑ Reaction node

Non-energetic	streams inc	ident with no	de			Reactions in node
Stream	Function	Temperatur	Pressure	Wetness		Reaction 🗦 🕂
CONDENS	H2O(P,X)		SEP	water		-
STEAM-IN	H2O(P,X)		SEP	STEAM-I		_
STEAM-OU	H2O(P,X)		SEP	STEAM-(•	

RESULTS

GLOBAl DATA

Degree of redundancy

0

Number of equations	2
Qmin	0.000E+00
Qcrit	0.000E+00

VARIABLES

Name	Туре	Inp.values	Rec.values	Max.error
STREA	AMS [Г/Н]		
CONDENS STEAM-IN STEAM-OUT	NO MN NO	10.000 64.200 40.000	3.799 64.200 60.401	0.152 2.568 2.416
PRESS	SURES	[KPAG]		
SEP	MN	0.660	0.660	5.00E-3
WETNE	ESSES	[%]		
STEAM-IN STEAM-OUI water	F F F	6.200 0.300 100.000	6.200 0.300 100.000	

5.9 Input / output of energy (pump)

One frequently meets with the need to supply / withdraw energy into / from the system. An example can be e.g. withdrawing heat into the environment or work performed on the shaft of a turbine. Such kind of problems will be illustrated by the energy balance of a pump.

The pump serves for enhancing the pressure of the fluid stream. The necessary energy is usually supplied by an electrical motor. The whole input power is transferred to the pump with certain efficiency (e.g. 95%). The remaining part of electric energy is transformed to heat withdrawn into the environment by the cooling of the motor. The part that enters the pump energy balance is only energy transferred by the shaft connecting the motor and the pump.

Mechanic energy is transformed in the pump proper to enthalpy thus pressure and heat energies (heating of the fluid). The ratio of the two energies depends on the construction of the pump, its mechanical state and the working régime.

We'll further describe the energy balance of the pump proper. The input mechanic energy (power) is measured by the electric energy input multiplied by its efficiency.

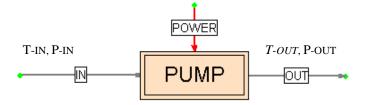


Fig. 5.9-1: Balance scheme (demo Example E-9)

INPUT DATA

NAME	TYPE	VALUE	MAX.ERROR
МАТЕ	RIAL ST	REAMS	[T/H]
IN OUT	M N	836.0000 800.0000	3.0000 %
FLOW	S O F E N E	RGY [MWH	H/H]
POWER	М	0.5500	10.0000 %
ТЕМР	ERATURE	S [C]	
IN OUT	M N	38.8000 38.0000	1.0000
PRES	SURES	[MPAG]	
IN OUT	M M	1.0800 1.9800	1.000E-2 1.000E-2

Node: PUMP				-Sort of c	alo	culations:		
	D	Description				⊠ <u>B</u> a	lar	ncing
	PUMP	the pump				🗖 Hy	dra	aulic node
	Above sea lev	vel	Node pres.			🔽 He	<u>a</u> t	node
				-		<u> </u>	ac	tion node
Non-energetic streams incident with node Reactions in node								
	Stream	Function	Temperatur	Pressure	We	tness 🔄	•	Reaction 🗦 📥
	IN	H2OL(T,F	IN	IN				
	OUT	H2OL(T,F	OUT	OUT		•	•	_

Fig. 5.9-2: Panel of the model parameters definition

RESULTS

GLOBAL DATA

Degree of redundancy Number of equations Qmin Qcrit	0 2 0.000E+00 0.000E+00	
--	----------------------------------	--

VARIABLES

Name	Туре	Inp.value	Rec.value	Max.error
STREA	M S [T/H]			
IN OUT	MN NO	836.000 800.000	836.000 836.000	25.080 25.080
FLOWS	OFENE	RGY [MWH/H	[]	
POWER	MN	0.550	0.550	0.055
ТЕМРЕ	RATURE	S [C]		
IN OUT	MN NO	38.800 38.000	38.800 39.176	1.000 1.002
PRESS	URES [MPAG]		
IN OUT	MN MN	1.080 1.980	1.080 1.980	0.010 0.010

This simple example has shown a simple interconnection of the energy system with the 'ambient world'. At the mechanic energy, one dealt only with a rough estimate (the 10 % uncertainty can even be too optimistic). On the other hand we have obtained the temperature increase after the pump by less than 0.4 deg C, which is certainly inside the limits of uncertainty at temperature measurement. Fortunately, the heat equivalent of mechanic work is small.

5.10 Turbine segment

For the needs of balancing, the turbine segment (TS) is defined as a part of the turbine, endowed with just one side steam extraction. The thus defined TS can comprise one or several circulating wheels, which is however irrelevant for the balancing. The main goal of the TS balance is to find the work (power) exerted on the turbine shaft, which is directly unmeasurable variable.

Let us further suppose that we know the pressure and temperature of steam at the inlet to TS. In the TS, steam exerts work and gets on into the following segment (or out of the turbine), while some part of it is withdrawn as a side stream (extracted). For the outlet streams, we also suppose the knowledge of pressure and temperature. If some of these variables were not known, observability problems could arise with the unmeasured variables. Because the turbine is part of a larger system, the observability can be improved by the integration of the TS model into the whole model.

In the following example, we put together the models of TS and the model of the feed water preheating. The steam extracted from the turbine condenses in the exchanger and preheats thereby the feed water. From this preheating, the balance enables us to compute the unmeasured amount of extracted steam.

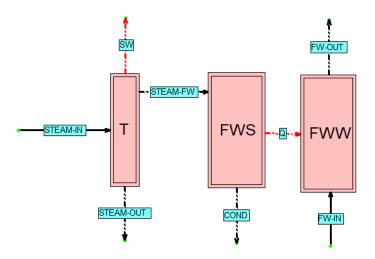


Fig 5.10-1: Balance scheme (demo Example E-10)

The following symbols are to be interpreted:

T turbine segment

FWS feed water preheating – steam side of exchanger

FWW feed water preheating – water side of exchanger

STEAM-IN saturated steam going into TS, defined by temperature (X = 0).

STEAM-OUT steam leaving TS and going into further TS, with wetness 3.6 %

STEAM-FW extracted steam heating the feed water heater. Its state is the same as in stream STEAM-OUT

- SW work (power) on the turbine shaft (Shaft Work)
- COND condensate from STEAM-FW
- Q heat transferred in feed water heater
- FW-IN inlet feed water
- FW-OUT outlet feed water

INPUT DATA

MATERIAL STREAMS

ID	Туре	Value	Max.error	
COND	Ν	100.0000		T/H
FW-IN	М	1350.0000	2.0000%	T/H
FW-OUT	N	1300.0000		T/H
STEAM-FW	Ν	100.0000		T/H
STEAM-IN	М	1320.0000	3.0000%	T/H
STEAM-OUT	Ν	1250.0000		T/H

ENERGY STREAMS [MW]

ID	Туре	Value	Max.error
Q	N	50.0000	
SW	Ν	30.0000	

TEMPERATURES [C]

ID	Туре	Value	Max.error
FW-IN	М	191.0000	1.0000
FW-OUT	М	223.0000	1.0000
STEAM-IN	М	233.0000	1.0000
STEAM-OUT	М	148.0000	1.0000

PRESSURES [MPAG]

ID	Туре	Value	Max.error
FW	М	6.6000	5.000E-2
STEAM-IN	М	0.4260	5.000E-3
STEAM-OUT	М	0.1230	5.000E-3

AUXILIARIES

ID	Туре	Value	Max.error	
IEE	N	80.0000		1

USER EQUATIONS

IEE	Turbine T: Isentropic efficiecy	Model
	[V <iee>]-[IEE([F<h2ov:steam-in:steam-in:>];[F<h2ov:steam< td=""><td></td></h2ov:steam<></h2ov:steam-in:steam-in:></iee>	
	-OUT:STEAM-OUT:>])]	

There is one Auxiliary variable - the isentropic turbine efficiency.

PANELS OF MODEL PARAMETERS DEFINITION

Node: T ID T	Description turbine					Sort of calculations: — Sort of calculations: — Balancing Hydraulic node
Geodesic height [M]		Node pres	i.			Heatnode
				<u>_</u>		Reaction node
🔲 Reaction heat-fro	om database of prope	erties 📃 Inva	riant balance			
Non-energy streams	incident with node					Reactions in node
Stream	Function	Temperature	Pressure	Wetness	•	X Reaction
iSTEAM-IN	H2OV(T.P)	STEAM-IN	STEAM-IN			
oSTEAM-FW	H2OV(T,P)	STEAM-OUT	STEAM-OUT		\square	
oSTEAM-OUT	H2OV(T.P)	STEAM-OUT	STEAM-OUT		-	

Fig. 5.10-2: Turbine segment

Node: FWS ID	Description				Sort of calculations:
FWS	feed water - ste	am side			□ Hydraulic node
Geodesic height [[M]	Node pre	s.		✓ Heatnode
					 <u>Reaction node</u>
	- from database of pr ms incident with node		ariant balance		Reactions in node
Stream	Function	Temperature	Pressure	Wetness	🔺 🐹 Reaction 🛨
	H2OV(T.P)	STEAM-OUT	STEAM-OUT		
ISTEAM-FW	1201(1.1)				

Fig. 5.10-3: Preheater – steam side

Node: FWW					Sort of c	alculations:
ID	Description			_	⊠ <u>B</u> a	lancing
FWW	feed water - wa	ater side			🗖 Ну	draulic node
Above sea leve	9	Node pres.			🔽 He	at node
				~	- <u>R</u> e	action node
Non-energetic	streams incide	nt with node				Reactions in node
Stream	Function	Temperature	Pressure	Wetnes	ss 🔺	Reaction \Xi 📥
FW-IN	H2O(T,P)	FW-IN	FW			
FW-OUT	H2O(T,P)	FW-OUT	FW		-	_

Fig. 5.10-4: Preheater – water side

RESULTS

Degree of red	undancy			0
MASS FL	OWRATE	ES		
Name	Туре	Inp.value	Rec.value	Abs.error
COND		100.000	86.753	
FW-IN	MN	1350.000	1350.000	27.000 T/H feed water IN 27.000 T/H feed water OUT
FW-IN FW-OUT STEAM-FW	NO	1350.000 1300.000 100.000	1350.000	27.000 T/H feed water OUT
STEAM-FW	NO	100.000	86.753	4.217 T/H staem to FW prehe
	MN	1320.000	1320.000	39.600 T/H staem IN
STEAM-OUT	NO	1250.000	1233.247	39.824 T/H steam OUT
NERGY	STREAM	S		
Name	Туре	Inp.value	Rec.value	Abs.error
Q	NO	50.000	54.046	2.625 MW heat to FW
SW	NO	30.000	59.252	2.090 MW shaft work
EMPERA	TURES			
Name	Туре	Inp.value	Rec.value	Abs.error
 FW-IN	MN	191.000	191.000	1.000 C feed water IN
	MN		223.000	1.000 C feed water OUT
FW-OUT				
FW-OUT STEAM-IN	MN	233.000	233.000	1.000 C steam to turbine
FW-OUT STEAM-IN STEAM-OUT	MN MN MN	233.000 148.000	233.000 148.000	1.000 C steam to turbine 1.000 C steam out of turb
		233.000	233.000 148.000	1.000 C steam to turbine 1.000 C steam out of turb
PRESSUR	ES	233.000	233.000 148.000	1.000 C steam to turbine 1.000 C steam out of turb
P R E S S U R Name	ES	233.000 148.000	233.000 148.000 Rec.value	1.000 C steam to turbine 1.000 C steam out of turb Abs.error
FW-OUT STEAM-IN STEAM-OUT P R E S S U R Name FW STEAM-IN	E S Type	233.000 148.000 Inp.value	233.000 148.000 Rec.value 6.600	1.000 C steam to turbine 1.000 C steam out of turb Abs.error

Name	Туре	Inp.value	Rec.value	Abs.error	
IEE	NO	80.000	91.272	3.003	isentropic efficiency

Let's look at the panel for configuration of the isentropic turbine efficiency:

🚰 Turbine T: Isentro	pic efficiecy	×
Equation	Description	
IEE	Turbine T: Isentropic efficiecy	<u>о</u> к
STEAM: Inlet Stream STEAM-IN	Model Temperature Pressure Wetness	
		<u>H</u> elp
STEAM: Outlet- Stream STEAM-OUT	Model Temperature Pressure Wetness Model Temperature Pressure H2OV(T.P) STEAM-OUT STEAM-OUT	

5.11 Phase equilibrium water – water vapor

Data reconciliation with the aid of phase equilibrium will be illustrated by the model of a steam generator (SG), which has been already given with details in Section 5.4. The model created in the graphical editor remains unchanged and the reader is referred to the section mentioned above. Further described will be the enlarging of the model by the phase equilibrium equation.

Let us now suppose that besides the temperature, also pressure has been measured in the SG. The relation between temperature and pressure is not given in the graphical editor, but in the editor of user defined equations. There are now two possibilities – either express temperature as function of pressure, or pressure as function of temperature. The result should, however, be practically independent of this choice.

In the original model, altogether 4 balance equations are generated, the phase equilibrium assumption generates the fifth. There are two unmeasured variables in the task, so three degrees of redundancy are at hand for data reconciliation and validation.

Standard functions							Independent variables		Calculated variables		
ехр	10^	sqr	abs	In	log	^2	Mass flow	Pressure	Heat function	Sat.steam - temp.	
7	8	9		()		Concentration	Steam wetness	Molar mass	Sat.steam - pres.	
4	5	6		+	-		Heat flow	Pipe roughness	Reaction extent	Water - dens.	
1	2	3		*	1		Temperature	Auxiliaries	Material d.viscosity	Material density	
0			1	^		1	User e	quation		Strap.table	
Equati	ions		W	/orkin	g area		🔽 Use in	model?			
EQU	IL		E	quatio	n	Desc	ription			Checking	
			E	EQUIL	-	equi	librium T-P in th	e SG		✓ ■ 	
			E	quatio	n prop	рег				Resulting value	
			[ST <f< th=""><th>'SG>]</th><th>-[T<t8< th=""><th>3G>]</th><th></th><th></th><th>= 0</th></t8<></th></f<>	'SG>]	-[T <t8< th=""><th>3G>]</th><th></th><th></th><th>= 0</th></t8<>	3G>]			= 0	

Fig. 5.11-1: Editor of user defined equations (demo Example E-11)

Equation EQUIL represents here the relation between measured temperature T and equilibrium temperature T^* , which is function of pressure.

$$T^* = T(P)$$
 (5.11-1)

In the editor, the equation is of the form

which is Eq. (5.11-1) rewritten with zero right-hand side. Function ST (Saturated Temperature) called by button "Saturated steam – temp." has the argument of measured pressure PSG. The second term in the equation is measured temperature TSG.

INPUT DATA

In addition to the flowrates of streams, we here have 4 temperatures (those of hot water HWIN and HWOUT, the temperature in steam generator TSG valid for outlet steam and blowdown, and temperature of feed water FW). Further, we here have three pressures (pressure in steam generator PSG, for feed water FW and for hot water HW). New are two wetnesses for liquid water (WATER) and steam (STEAM).

NAME	TYPE	VALUE	MAX.ERROR
MATER	IAL S	TREAMS	[KG/S]
BLOWDOWN	М	6.1200	5.0000 %
FW	М	444.5000	2.0000 %
HWIN	М	5650.0000	5.0000 %
HWOUT	Ν	5000.0000	
STEAM	М	445.0000	2.0000 %
FLOWS	OF EN	ERGY [KJ	/s]
QSG	Ν	800000.0000	
ТЕМРЕ	RATUR	ES [C]	
HWIN	М	295.2000	1.0000
HWOUT	М	265.8000	1.0000
SG	М	257.6000	1.0000
F'W	Μ	221.6000	1.0000
PRESS	URES	[KPA]	
FW	М	10.0000	0.5000 %
HW	М	10.0000	0.5000 %
PSG	М	4.5400	1.0000 %
WETNE	SSES	[%]	
STEAM	F	0.2500	
WATER	F	100.0000	

PANELS OF MODEL PARAMETERS DEFINITION

Both panels are the same as in Section 5.4.

RESULTS

G	LOBAL	DATA	
	Degree of	redundancy	3
	Number of	equations	5
	Number of	user defined equations	1
	Qmin		4.409E+00
	Qcrit		7.842E+00

VARIABLES

Name	Туре	Inp.values	Rec.values	Max.error
STREA	. M S [KG/S	5]		
BLOWDOWN FW HWIN HWOUT STEAM	MC MC NO MC	6.120 444.500 5650.000 5000.000 445.000	6.115 448.864 5471.657 5471.657 442.749	0.306 6.172 200.269 200.269 6.172
FLOWS QSG TEMPE		0000.000 8	3] 15954.273	11528.935
FW	MC	221.600	221.570	0.999

30

HWIN MC	295.200	294.744	0.863
HWOUT MC	265.800	266.162	0.890
TSG MC	257.600	257.876	0.522
PRESSURES	[MPA]		
FW MC	10.000	10.000	0.050
HW MC	10.000	10.000	0.050
PSG MC	4.540	4.532	0.039
WETNESSES	[%]		
STEAM F	0.250	0.250	
WATER F	100.000	100.000	

Note: If we created a user defined equation for phase equilibrium and temperature or pressure were unmeasured, this would only serve for computing the unmeasured variable without changing the degree of redundancy. In this case, RECON would only serve as a calculator for equilibrium temperature or pressure. Let us note in addition that in the panel "Node balance", the unmeasured temperatures resp. pressures under phase equilibrium conditions are available for the user automatically, even without defining any user defined equation. ♦

5.12 Steam cooling

There are two notions connected with steam cooling – *desuperheating* and *attemperature*. While these terms are often used interchangeably, there is a small difference: desuperheating means bringing the superheated steam to its saturation temperature, attemperature is more general and means simply lowering its temperature closer to the saturation temperature. The most frequent way how to do it is the injection of water. In this example we will deal with cooling the superheated steam in a boiler by injection of the feed water to limit its temperature to a desired level.

Let us further consider a stream cooler with two inlet and one outlet streams.

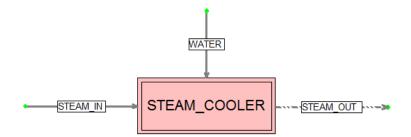


Fig. 5.12-1: Steam cooler (Demo example E-12)

For this node, we can write the mass balance equation

```
m_{\text{steam\_in}} + m_{\text{water}} = m_{\text{steam\_out}} \tag{5.12-1}
```

where the m_i are flowrates,

further the energy balance

$$m_{\text{steam_in}} h_{\text{steam_in}} + m_{\text{water}} h_{\text{water}} = m_{\text{steam_out}} h_{\text{steam_out}}$$
(5.12-2)

where the h_i are specific enthalpies of the streams.

Let's suppose that flows of both input streams are measures as well as all temperatures and pressures. The configuration of the mode STEAM_COOLER is shown on the next Fig.

Node: STEAM ID STEAM_COOLE Geodesic height	Node pres.			-Sort of calculations:		
Reaction heat	- from database	of properties	🗖 Invar	ant balance		
Non-energy strea	ms incident with	node				Reactions in node
Stream	Function	Temperature	Pressure	Wetness		🔀 Reaction 🛨
iSTEAM_IN	H2OV(T,P)	STEAM_IN	STEAM			
iWATER	H2OL(T,P)	WATER	WATER			
oSTEAM OUT	H2OV(T,P)	STEAM OUT	STEAM		-	

It is supposed that both steam streams are superheated and the water is the subcooled liquid. There are 2 equations and one unknown (the flowrate of the outlet steam), the degree of redundancy is 1.

Results of data reconciliation are shown in the next table:

Task: E-14 (Steam cooler)

GLOBAL DATA

Number of measu Number of non-m Number of equat Degree of redur	leasured va ions			7 1 2 1	
Mean residue of Qmin Qcrit Status (Qmin/Qc	-		2,6453E- 1,6416E+ 3,8400E+ 0,4275	00 00	
STREAMS					
Name	Туре	Inp.value	Rec.value	Abs.error	
STEAM_IN STEAM_OUT WATER		100,000	100,327 110,491 10,165	1,939 1,962 0,198	KG/S
TEMPERAI	URES				
Name	Туре	Inp.value	Rec.value	Abs.error	
STEAM_IN STEAM_OUT WATER	MC MC MC	349,000	347,562	2,541 1,917 1,997	С
PRESSURE	S				
Name	Туре	Inp.value	Rec.value	Abs.error	
STEAM WATER	MC MC	9,400 10,200		0,050 0,050	

End of results

5.13 Preheat of a crude oil

Crude oil distillation consumes a lot of energy and systems for energy regeneration used in practice are very elaborated. The system described in this example is not very complex, its task is only to show typical techniques used in setting up the mass and heat balance of such system (a real industrial system is presented in one of case studies). The flowsheet is shown in the next figure.

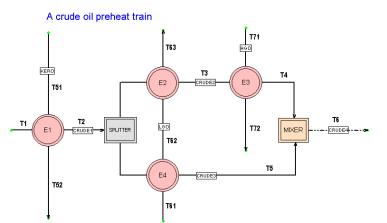


Fig. 5.13-1: Pre-heating crude oil (demo Example E-13)

Crude oil is preheated by contact with several hot product streams. In the first exchanger E1 (stream CRUDE1) it meets with kerosene (stream KERO). After that the crude stream splits in two streams (CRUDE2 and CRUDE3). Stream CRUDE2 is heated by contact with light gas oil (stream LGO) and heavy gas oil (HGO). Stream CRUDE3 meets only with LGO. After that both streams of crude are mixed to form stream CRUDE4. It is worth noting that the heat balance is not set up around the SPLITTER node (see the previous Section). All flows are measured, except of stream CRUDE4.

The input data are as follows:

INPUT DATA

MATERIAL STREAMS [KG/S]

ID	TYPE	VALUE	MAX.ERROR
CRUDE1	М	99.0000	1.0000 %
CRUDE2	М	60.0000	5.0000 %
CRUDE3	М	40.0000	5.0000 %
CRUDE4	N	100.0000	
HGO	М	5.0000	2.0000 %
KERO	М	15.0000	2.0000 %
LGO	М	20.0000	2.0000 %

HEAT FUNCTIONS [kJ, kg, C]

ID	TYPE	A	В	С	Plus H
FnCRUDE	2	0.8600	11.9500	0.000E+0	0.000E+0
FnKERO	2	0.8100	11.7000	0.000E+0	0.000E+0
FnLGO	2	0.8600	11.7700	0.000E+0	0.000E+0
FnHGO	2	0.8900	11.8300	0.000E+0	0.000E+0

TEMPERATURES [C]

ID	TYPE	VALUE	MAX.ERROR
т1	М	25.0000	1.0000
т2	М	45.0000	1.0000
тЗ	М	70.0000	1.0000
Τ4	М	90.0000	1.0000
т5	М	110.0000	1.0000
т51	М	200.0000	2.0000 %
т52	М	100.0000	2.0000 %
Т6	М	100.0000	2.0000 %
т61	Ν	280.0000	
т62	М	180.0000	2.0000 %
т63	М	110.0000	2.0000 %
T71	М	335.0000	2.0000 %
т72	М	150.0000	2.0000 %

EXCHANGERS

ID	Stream	End	Function	TemperaturePressure	Wetness	Area
E1	KERO	Inlet	FnKERO	т51		200
		Outlet	FnKERO	т52		
	CRUDE1	Inlet	FnCRUDE	T1		
		Outlet	FnCRUDE	Т2		
E2	LGO	Inlet	FnLGO	Т62		100
		Outlet	FnLGO	Т63		
	CRUDE2	Inlet	FnCRUDE	Т2		
		Outlet	FnCRUDE	ТЗ		
E3	HGO	Inlet	FnHGO	Т71		100
		Outlet	FnHGO	т72		
	CRUDE2	Inlet	FnCRUDE	ТЗ		
		Outlet	FnCRUDE	Т4		
E4	LGO	Inlet	FnLGO	Т61		50
		Outlet	FnLGO	Т62		
	CRUDE3	Inlet	FnCRUDE	Т2		
		Outlet	FnCRUDE	Т5		

For modeling of enthalpies of crude oil and its fractions we have used Type 2 enthalpy function – so called Berghoff's correlation

Berghoff's correlation is convenient for hydrocarbon mixtures (crude oil fractions). In the SI system of units it reads

 $Cp = 4.1868 (0.403 + 0.00045*t)*(0.054*KW + 0.35)/d^{(1/2)}$

where

Cp specific heat capacity in kJ/(kg.C)

t temperature in centigrade

d relative density at 15.6 C (related to the density of the water at the same temperature)

KW "Watson's characteristic factor" defined by $KW = ((1.8*Tb)^{(1/3)})/d$, where Tb is the mean boiling point of the mixture in the absolute scale (Kelvin)

Here, the constant a stands for d in the Berghoff's correlation and the constant b stands for KW.

Parameters of Berghoff's correlation are entered in a special RECON panel (menu *Accessories – Functions*).

Hea	at function							
Type 1:Polynomial Cp = a + b T + c T^2, H - enth.level, [kJ, kg, C]Type 2:Berghoff's corr. for H, a - rel.dens., b - Watson f., [kJ, kg, K]								
	ID	Description	Туре	a	b	С	H 🔺	+
►	FnCRUDE		2	.86	11.95	0	0	
	FnKERO		2	.81	11.7	0	0	
	FnLGO		2	.86	11.77	0	0	
	FnHGO		2	.89	11.83	0	0	

Fig. 5.13-2: Panel for definition of enthalpy functions

For illustration here is also example of configuration of one of heat exchangers:

Exchanger : E1			☑ Balancing	
ID	Description		Area [M^2]	Passes
E1			200	1 - 1 🔹
Exchanger para KERO	meters: 💌 Hot stream			
	Function	Temperature	Pressure	Wetness
Inlet	FnKERO	T51		
Outlet	FnKERO	T52		
CRUDE1	Cold stream		_	
	Function	Temperature	Pressure	Wetness
Inlet	FnCRUDE	T1		
Outlet	FnCRUDE	T2		

Fig. 5.14-3: Panel for configuration of exchanger E1

Results are as follows:

G	L	0	В	А	L		D	А	Т	A
---	---	---	---	---	---	--	---	---	---	---

Number of nodes	2
Number of heat nodes	1
Number of exchangers	4
Number of streams	7
Number of components	1
Number of heat functions	4
Number of temperatures	13
Number of measured variables	18
Number of adjusted variables	18
Number of non-measured variables	2
Number of observed variables	2
Number of non-observed variables	0
Number of free variables	0
Number of equations	7
Number of independent equations	7
Number of user equations	0
Degree of redundancy	5
Mean residue of equations	1.0154E-09
Qmin	7.8246E+00
Qcrit	1.1081E+01
Status (Qmin/Qcrit)	0.706148

STREAMS [KG/S]

Name	Туре	Inp.value	Rec.value	Abs.error
CRUDE1	MC	99.000	99.126	0.929
CRUDE2	MC	60.000	59.615	1.508
CRUDE3	MC	40.000	39.510	1.501
CRUDE4	NO	100.000	99.126	0.929
HGO	MC	5.000	5.000	0.097
KERO	MC	15.000	15.021	0.292
LGO	MC	20.000	19.912	0.390

TEMPERATURES [C]

Name	Туре	Inp.value	Rec.value	Abs.error
Т1	MC	25.000	25.183	0.813
Т2	MC	45.000	44.412	0.756
Т3	MC	70.000	70.428	0.747
Т4	MC	90.000	90.243	0.792
Т5	MC	110.000	110.176	0.982
т51	MC	200.000	200.618	3.483
т52	MC	100.000	99.869	1.956
Т6	MC	100.000	98.275	0.707
Т61	NO	280.000	280.088	5.020
Т62	MC	180.000	177.838	2.768
т63	MC	110.000	110.717	2.062
т71	MC	335.000	335.059	5.959
т72	MC	150.000	149.991	2.963

EXCHANGERS [KJ/S], [C], [KJ/S/M^2/C]

Name	Q(hot)	Q(cold)	Q(rec)	dT	HTC
E1	3716.585	3898.313	3751.282	110.478	0.170
E2	3351.218	3090.906	3195.294	85.212	0.375
E3	2542.931	2582.835	2544.183	147.028	0.173
E4	5473.941	5569.634	5563.876	150.934	0.737

5.14 Combustion of natural gas – the flame temperature

The target is to set up a model of burning natural gas (NG) in air at the atmospheric pressure. The NG composition is in the next table:

Component	Name	Vol.%
CH₄	methane	98.60
C ₂ H ₆	ethane	1.05
N ₂	nitrogen	0.35

There are 2 chemical reactions describing the combustion process:

CH4 + 2O2	=	CO2 + 2H2O	(5.14-1)
C2H6 + 3.5O2	=	2CO2 + 3H2O	(5.14-2)

We will not model these two reactions directly but we will use the *reaction invariant method* which models the balance on the basis of conservation of chemical elements.

The following 7 components plays role in this system, which must be linked to the RECON database of physical data for calculating heats of reaction and thermal properties of gases:

ID	Description	Database of properties
CH4	methane	Methane
C2H6	ethane	Ethane
N2	nitrogen	Nitrogen
O2	oxygen	Oxygen
CO2	carbon dioxide	Carbon dioxide
H2OG	steam	Steam
AR	argon	Argon

The procedure of model building is as follows:

- Select balance in mass units (kilograms, seconds)
- Define components and link them with the database of physical properties:

ist u	n tusi	d's components			""	ethane: Compo	SIGON		
ID)	Description	Database of properties	-		Element	×	Auxiliary	Τ
Cł	H4	methane	Methane			С	1		T
C2	2H6	ethane	Ethane			Н	4		ľ
N2	2	nitrogen	Nitrogen						
02	2	oxygen	Oxygen						
C	02	carbon dioxide	Carbon dioxide						
H2	20G	steam	Steam						
A	R	argon	Argon						

• Create model for mass balance with chemical reactions:

Fig. 5.14-1: Burning natural gas (demo Example E-14)

The stream parameters are (only nonzero values are shown). Note that while composition of air and natural gas is known (fixed), only the concentration of oxygen in the flue gas is measured (3 %).

MATERI	AL STR	EAMS			
ID	Component	Туре	Value	Max.error	
AIR	Flowrate N2 O2 AR	 F F F	1930.0000 75.470000 23.200000 1.330000	5.0000%	KG/S %wt %wt %wt
FG	Flowrate N2 O2 CO2 H2OG AR	N N M N N N	1000.0000 70.000000 3.000000 10.000000 20.000000 1.000000	0.100000	KG/S %wt %wt %wt %wt %wt
NG	Flowrate CH4 C2H6 N2	M F F F	100.0000 98.600000 1.050000 0.350000	2.0000%	KG/S %wt %wt %wt

• The panel for configuration of the node BURNER follows:

Node: BURN						Sort of calculations:
D	Description					Balancing
BURNER	burner					Hydraulic node
Geodesic heigh	ht [M]	Node pres.				Heat node
Reaction he	at - from database	of properties	🔽 Invariant bala	ance		Reaction node
Non-energy stre	eams incident with	node				Reactions in node
Non-energy stre			✓ Invariant bala Pressure	ance Wetness	- 1	Reactions in node
Non-energy stre Stream iAIR	eams incident with	node			- 2	Reactions in node
	eams incident with	node			- 2	Reactions in node

The *Reaction node* and *Invariant balance* must be ticked.

 This configuration enables one to calculate the mass balance. It is data reconciliation with one degree of redundancy. This task has its ID E-13M in the Demo task set. Below are selected results of this task:

RECON 11.8.8-Pro [ChemPlant Technology s.r.o.] Task: E-14 (Combustion of natural gas - mass balance) Balance: [24.09.2019 16:00; 24.09.2019 17:00) I T E R A T I O N S Iter Qeq Qx Qy Qmin START 2.1610E+01 1 7.7173E-01 1.4415E+01 1.4017E+01 9.0856E-01 2 1.2991E-03 1.1291E-01 6.2789E-01 9.2287E-01 3 3.0605E-12 1.6361E-06 1.4930E-06 9.2287E-01 Legend:

Qeq mean residual of equations mean increment of measured variables in iteration mean increment of non-measured variables in iteration Qx Οv Qmin least-square function GLOBAL DATA Number of nodes 1 3 Number of streams Number of components 7 Number of reactions 2 Number of react. nodes 1 3 Number of measured variables Number of adjusted variables 3 5 Number of non-measured variables Number of observed variables 5 Number of non-observed variables 0 Number of free variables 0 Number of equations 6 Number of independent equations 6 Number of user-defined equations 0 Degree of redundancy 1 3.0605E-12 Mean residue of equations Qmin 9.2287E-01 3.8400E+00 Ocrit Status (Qmin/Qcrit) 0.240330 STREAMS Stream: AIR (From node ENVIRON -> To node BURNER) M = 28.965 KG/KMOLNo. Name Type Inp.value Rec.value Abs.error _____ _____
 Flowrate
 MC
 1930.000
 1973.596
 37.677
 KG/s

 N2
 F
 75.470
 75.470
 %wt

 O2
 F
 23.200
 23.200
 %wt
 3 N2 F 4 O2 F 7 AR F 1.330 1.330 Stream: FG (From node BURNER -> To node ENVIRON) M = 27.894 KG/KMOLТуре No. Name Inp.value Rec.value Abs.error
 Flowrate
 NO
 2000.000
 2073.227
 39.463
 KG/S

 3 N2
 NO
 70.000
 71.860
 0.018
 %wt

 4 O2
 MC
 3.000
 2.995
 0.100
 %wt

 5 CO2
 NO
 10.000
 13.146
 0.065
 %wt

 6 H2OS
 NO
 20.000
 10.732
 0.053
 %wt

 7 AR
 NO
 1.000
 1.266
 3.15E-4
 %wt
 Stream: NG (From node ENVIRON -> To node BURNER) M = 16.146 KG/KMOLInp.value No. Name Type Rec.value Abs.error _____
 Flowrate
 MC
 100.000
 99.631
 1.852
 KG/S

 1 CH4
 F
 98.600
 98.600
 %wt

 2 C2H6
 F
 1.050
 1.050
 %wt

 3 N2
 F
 0.350
 0.350
 %wt
 1 CH4 F 2 C2H6 F 3 N2 F

End of results

Calculations lasted

Define temperatures needed for the heat balance specified in the next table: •

%wt

^{00:00:0.274}

ТЕМР	ERATURE	S	[C]		
ID	Description	Туре		Value	Max.error
TAIR TFLAME TNG	air input flue gases natural gas	M N M		20.000E+0 2000.0000 20.000E+0)

Now fill the Heat node checkbox and configure the heat balance:

Node: BURNE	R					Sort of calculations:
ID	Description					Balancing
BURNER	burner					Hydraulic node
Geodesic height [M]	Node pres.				Heatnode
				-		Reaction node
 Reaction heat Non-energy stream 			Invariant bal	ance		Reactions in node
Stream	Function	Temperature	Pressure	Wetness	- 🗙	Reaction 🔺 📥
iAIR	IG(T)	TAIR				
iNG	IG(T)	TNG				
oFG	IG(T)	TFLAME			-	

The burning takes place at the atmospheric pressure so that the enthalpy function for ideal gas IG(T) was chosen.

This task has its ID E-13E in the Demo task set. Below are selected results of this task:

RECON 11.8.8-Pro [ChemPlant Technology s.r.o.] Task: E-13E (Combustion of natural gas - energy balance) Balance: [24.09.2019 16:00; 24.09.2019 17:00) ITERATIONS Qeq Iter Ох Qу Omin _____
 START
 1.5711E+08

 1
 7.0131E+06
 1.4415E+01
 2.6560E+01
 9.0856E-01

 2
 8.6175E+03
 1.1291E-01
 5.3786E-01
 9.2287E-01

 3
 4.6736E+00
 1.6361E-06
 5.6715E-04
 9.2287E-01

 4
 1.2943E-06
 3.7702E-14
 1.8643E-06
 9.2287E-01
 Legend: Qeq mean residual of equations Qx mean increment of measured variables in iteration mean increment of non-measured variables in iteration Qy Qmin least-square function GLOBAL DATA Number of nodes 1 Number of heat nodes 1 Number of streams 3 Number of components 7 3 Number of temperatures Number of reactions 2 Number of react. nodes 1 5 Number of measured variables Number of adjusted variables 3 Number of non-measured variables 6 Number of observed variables 6 Number of non-observed variables 0 Number of free variables 0 Number of equations 7 Number of independent equations 7 Number of user-defined equations 0 Degree of redundancy 1

Mean residue of equations	1.2943E-06
Qmin	9.2287E-01
Qcrit	3.8400E+00
Status (Qmin/Qcrit)	0.240330

STREAMS

Stream: AIR (From node ENVIRON -> To node BURNER) M = 28.965 KG/KMOL

No. 1	Name	Туре	Inp.value	Rec.value	Abs.error	
I 3 1 4 (7 4	02	MC F F F	1930.000 75.470 23.200 1.330	1973.596 75.470 23.200 1.330	37.677	KG/S %wt %wt %wt

Stream: FG (From node BURNER -> To node ENVIRON) M = 27.894 KG/KMOL

No. Name	Туре	Inp.value	Rec.value	Abs.error	
Flowrate	NO	2000.000	2073.227	39.463	KG/S
3 N2	NO	70.000	71.860	0.018	%wt
4 O2	MC	3.000	2.995	0.100	%wt
5 CO2	NO	10.000	13.146	0.065	%wt
6 H2OS	NO	20.000	10.732	0.053	%wt
7 AR	NO	1.000	1.266	3.15E-4	%wt

Stream: NG (From node ENVIRON -> To node BURNER) M = 16.146 KG/KMOL

No.	Name	Туре	Inp.value	Rec.value	Abs.error	
2	Flowrate CH4 C2H6 N2	MC F F F	100.000 98.600 1.050 0.350	99.631 98.600 1.050 0.350	1.852	KG/S %wt %wt %wt

TEMPERATURES

Name	Туре	Inp.value	Rec.value	Abs.error	
TAIR	MN	20.000	20.000	1.000 C	
TFLAME	NO	2000.000	1856.127	7.384 C	
TNG	MN	20.000	20.000	1.000 C	

End of results

Calculations lasted 00:00:0.405

Discussion:

The mass balance version of the model has one degree of redundancy (DoR). This is due to that flowrates of both input flows (NG and air) are measured and the concentration of oxygen in the flue gas is measured too. This means that for example the air input flowrate is redundant. Adding the heat balance adds one equation more but there is also the unmeasured flame temperature. So, the DoR is not changed.

5.15 Combustion of coal

This example is the continuation of the example presented in Section 4.10 Burning of a coal (task MC-10). Now we suppose that the task of the mass balance is already solved. The next task – completing the heat balance – is named E-15. Recall the coal combustion flowsheet:

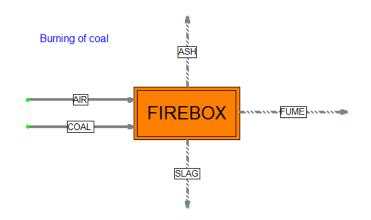


Fig. 5.15-1: Burning coal (demo Example E-15)

To complement this model by enthalpy balance, the following information must be supplied:

• Temperatures of the individual streams

ТЕМР	ERATU	RES [C]	
ID	Туре	Value	Max.error
AIR ASH COAL FUME SLAG	M M M N M	300.0000 200.0000 35.0000 1700.0000 800.0000	3.0000 2.0000 1.0000 5.0000

 Enthalpies of the air and of the fume are modeled as ideal gas on the basis of physical properties bank in RECON. Enthalpies of coal, slag and ash streams were approximated by empirical functions defined in the panel of the administration of heat functions (functions for ash and slag were supposed to be the same).

1	Adn	ninistrati	ion of heat function	ons						
	Func	tions					: Polynomial A [kJ, kg, C]	t + B t^2 / 2	+ C t^3 /	3 + R
I		ID	Description	Type	A 📕	1	Parameter	Value	Auxiliary	
I		COAL	coal	1		1	A	2		
I		ASH	ash	1	_		В	0		
I		-	1			-1	С	0		

In both cases the polynomials of the first order were used with A parameters 2 for the coal and 0.89 for the ash.

The node FIREBOX configuration panel then looks like this:

Node: FIRE	BOX Description firebox			_		V	of calculations: — Balancing Hydraulic node	
Geodesic heigh	ht [M]	Node pres.		-		V	Heat node Reaction node	
Reaction ho	at - from database	of proportion	Invariant bal	2000				
It Reaction ne	at itoin database	orpropentes	I Invariant Dai	ance				
	eams incident with	1 N N N N N N N N N N N N N N N N N N N	· invariant bai	ance		Rea	ctions in node	
		1 N N N N N N N N N N N N N N N N N N N	Pressure	Wetness	-	Rea X Rea		∃ +
Non-energy stre	eams incident with	node			-			±
Non-energy stre Stream	eams incident with Function	node Temperature			-			
Non-energy stre Stream iAIR	Function	node Temperature AIR			-			
Non-energy stre Stream iAIR iCOAL	eams incident with Function IG(T) COAL	node Temperature AIR COAL			•			+

Final results of the calculation follows:

Legend:

Qeq mean residual of equations Qx mean increment of measured variables in iteration Qy mean increment of non-measured variables in iteration Qmin least-square function

GLOBAL DATA

Number of nodes Number of heat nodes Number of streams Number of components Number of heat functions Number of temperatures Number of react. nodes	1 5 11 2 5 1
Number of measured variables Number of adjusted variables Number of non-measured variables Number of observed variables Number of non-observed variables Number of free variables Number of free variables Number of equations (incl. UDE) Number of independent equations Number of user-defined equations (UDE)	10 6 7 7 0 0 10 10 10
Degree of redundancy	3
Mean residue of equations Qmin Qcrit Status (Qmin/Qcrit)	1.1874E-08 2.5670E+00 7.8100E+00 0.328682

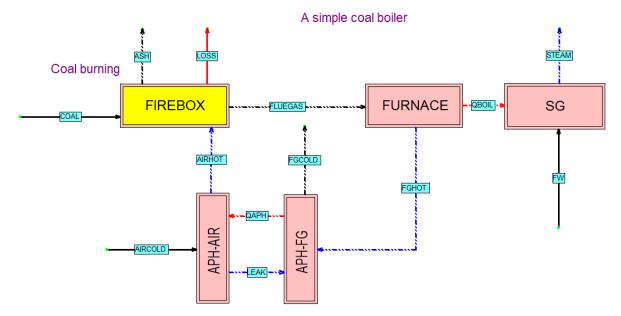
STREAMS

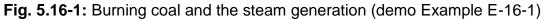
Stream: AIR (From node ENVIRON -> To node FIREBOX) M = 28.964 KG/KMOL

No. Name	Туре	Inp.value	Rec.value	Abs.error

Flowrate 11 AIR		5.000 100.000	5.071 100.000	0.240	KG/S %wt
Stream: ASH M = 100 KG		FIREBOX -> To	node ENVIRON)		
No. Name	Туре	Inp.value	Rec.value	Abs.error	
Flowrate 8 AH		0.050	0.042 100.000	2.07E-3	KG∕S %wt
Stream: COAL M = 46.384		ENVIRON -> To	o node FIREBOX)		
No. Name	Туре	Inp.value	Rec.value	Abs.error	
Flowrate 2 H2OL 8 AH 10 COAL Stream, FLUEC	F	1.000 25.400 30.720 43.880	0.901 25.400 30.720 43.880	0.045	KG/S %wt %wt %wt
M = 29.3 H		oue rindbox >		,	
		Inp.value	Rec.value	Abs.error	
Flowrate 1 H2OV 3 O2 4 N2 5 AR 6 CO2 7 CO 9 SO2	NO NO MC NO NO MC	6.000 10.000 5.000 1.000 19.000 0.050	5.695 6.810 5.012 67.303 1.191 19.359 0.050 0.275	0.269 0.106 0.284 0.128 2.29E-3 0.304 5.00E-3	%wt %wt %wt %wt %wt
Stream: SLAG M = 100 KG		= FIREBOX -> To	o node ENVIRON)		
No. Name	Туре	Inp.value	Rec.value		
Flowrate 8 AH		0.200 100.000	0.235	0.012	KG∕S %wt
TEMPERA	TURES				
Name	Туре	Inp.value	Rec.value	Abs.erro	r
AIR ASH COAL FUME SLAG	MN MN MN NO MN	300.000	300.000 200.000 35.000	3.00	0 C 0 C 9 C

End of results


Discussion:


This task showed using different enthalpy functions: ideal gas for air and flue gases and empirical functions for coal, ash and slag. Even better could be to calculate coal enthalpy as a function of moisture of the coal which influences its enthalpy significantly. But the coal temperature is quite close to the standard temperature and thus its influence on the Heat Rate is not significant.

Adding the heat balance did not changed redundancy of the task. One heat balance equation was compensated by one unknown – the flue gas temperature.

5.16 Coal fired steam generator with air preheat

This example is the continuation of the previous example presented in Section 5.15 Burning of a coal (task E-15). Now we suppose that the task of the coal burning is already solved. The next task will complete the coal burning by other nodes needed for the steam generation.

The following two couples of nodes are added:

- 1. Boiler and the Steam generator (SG)
- 2. Air preheater (air and flue gas sides of the rotary air preheater APH-AIR and APH-FG).

There are 3 energy streams:

- 1. Radiation and convection heat losses LOSS
- 2. Heat exchanged between flue gases and the feed water QBOIL
- 3. Heat exchanged between air and flue gases QAPH.

There is the air leak stream LEAK from air to flue gases in APH.

Input data for this task follows. Data for dependent streams (blue streams in Fig. 5.16-1) are not shown.

Task: E-16 (Simplified soft coal boiler II)

Balance: [25.09.2019 15:00; 25.09.2019 16:00)

GLOBAL DATA

|--|

СОМРОΝЕΝТЅ

ID	Description	Chemical name
H2OV H2OL O2 N2 AR CO2 CO AH SO2 COAL	steam water oxygen nitrogen argon carbon dioxide carbon monoxide ash sulphur dioxide soft coel flammable part	Steam Water Oxygen Nitrogen Argon Carbon dioxide Carbon monoxide Ash Sulfur dioxide Soft coal
	Fundamental Parts	

STREAMS

ID	From node	To node	Master stream	Description
AIRCOLD	ENVIRON	APH-AIR	AIRCOLD	air at APH inlet
AIRHOT	APH-AIR	FIREBOX		air at APH outlet
ASH	FIREBOX	ENVIRON		ash
COAL	ENVIRON	FIREBOX		soft coal input
FGCOLD	APH-FG	ENVIRON	FLUEGAS	FG at APH exit
FGHOT	BOILER	APH-FG		FG at APH inlet
FLUEGAS	FIREBOX	BOILER		Flue Gas at firebox exit
FW	ENVIRON	SG		Feed Water
LEAK LOSS QAPH QBOIL STEAM	APH-AIR FIREBOX APH-FG BOILER SG	APH-FG ENVIRON APH-AIR SG ENVIRON	AIRCOLD FW	boiler radiatin and convection loss APH heat flux boiler useful heat flux steam generated

MATERIAL STREAMS

ID	Component	Туре	Value	Max.error	
AIRCOLD	Flowrate	М	1730.0000	3.0000%	T/HR
	H2OV	F	1.360000		%wt
	H2OL	F	0.00000E+0		%wt
	02	F	22.880000		%wt
	N2	F	74.470000		%wt
	AR	F	1.240000		%wt
	CO2	F	5.00000E-2		%wt
	CO	F	0.00000E+0		%wt
	AH	F	0.00000E+0		%wt
	SO2	F	0.00000E+0		%wt
	COAL	F	0.0000E+0		%wt
AIRHOT	Flowrate	N	1731.4264		T/HR
	(Master st	ream = A	AIRCOLD)		
ASH	Flowrate	N	98.7989		T/HR
	H2OV	F	0.00000E+0		%wt
	H2OL	F	0.00000E+0		%wt
	02	F	0.00000E+0		%wt
	N2	F	0.0000E+0		%wt

	AR CO2 CO AH SO2 COAL	년 1 년 1 년 1 년	0.00000E+0 0.00000E+0 100.000000 0.0000000 0.00000E+0 0.00000E+0		୫wt ୫wt ୫wt ୫wt ୫wt ୫wt
COAL	Flowrate H2OV H2OL O2 N2	M F F F	325.0000 0.00000E+0 25.400000 0.00000E+0 0.00000E+0	5.0000%	T/HR %wt %wt %wt %wt
	AR CO2 CO AH SO2 COAL	년 11 년 11 년	0.00000E+0 0.00000E+0 0.00000E+0 30.720000 0.00000E+0 43.880000		%wt %wt %wt %wt %wt %wt
FGCOLD	Flowrate H2OV H2OL	N N F	1996.9639 8.140798 0.00000E+0		T/HR %wt %wt
	O2 N2 AR CO2	M N N N	4.800000 66.224582 1.101647 19.754648	0.400000	%wt %wt %wt %wt
	CO AH SO2 COAL	M F N F	5.00000E-2 0.00000E+0 0.279564 0.00000E+0	2.50000E-3	Swt Swt Swt Swt Swt
FGHOT	Flowrate (Master st	N ream =	1954.2384 = FLUEGAS)		T/HR
FLUEGAS	Flowrate H2OV H2OL O2 N2 AR CO2 CO AH SO2 COAL	N F M N N F N F	1954.2384 8.289047 0.00000E+0 4.000000 66.044313 1.098622 20.185451 5.00000E+2 0.00000E+0 0.285676 0.00000E+0	0.400000 2.50000E-3	T/HR %wt %wt %wt %wt %wt %wt %wt %wt %wt
FW	Flowrate H2OV H2OL O2 N2 AR CO2 CO AH SO2 COAL	M 두 두 두 두 두 두 두	1600.0000 0.00000E+0 100.00000E+0 0.00000E+0 0.00000E+0 0.00000E+0 0.00000E+0 0.00000E+0 0.00000E+0 0.00000E+0	1.0000%	T/HR %wt %wt %wt %wt %wt %wt %wt %wt %wt
LEAK	Flowrate (Master st		42.7255 = AIRCOLD)		T/HR
STEAM	Flowrate (Master st		1595.9000 = FW)		T/HR
ENER (GY STRI	EAMS	5 [MW]		
ID	Туре	7	Value Max.error		

TD	туре	value	Max.error
LOSS	М	5.0000	5.0000%
QAPH	Ν	143.6246	
QBOIL	N	939.6163	

FUNCTIONS [kJ, kg, C]

ID	Туре	A	В	С	Plus H
ASH COAL	1 1	0.8900 2.0000		0.000E+0 0.000E+0	

TEMPERATURES [C]

ID	Туре	Value	Max.error
AIRCOLD	м	30.0000	1.0000
AIRHOT	М	315.0000	3.0000
AIRLEAK	Ν	172.4177	
ASH	Μ	200.0000	2.0000
COAL	Μ	35.0000	1.0000
FGCOLD	Μ	125.0000	1.0000
FGHOT	М	360.0000	3.0000
FLAME	N	1687.3698	
FW	М	305.0000	2.0000
STEAM	М	600.0000	2.0000
PRES	SURES	[MPA]	
ID	Type	Value	Max.error

ID T	ype Value	Max.error
FW M STEAM M	51.0000	

AUXILIARIES

ID	Туре	Value	Max.error	
BOILEFFIO	N	85.3505		kJ/kWh
COALC	M	76.4200	1.0000%	1
COALH COALHHV	M M	4.5000 28080000.0000	1.0000% 0.2000%	ı J/kq
COALN	M	0.9000	1.0000%	1
COALO	М	16.2000	1.0000%	1
COALS	М	1.9800	1.0000%	1

HEAT NODES

ID	Stream	Function	Temperatu	urePressure	Wetness	
APH-AIR	AIRHOT	IG(T) IG(T) IG(T) IG(T)	AIRHOT			
APH-FG	FGCOLD	IG(T) IG(T) IG(T)				
BOILER		IG(T) IG(T)				
FIREBOX	FLUEGAS ASH	COAL IG(T) ASH IG(T)	FLAME ASH			
SG		H2O(T,P) H2O(T,P)				
USER	EQUAT	IONS				
ID	Descripti Programma	tic code				Remark
AIRLEAK	ZAK airleak temperature [T <airleak>]-([T<aircold>]+[T<airhot>])/2</airhot></aircold></airleak>					Model
BOILEFFIO	[V <boilef< td=""><td>FIO>]-[S<qbc COAL>])*100</qbc </td><td>0IL>]/([S<c0< td=""><td>DAL>] * [V<coa< td=""><td>LHHV>]</td><td>Model</td></coa<></td></c0<></td></boilef<>	FIO>]-[S <qbc COAL>])*100</qbc 	0IL>]/([S <c0< td=""><td>DAL>] * [V<coa< td=""><td>LHHV>]</td><td>Model</td></coa<></td></c0<>	DAL>] * [V <coa< td=""><td>LHHV>]</td><td>Model</td></coa<>	LHHV>]	Model

Note 1: Air leak temperature is calculated as the average of input and output air temperature.

Note 2: Use equation BOILEFFIO calculates the Input – Output boiler efficiency BOILEFFIO.

Main results of calculation follows:

ITERA	ATIONS				
Iter	Qeq	Qx	Qy	Qmin	
	2.0396E+05				
1	9.1841E+01	3.7335E+02	1.8222E+03	6.7120E+00	
2	1.6977E-02	5.7714E-02	3.4372E+01	6.7150E+00	
3	3.1590E-05	3.7335E+02 5.7714E-02 1.0490E-05	7.3858E-03	6.7150E+00	
Legend:					
Qx mea Qy mea	an residual of an increment o an increment o ast-square fun	f measured varia f non-measured v	ables in iterati variables in ite	on ration	
GLOBA	AL DATA				
Number of				5	
	heat nodes			5	
Number of	streams			13	
Number of	energy stream	ms		3	
Number of	components			10	
Number of	heat function	ns		2	
Number of	temperatures			10	
Number of	pressures			2	
Number of	auxiliaries		7		
	react. nodes			1	
Number of	measured var	iables		24	
Number of	adjusted var	iables		24	
Number of	non-measured	variables	22		
Number of	observed var	iables	22		
Number of	non-observed	variables		0	
Number of	free variabl	es		0	
Number of	equations (i	ncl. UDE)		27	
	independent			27	
		equations (UDE)		2	
Degree of	redundancy			5	
Mean resi	due of equati	ons	3.1590E	-05	
Qmin	auc or equati	0110	6.7150E		
Qcrit			1.1100E		
	Qmin/Qcrit)		0.60		
FLOWF	RATES &	СОNСЕNТ	RATIONS		
	TRCOLD (From	node ENVIRON ->	> To node APH-AI	R)	
	28.727 KG/KMOL				

	Flowrate	MC	1730.000	1773.601	33.988	T/HR	air at APH inlet
1	H2OV	F	1.360	1.360		%wt	Steam
3	02	F	22.880	22.880		%wt	Oxygen
4	N2	F	74.470	74.470		%wt	Nitrogen
5	AR	F	1.240	1.240		%wt	Argon
6	CO2	F	0.050	0.050		%wt	Carbon dioxide

Stream: AIRHOT (From node APH-AIR -> To node FIREBOX) M = 28.727 KG/KMOL; Master stream = AIRCOLD No. Name Туре Inp.value Rec.value Abs.error _____ _____ Flowrate NO 1731.426 1731.330 43.183 T/HR air at APH outlet Stream: ASH (From node FIREBOX -> To node ENVIRON) M = 100 KG/KMOLRec.value No. Name Type Inp.value Abs.error ------
 Flowrate
 NO
 98.799
 98.801
 1.067
 T/HR
 ash

 8 AH
 F
 100.000
 100.000
 %wt
 Ash
 8 AH Stream: COAL (From node ENVIRON -> To node FIREBOX) M = 46.384 KG/KMOLNo. Name Type Inp.value Rec.value Abs.error -----
 Flowrate
 MC
 325.000
 321.618
 3.473
 T/HR soft coal input

 H20L
 F
 25.400
 25.400
 %wt. Water
 25.400 25.400 2 H2OL F 8 AH F 10 COAL F %wt Water %wt Ash %wt Soft coal 30.720 30.720 43.880 43.880 Stream: FGCOLD (From node APH-FG -> To node ENVIRON) M = 29.091 KG/KMOL
 Flowrate
 NO
 1996.964
 1996.418
 35.073
 T/HR
 FG at APH exit

 1 H2OV
 NO
 8.141
 8.143
 0.106
 %wt
 Steam

 3 O2
 MC
 4.800
 4.444
 0.288
 %wt
 Oxygen

 4 N2
 NO
 66.225
 66.222
 0.129
 %wt
 Nitrogen

 5 AR
 NO
 1.102
 1.102
 2.1610E-3
 %wt
 Argon

 6 CO2
 NO
 19.755
 19.761
 0.308
 %wt
 Carbon dioxide

 7 CO
 MC
 0.050
 0.049
 1.8493E-3
 %wt
 Carbon monoxide

 9 SO2
 NO
 0.280
 0.280
 4.2007
 1.2007
 No. Name Type Inp.value Rec.value Abs.error _____ Stream: FGHOT (From node FURNACE -> To node APH-FG) M = 29.099 KG/KMOL; Master stream = FLUEGAS No. Name Type Inp.value Rec.value Abs.error Stream: FLUEGAS (From node FIREBOX -> To node FURNACE) M = 29.099 KG/KMOLRec.value No. Name Туре Inp.value Abs.error _____ _____ 8.290 4.045 60 Flowrate NO 1954.238 1954.147 44.249 T/HR Flue Gas at firebox exit 1 H2OV NO 8.289 0.139 %wt Steam
 1
 1200
 NO

 3
 02
 MC

 4
 N2
 NO

 5
 AR
 NO

 6
 C02
 NO

 7
 CO
 MC

 9
 SO2
 NO

 4.045
 0.378
 %wt
 Steam

 4.045
 0.378
 %wt
 Oxygen

 66.044
 0.169
 %wt
 Nitrogen

 1.099
 2.8344E-3
 %wt
 Argon

 20.187
 0.405
 %wt
 Carbon dioxide

 0.051
 1.8809E-3
 %wt
 Carbon monoxide

 0.286
 5.7273E-3
 %wt
 Sulfur dioxide

 4.000 66.044 1.099 20.185 0.050 NO 0.286 Stream: FW (From node ENVIRON -> To node SG) M = 18.015 KG/KMOLNo. Name Туре Inp.value Rec.value Abs.error _____ Flowrate MC 1600.000 1595.944 15.217 T/HR Feed Water F 2 H2OL 100.000 100.000 %wt Water Stream: LEAK (From node APH-AIR -> To node APH-FG) M = 28.727 KG/KMOL; Master stream = AIRCOLD No. Name Туре Inp.value Rec.value Abs.error ----------_____ _____ Flowrate NO 42.725 42.270 46.823 T/HR Stream: STEAM (From node SG -> To node ENVIRON)

M = 18.015 KG/KMOL; Master stream = FW

	Туре		Rec.value	Abs.error	
Flowrate 2 H2OL	NO	1595.900 100.000	1595.944 100.000		R steam generated Water
ENERGY	STREAI	M S			
Name			Rec.value		
LOSS convection los	MC	5.000	4.998		W boiler radiatin and
QAPH QAPH		143.625	143.605	2.854 M	W APH heat flux
QBOIL	NO	939.616	939.652	10.151 M	W boiler useful heat
flux					
ТЕМРЕКА	TURES				
Name	Туре		Rec.value	Abs.error	
AIRCOLD	MC	30.000	30.033		C air cold
AIRHOT	MC	315.000	314.811	2.485	C air hot
AIRLEAK	NO	172.418	172.422	1.392	C airleak
ASH	MC	200.000	199.997	2.000	C ash
COAL	MC	35.000	35.005	1.000	C coal in
FGCOLD	MC	125.000	124.959	0.976	C flue gas cold
FGHOT	MC	360.000		2.178	C flue gas hot
FLAME	NO	1687.370			C FG flame
FW	MC	305.000			C feed water
STEAM	MC	600.000	599.855	1.992	C main steam
PRESSUR	ES				
Name	Туре	Inp.value	Rec.value	Abs.error	
FW	MC	31.000	30.999	0.310	MPA feed water
STEAM	MC	27.000	27.008	0.270	MPA main steam
AUXILIA	RIES				
Name	Туре	-	Rec.value	Abs.error	
BOILEFFIO [kJ/kWh]	NO	85.350			boiler IO Efficiency
COALC	MC	76.420	76.420	0.166	
COALH	MC	4.500	4.500		
COALHHV	MC	28080000.000	28083359.052	56013.301	coal HHV [J/kg]
COALN	MC	0.900	0.900		
COALO	MC	16.200	16.200	0.158	
COALS	MC	1.980	1.980	0.020	

End of results

Note: Please recall the Note at the introductory part of this Section. In the node FIREBOX the input stream COAL contains H2O in the state of H2OL (water) and the stream FLUEGAS contains H2O is in the state H2OV (vapor). This respects the fact that moisture from coal in the FIREBOX vaporizes.

In the node SG both streams has H2O in state H2OL. This is because the water and steam enthalpy functions used in the configuration of heat balance of the SG node already count with the proper state of input and output streams.